Advances in Psychological Science ›› 2023, Vol. 31 ›› Issue (11): 2129-2141.doi: 10.3724/SP.J.1042.2023.02129
• Regular Articles • Previous Articles Next Articles
ZHANG Weixia1, XI Min2(), YIN Tiantian1, WANG Cheng1, SI Shubin3,4
Received:
2022-10-26
Online:
2023-11-15
Published:
2023-08-28
CLC Number:
ZHANG Weixia, XI Min, YIN Tiantian, WANG Cheng, SI Shubin. Prediction of depression onset and development based on network analysis[J]. Advances in Psychological Science, 2023, 31(11): 2129-2141.
[1] |
蔡玉清, 董书阳, 袁帅, 胡传鹏. (2020). 变量间的网络分析模型及其应用. 心理科学进展, 28(1), 178-190.
doi: 10.3724/SP.J.1042.2020.00178 |
[2] |
陈琛, 王力, 曹成琦, 李根. (2021). 心理病理学网络理论, 方法与挑战. 心理科学进展, 29(10), 1724-1739.
doi: 10.3724/SP.J.1042.2021.01724 |
[3] |
Aalbers, G., McNally, R. J., Heeren, A., De Wit, S., & Fried, E. I. (2019). Social media and depression symptoms: A network perspective. Journal of Experimental Psychology: General, 148(8), 1454-1462.
doi: 10.1037/xge0000528 URL |
[4] |
Armbrecht, E., Shah, A., Schepman, P., Shah, R., Pappadopulos, E., Chambers, R., ... McIntyre, R. S. (2020). Economic and humanistic burden associated with noncommunicable diseases among adults with depression and anxiety in the United States. Journal of Medical Economics, 23(9), 1032-1042.
doi: 10.1080/13696998.2020.1776297 pmid: 32468879 |
[5] |
Bastiaansen, J. A., Kunkels, Y. K., Blaauw, F. J., Boker, S. M., Ceulemans, E., Chen, M., ... Bringmann, L. F. (2020). Time to get personal? The impact of researchers choices on the selection of treatment targets using the experience sampling methodology. Journal of Psychosomatic Research, 137, 110211.
doi: 10.1016/j.jpsychores.2020.110211 URL |
[6] | Boeing, G. (2016). Visual analysis of nonlinear dynamical systems: Chaos, fractals, self-similarity and the limits of prediction. Systems, 4(4), 37. |
[7] | Boettner, C., & Boers, N. (2022). Critical slowing down in dynamical systems driven by nonstationary correlated noise. Physical Review Research, 4(1), 013230. |
[8] |
Borsboom, D. (2008). Psychometric perspectives on diagnostic systems. Journal of Clinical Psychology, 64(9), 1089-1108.
doi: 10.1002/jclp.20503 pmid: 18683856 |
[9] |
Borsboom, D. (2017). A network theory of mental disorders. World Psychiatry, 16(1), 5-13.
doi: 10.1002/wps.v16.1 URL |
[10] | Borsboom, D., Cramer, A. O., & Kalis, A. (2019). Brain disorders? Not really: Why network structures block reductionism in psychopathology research. Behavioral and Brain Sciences, 42, e2, 1-63. |
[11] |
Bos, F. M., Fried, E. I., Hollon, S. D., Bringmann, L. F., Dimidjian, S., DeRubeis, R. J., & Bockting, C. L. (2018). Cross-sectional networks of depressive symptoms before and after antidepressant medication treatment. Social Psychiatry and Psychiatric Epidemiology, 53(6), 617-627.
doi: 10.1007/s00127-018-1506-1 pmid: 29627898 |
[12] |
Bos, F. M., Schreuder, M. J., George, S. V., Doornbos, B., Bruggeman, R., van der Krieke, L., ... Snippe, E. (2022). Anticipating manic and depressive transitions in patients with bipolar disorder using early warning signals. International Journal of Bipolar Disorders, 10(1), 1-14.
doi: 10.1186/s40345-021-00248-y |
[13] |
Boschloo, L., van Borkulo, C. D., Borsboom, D., & Schoevers, R. A. (2016). A prospective study on how symptoms in a network predict the onset of depression. Psychotherapy and Psychosomatics, 85(3), 183-184.
doi: 10.1159/000442001 pmid: 27043457 |
[14] |
Bringmann, L. F., Albers, C., Bockting, C., Borsboom, D., Ceulemans, E., Cramer, A., ... Wichers, M. (2022). Psychopathological networks: Theory, methods and practice. Behaviour Research and Therapy, 149, 104011.
doi: 10.1016/j.brat.2021.104011 URL |
[15] | Bringmann, L. F., Vissers, N., Wichers, M., Geschwind, N., Kuppens, P., Peeters, F., ... Tuerlinckx, F. (2013). A network approach to psychopathology: New insights into clinical longitudinal data. PLoS ONE, 8(4), e60188. |
[16] | Bury, T. M., Sujith, R., Pavithran, I., Scheffer, M., Lenton, T. M., Anand, M., & Bauch, C. T. (2021). Deep learning for early warning signals of tipping points. Proceedings of the National Academy of Sciences, 118(39), e2106140118. |
[17] |
Clements, C. F., McCarthy, M. A., & Blanchard, J. L. (2019). Early warning signals of recovery in complex systems. Nature Communications, 10(1), 1-9.
doi: 10.1038/s41467-018-07882-8 |
[18] | Cramer, A. O., Van Borkulo, C. D., Giltay, E. J., Van Der Maas, H. L., Kendler, K. S., Scheffer, M., & Borsboom, D. (2016). Major depression as a complex dynamic system. PLoS ONE, 11(12), e0167490. |
[19] |
Curtiss, J. E., Mischoulon, D., Fisher, L. B., Cusin, C., Fedor, S., Picard, R. W., & Pedrelli, P. (2023). Rising early warning signals in affect associated with future changes in depression: A dynamical systems approach. Psychological Medicine, 53(7), 3124-3132.
doi: 10.1017/S0033291721005183 URL |
[20] | Dablander, F., Pichler, A., Cika, A., & Bacilieri, A. (2023). Anticipating critical transitions in psychological systems using early warning signals: Theoretical and practical considerations. Psychological Methods, 28(4), 765-790. doi: 10.1037/met0000450 |
[21] |
Dai, P., Xiong, T., Zhou, X., Ou, Y., Li, Y., Kui, X., ... Huang, Z. (2022). The alterations of brain functional connectivity networks in major depressive disorder detected by machine learning through multisite rs-fMRI data. Behavioural Brain Research, 435, 114058.
doi: 10.1016/j.bbr.2022.114058 URL |
[22] |
De Beurs, D., Bockting, C., Kerkhof, A., Scheepers, F., O’Connor, R., Penninx, B., & van de Leemput, I. (2021). A network perspective on suicidal behavior: Understanding suicidality as a complex system. Suicide and Life‐ Threatening Behavior, 51(1), 115-126.
doi: 10.1111/sltb.v51.1 URL |
[23] |
de Felice, G., Giuliani, A., Pincus, D., Scozzari, A., Berardi, V., Kratzer, L., ... Schiepek, G. (2022). Stability and flexibility in psychotherapy process predict outcome. Acta Psychologica, 227, 103604.
doi: 10.1016/j.actpsy.2022.103604 URL |
[24] |
de Vries, Y. A., Roest, A. M., Bos, E. H., Burgerhof, J. G., Van Loo, H. M., & de Jonge, P. (2019). Predicting antidepressant response by monitoring early improvement of individual symptoms of depression: Individual patient data meta-analysis. The British Journal of Psychiatry, 214(1), 4-10.
doi: 10.1192/bjp.2018.122 URL |
[25] |
Dejonckheere, E., Mestdagh, M., Houben, M., Rutten, I., Sels, L., Kuppens, P., & Tuerlinckx, F. (2019). Complex affect dynamics add limited information to the prediction of psychological well-being. Nature Human Behaviour, 3(5), 478-491.
doi: 10.1038/s41562-019-0555-0 pmid: 30988484 |
[26] |
DeYoung, C. G., & Krueger, R. F. (2018). Understanding psychopathology: Cybernetics and psychology on the boundary between order and chaos. Psychological Inquiry, 29(3), 165-174.
doi: 10.1080/1047840X.2018.1513690 URL |
[27] |
Drake, J. M., & Griffen, B. D. (2010). Early warning signals of extinction in deteriorating environments. Nature, 467(7314), 456-459.
doi: 10.1038/nature09389 |
[28] |
Eisele, G., Lafit, G., Vachon, H., Kuppens, P., Houben, M., Myin-Germeys, I., & Viechtbauer, W. (2021). Affective structure, measurement invariance, and reliability across different experience sampling protocols. Journal of Research in Personality, 92, 104094.
doi: 10.1016/j.jrp.2021.104094 URL |
[29] | Fisher, A., Soyster, P., & Ashlock, L. (2021). Machine learning algorithms for generating early warning signals in real time. Biological Psychiatry, 89(9), S58-S59. |
[30] | Fried, E. I., & Nesse, R. M. (2015). Depression sum-scores don’t add up: Why analyzing specific depression symptoms is essential. BMC Medicine, 13(1), 72. |
[31] | Fried, E. I., Rieble, C., & Proppert, R. K. (2022). Building an early warning system for depression: Rationale, objectives, and methods of the WARN-D study. PsyArXiv. doi: 10.31234/osf.io/9qcvs |
[32] |
Fried, E. I., van Borkulo, C. D., Cramer, A. O., Boschloo, L., Schoevers, R. A., & Borsboom, D. (2017). Mental disorders as networks of problems: A review of recent insights. Social Psychiatry and Psychiatric Epidemiology, 52(1), 1-10.
doi: 10.1007/s00127-016-1319-z pmid: 27921134 |
[33] |
Fried, E. I., van Borkulo, C. D., Epskamp, S., Schoevers, R. A., Tuerlinckx, F., & Borsboom, D. (2016). Measuring depression over time... Or not? Lack of unidimensionality and longitudinal measurement invariance in four common rating scales of depression. Psychological Assessment, 28(11), 1354-1367.
pmid: 26821198 |
[34] |
Gao, J., Barzel, B., & Barabási, A.-L. (2016). Universal resilience patterns in complex networks. Nature, 530(7590), 307-312.
doi: 10.1038/nature16948 |
[35] |
Gao, T. T., & Yan, G. (2022). Autonomous inference of complex network dynamics from incomplete and noisy data. Nature Computational Science, 2(3), 160-168.
doi: 10.1038/s43588-022-00217-0 |
[36] |
Gijzel, S. M., Rector, J., van Meulen, F. B., van Der Loeff, R. S., van de Leemput, I. A., Scheffer, M., ... Melis, R. J. (2020). Measurement of dynamical resilience indicators improves the prediction of recovery following hospitalization in older adults. Journal of the American Medical Directors Association, 21(4), 525-530.
doi: S1525-8610(19)30751-0 pmid: 31836428 |
[37] |
Gillan, C. M., & Rutledge, R. B. (2021). Smartphones and the neuroscience of mental health. Annual Review of Neuroscience, 44, 129-151.
doi: 10.1146/annurev-neuro-101220-014053 pmid: 33556250 |
[38] |
Hakulinen, C., Fried, E. I., Pulkki-Råback, L., Virtanen, M., Suvisaari, J., & Elovainio, M. (2020). Network structure of depression symptomology in participants with and without depressive disorder: The population-based Health 2000-2011 study. Social Psychiatry and Psychiatric Epidemiology, 55(10), 1273-1282.
doi: 10.1007/s00127-020-01843-7 |
[39] | Hayes, A. M., & Andrews, L. A. (2020). A complex systems approach to the study of change in psychotherapy. BMC Medicine, 18(1), 197. |
[40] |
Hayes, A. M., Feldman, G. C., Beevers, C. G., Laurenceau, J.-P., Cardaciotto, L., & Lewis-Smith, J. (2007). Discontinuities and cognitive changes in an exposure- based cognitive therapy for depression. Journal of Consulting and Clinical Psychology, 75(3), 409-421.
doi: 10.1037/0022-006X.75.3.409 URL |
[41] |
Hayes, A. M., Yasinski, C., Barnes, J. B., & Bockting, C. L. (2015). Network destabilization and transition in depression: New methods for studying the dynamics of therapeutic change. Clinical Psychology Review, 41, 27-39.
doi: 10.1016/j.cpr.2015.06.007 pmid: 26197726 |
[42] |
Heeren, A., & McNally, R. J. (2018). Social anxiety disorder as a densely interconnected network of fear and avoidance for social situations. Cognitive Therapy and Research, 42(1), 103-113.
doi: 10.1007/s10608-017-9876-3 URL |
[43] | Helmich, M. A., Smit, A. C., Bringmann, L. F., Schreuder, M., Oldehinkel, A., Wichers, M., & Snippe, E. (2022). Detecting impending symptom transitions using early warning signals in individuals receiving treatment for depression. Clinical Psychological Science, 21677026221137006. |
[44] |
Helmich, M. A., Wichers, M., Olthof, M., Strunk, G., Aas, B., Aichhorn, W., ... Snippe, E. (2020). Sudden gains in day-to-day change: Revealing nonlinear patterns of individual improvement in depression. Journal of Consulting and Clinical Psychology, 88(2), 119-127.
doi: 10.1037/ccp0000469 pmid: 31894994 |
[45] |
Hofmann, S. G., Curtiss, J., & McNally, R. J. (2016). A complex network perspective on clinical science. Perspectives on Psychological Science, 11(5), 597-605.
pmid: 27694457 |
[46] | Hosenfeld, B., Bos, E. H., Wardenaar, K. J., Conradi, H. J., van der Maas, H. L., Visser, I., & de Jonge, P. (2015). Major depressive disorder as a nonlinear dynamic system: Bimodality in the frequency distribution of depressive symptoms over time. BMC Psychiatry, 15(1), 222. |
[47] |
Isvoranu, A.-M., Guloksuz, S., Epskamp, S., van Os, J., Borsboom, D., & Investigators, G. (2020). Toward incorporating genetic risk scores into symptom networks of psychosis. Psychological Medicine, 50(4), 636-643.
doi: 10.1017/S003329171900045X URL |
[48] | Keshavarz, K., Hedayati, A., Rezaei, M., Goudarzi, Z., Moghimi, E., Rezaee, M., & Lotfi, F. (2022). Economic burden of major depressive disorder: A case study in Southern Iran. BMC Psychiatry, 22(1), 577. |
[49] |
Kim, N. S., & Ahn, W.-k. (2002). Clinical psychologists' theory-based representations of mental disorders predict their diagnostic reasoning and memory. Journal of Experimental Psychology: General, 131(4), 451-476.
doi: 10.1037/0096-3445.131.4.451 URL |
[50] | Kunkels, Y. K., Riese, H., Knapen, S. E., Riemersma-van der Lek, R. F., George, S. V., van Roon, A. M., ... Wichers, M. (2021). Efficacy of early warning signals and spectral periodicity for predicting transitions in bipolar patients: An actigraphy study. Translational Psychiatry, 11(1), 350. |
[51] |
Kuranova, A., Booij, S. H., Menne-Lothmann, C., Decoster, J., van Winkel, R., Delespaul, P., ... Rutten, B. P. (2020). Measuring resilience prospectively as the speed of affect recovery in daily life: A complex systems perspective on mental health. BMC Medicine, 18(1), 1-11.
doi: 10.1186/s12916-019-1443-1 |
[52] |
Liu, X., Li, D., Ma, M., Szymanski, B. K., Stanley, H. E., & Gao, J. (2022). Network resilience. Physics Reports, 971, 1-108.
doi: 10.1016/j.physrep.2022.04.002 URL |
[53] |
Lu, J., Xu, X., Huang, Y., Li, T., Ma, C., Xu, G., ... Zhang, N. (2021). Prevalence of depressive disorders and treatment in China: A cross-sectional epidemiological study. The Lancet Psychiatry, 8(11), 981-990.
doi: 10.1016/S2215-0366(21)00251-0 URL |
[54] |
Madhoo, M., & Levine, S. Z. (2016). Network analysis of the Quick Inventory of Depressive Symptomatology: Reanalysis of the STAR* D clinical trial. European Neuropsychopharmacology, 26(11), 1768-1774.
doi: 10.1016/j.euroneuro.2016.09.368 URL |
[55] |
McLaughlin, K. A., Colich, N. L., Rodman, A. M., & Weissman, D. G. (2020). Mechanisms linking childhood trauma exposure and psychopathology: A transdiagnostic model of risk and resilience. BMC Medicine, 18(1), 1-11.
doi: 10.1186/s12916-019-1443-1 |
[56] |
Monk, N. J., McLeod, G. F., Mulder, R. T., Spittlehouse, J. K., & Boden, J. M. (2022). Expanding the system: A brief psychosocial complex systems model of internalising disorder. Journal of Affective Disorders, 303, 297-300.
doi: 10.1016/j.jad.2022.02.014 pmid: 35151677 |
[57] | Ni, Q., Tang, M., Liu, Y., & Lai, Y.-C. (2019). Machine learning dynamical phase transitions in complex networks. Physical Review E, 100(5), 052312. |
[58] |
Olthof, M., Hasselman, F., Strunk, G., Aas, B., Schiepek, G., & Lichtwarck-Aschoff, A. (2020). Destabilization in self-ratings of the psychotherapeutic process is associated with better treatment outcome in patients with mood disorders. Psychotherapy Research, 30(4), 520-531.
doi: 10.1080/10503307.2019.1633484 pmid: 31256713 |
[59] |
Olthof, M., Hasselman, F., Strunk, G., van Rooij, M., Aas, B., Helmich, M. A., ... Lichtwarck-Aschoff, A. (2020). Critical fluctuations as an early-warning signal for sudden gains and losses in patients receiving psychotherapy for mood disorders. Clinical Psychological Science, 8(1), 25-35.
doi: 10.1177/2167702619865969 URL |
[60] |
Pe, M. L., Kircanski, K., Thompson, R. J., Bringmann, L. F., Tuerlinckx, F., Mestdagh, M., ... Gotlib, I. H. (2015). Emotion-network density in major depressive disorder. Clinical Psychological Science, 3(2), 292-300.
doi: 10.1177/2167702614540645 pmid: 31754552 |
[61] |
Robinaugh, D. J., Hoekstra, R. H., Toner, E. R., & Borsboom, D. (2020). The network approach to psychopathology: A review of the literature 2008-2018 and an agenda for future research. Psychological Medicine, 50(3), 353-366.
doi: 10.1017/S0033291719003404 pmid: 31875792 |
[62] |
Roefs, A., Fried, E. I., Kindt, M., Martijn, C., Elzinga, B., Evers, A. W., ... Jansen, A. (2022). A new science of mental disorders: Using personalised, transdiagnostic, dynamical systems to understand, model, diagnose and treat psychopathology. Behaviour Research and Therapy, 153, 104096.
doi: 10.1016/j.brat.2022.104096 URL |
[63] |
Scheffer, M., Bascompte, J., Brock, W. A., Brovkin, V., Carpenter, S. R., Dakos, V., ... Sugihara, G. (2009). Early-warning signals for critical transitions. Nature, 461(7260), 53-59.
doi: 10.1038/nature08227 |
[64] | Scheffer, M., Carpenter, S. R., Lenton, T. M., Bascompte, J., Brock, W., Dakos, V., ... Vandermeer, J. (2012). Anticipating critical transitions. Science, 338(6105), 344-348. |
[65] |
Schiepek, G., & Strunk, G. (2010). The identification of critical fluctuations and phase transitions in short term and coarse-grained time series—a method for the real-time monitoring of human change processes. Biological Cybernetics, 102(3), 197-207.
doi: 10.1007/s00422-009-0362-1 pmid: 20084517 |
[66] | Schmiedek, F., Lövdén, M., von Oertzen, T., & Lindenberger, U. (2020). Within-person structures of daily cognitive performance differ from between-person structures of cognitive abilities. PeerJ, 8, e9290. |
[67] |
Schreuder, M. J., Wigman, J. T., Groen, R. N., Weinans, E., Wichers, M., & Hartman, C. A. (2022). Anticipating the direction of symptom progression using critical slowing down: A proof-of-concept study. BMC Psychiatry, 22(1), 1-13.
doi: 10.1186/s12888-021-03663-8 |
[68] |
Schweren, L., Van Borkulo, C. D., Fried, E., & Goodyer, I. M. (2018). Assessment of symptom network density as a prognostic marker of treatment response in adolescent depression. JAMA Psychiatry, 75(1), 98-100.
doi: 10.1001/jamapsychiatry.2017.3561 pmid: 29188277 |
[69] |
Snippe, E., Viechtbauer, W., Geschwind, N., Klippel, A., de Jonge, P., & Wichers, M. (2017). The impact of treatments for depression on the dynamic network structure of mental states: Two randomized controlled trials. Scientific Reports, 7(1), 1-10.
doi: 10.1038/s41598-016-0028-x |
[70] |
van Borkulo, C., Boschloo, L., Borsboom, D., Penninx, B. W., Waldorp, L. J., & Schoevers, R. A. (2015). Association of symptom network structure with the course of depression. JAMA Psychiatry, 72(12), 1219-1226.
doi: 10.1001/jamapsychiatry.2015.2079 URL |
[71] |
van de Leemput, I. A., Wichers, M., Cramer, A. O., Borsboom, D., Tuerlinckx, F., Kuppens, P., ... Aggen, S. H. (2014). Critical slowing down as early warning for the onset and termination of depression. Proceedings of the National Academy of Sciences, 111(1), 87-92.
doi: 10.1073/pnas.1312114110 URL |
[72] |
van Rooijen, G., Isvoranu, A.-M., Kruijt, O. H., van Borkulo, C. D., Meijer, C. J., Wigman, J. T., ... de Haan, L. (2018). A state-independent network of depressive, negative and positive symptoms in male patients with schizophrenia spectrum disorders. Schizophrenia Research, 193, 232-239.
doi: S0920-9964(17)30446-2 pmid: 28844638 |
[73] |
Weinans, E., Quax, R., van Nes, E. H., & Leemput, I. A. (2021). Evaluating the performance of multivariate indicators of resilience loss. Scientific Reports, 11(1), 1-11.
doi: 10.1038/s41598-020-79139-8 |
[74] |
Wichers, M. (2014). The dynamic nature of depression: A new micro-level perspective of mental disorder that meets current challenges. Psychological Medicine, 44(7), 1349-1360.
doi: 10.1017/S0033291713001979 pmid: 23942140 |
[75] |
Wichers, M., Groot, P. C., Psychosystems, E., & Group, E. (2016). Critical slowing down as a personalized early warning signal for depression. Psychotherapy and Psychosomatics, 85(2), 114-116.
doi: 10.1159/000441458 pmid: 26821231 |
[76] |
Wichers, M., Smit, A. C., & Snippe, E. (2020). Early warning signals based on momentary affect dynamics can expose nearby transitions in depression: A confirmatory single-subject time-series study. Journal for Person- Oriented Research, 6(1), 1-15.
doi: 10.17505/jpor.2020.22042 URL |
[77] |
Wittenborn, A., Rahmandad, H., Rick, J., & Hosseinichimeh, N. (2016). Depression as a systemic syndrome: Mapping the feedback loops of major depressive disorder. Psychological Medicine, 46(3), 551-562.
doi: 10.1017/S0033291715002044 pmid: 26621339 |
[78] |
Wright, A. G., & Woods, W. C. (2020). Personalized models of psychopathology. Annual Review of Clinical Psychology, 16, 49-74.
doi: 10.1146/annurev-clinpsy-102419-125032 pmid: 32070120 |
[79] |
Yasinski, C., Hayes, A. M., Ready, C. B., Abel, A., Görg, N., & Kuyken, W. (2020). Processes of change in cognitive behavioral therapy for treatment-resistant depression: Psychological flexibility, rumination, avoidance, and emotional processing. Psychotherapy Research, 30(8), 983-997.
doi: 10.1080/10503307.2019.1699972 pmid: 31822203 |
[80] |
Zhu, J., Jiang, C., Chen, J., Lin, X., Yu, R., Li, X., & Hu, B. (2022). EEG based depression recognition using improved graph convolutional neural network. Computers in Biology and Medicine, 148, 105815.
doi: 10.1016/j.compbiomed.2022.105815 URL |
[1] | Baoqi GONG, Wei JIN, Pinglei BAO. Object Space as the Foundation for Object Recognition in the Human Ventral Temporal Cortex [J]. Advances in Psychological Science, 2023, 31(suppl.): 153-153. |
[2] | Zhirui Yang, Jingwen Yang, Zelin Chen, Chufen Huang, Shuo Lu. The Developing Brain Maintains Dynamic Trade-off Patterns in Visual Networks [J]. Advances in Psychological Science, 2023, 31(suppl.): 168-168. |
[3] | Jia Yang, Yipeng Li, Jingqiu Luo, Pinglei Bao. Emergency and Development of Word Recognition Abilities in the Object Space Model [J]. Advances in Psychological Science, 2023, 31(suppl.): 178-178. |
[4] | ZHANG Caihui, YE Jianqiao, YANG Jing. Brain mechanism underlying learning Chinese as a second language [J]. Advances in Psychological Science, 2023, 31(5): 747-758. |
[5] | WANG Song, ZHANG Liaodan, LUAN Kun. The concept of employee networking behavior and its influence mechanisms on working outcomes [J]. Advances in Psychological Science, 2023, 31(5): 840-853. |
[6] | KONG Xiang-Zhen, ZHANG Fengxiang, PU Yi. The functional brain network that supports human spatial navigation [J]. Advances in Psychological Science, 2023, 31(3): 330-337. |
[7] | ZHANG Libin, ZHANG Qiwen, WANG Chenxu, ZHANG Yunyun. The co-varying relationship between children and adolescents’ peer networks and bullying-related behaviors from the perspective of social networks [J]. Advances in Psychological Science, 2023, 31(3): 416-427. |
[8] | ZHOU Guang-Fang, JIN Hua. Precision functional magnetic resonance imaging reveals individual brain functional network organization [J]. Advances in Psychological Science, 2023, 31(11): 2078-2091. |
[9] | LU Jingyi, QIU Tian, CHEN Yuqi, FANG Qingwen, SHANG Xuesong. Inaccurate mind reading: The misprediction in conflicts and its mechanisms [J]. Advances in Psychological Science, 2022, 30(7): 1439-1447. |
[10] | LIN Wenyi, HE Hao, GUAN Qing. Functional brain networks underlying rumination [J]. Advances in Psychological Science, 2022, 30(6): 1262-1269. |
[11] | FANG Qi, LUAN Kun. Multiple team membership and its mechanism [J]. Advances in Psychological Science, 2022, 30(5): 1143-1157. |
[12] | LI Junjiao, CHEN Wei, SHI Pei, DONG Yuanyuan, ZHENG Xifu. The function and mechanisms of prediction error in updating fear memories [J]. Advances in Psychological Science, 2022, 30(4): 834-850. |
[13] | LI Lin, ZHAO Sainan, ZHANG Lijuan, WANG Jingxin. Understanding mechanisms of prediction error cost in Chinese reading for older adults [J]. Advances in Psychological Science, 2022, 30(1): 1-14. |
[14] | LI Gujing, ZHANG Lirong, MI Li, HE Hui, LU Jing, LUO Cheng, YAO Dezhong. Dance therapy: Explorations of a bottom-up intervention for schizophrenia [J]. Advances in Psychological Science, 2021, 29(8): 1371-1380. |
[15] | ZHANG Hui-hua. Team emotional intelligence: A social network perspective [J]. Advances in Psychological Science, 2021, 29(8): 1381-1395. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||