Advances in Psychological Science ›› 2021, Vol. 29 ›› Issue (1): 150-159.doi: 10.3724/SP.J.1042.2021.00150
• Regular Articles • Previous Articles Next Articles
WANG Hongbo(), GUAN Xuxu, LI Zimeng
Received:
2019-11-18
Online:
2021-01-15
Published:
2020-11-23
Contact:
WANG Hongbo
E-mail:fightingwhb@vip.163.com
CLC Number:
WANG Hongbo, GUAN Xuxu, LI Zimeng. Immediate extinction deficit: Causes and neurobiological mechanisms[J]. Advances in Psychological Science, 2021, 29(1): 150-159.
[1] |
Abiri, D., Douglas, C. E., Calakos, K. C., Barbayannis, G., Roberts, A., & Bauer, E. P. (2014). Fear extinction learning can be impaired or enhanced by modulation of the CRF system in the basolateral nucleus of the amygdala. Behavioural Brain Research, 271, 234-239.
URL pmid: 24946071 |
[2] | Alberini, C. M., Johnson, S. A., & Ye, X. J.(2013). Chapter five-Memory reconsolidation: Lingering consolidation and the dynamic memory trace. In C. M. Alberini (Ed.), Memory reconsolidation (pp. 81-117). San Diego: Academic Press. |
[3] |
Alvarez, R. P., Johnson, L., & Grillon, C. (2007). Contextual- specificity of short-delay extinction in humans: Renewal of fear-potentiated startle in a virtual environment. Learning and Memory, 14(4), 247-253.
URL pmid: 17412963 |
[4] |
Arnsten, A. F. T., Raskind, M. A., Taylor, F. B., & Connor, D. F. (2015). The effects of stress exposure on prefrontal cortex: Translating basic research into successful treatments for post-traumatic stress disorder. Neurobiology of Stress, 1, 89-99.
URL pmid: 25436222 |
[5] |
Arruda-Carvalho, M., & Clem, R. L. (2014). Pathway-selective adjustment of prefrontal-amygdala transmission during fear encoding. Journal of Neuroscience, 34(47), 15601-15609.
URL pmid: 25411488 |
[6] |
Bangasser, D. A., Eck, S. R., & Ordoñes Sanchez, E. (2019). Sex differences in stress reactivity in arousal and attention systems. Neuropsychopharmacology, 44(1), 129-139.
URL pmid: 30022063 |
[7] |
Bloodgood, D. W., Sugam, J. A., Holmes, A., & Kash, T. L. (2018). Fear extinction requires infralimbic cortex projections to the basolateral amygdala. Translational Psychiatry, 8(1), 60-60.
URL pmid: 29507292 |
[8] |
Borodovitsyna, O., Joshi, N., & Chandler, D. (2018). Persistent stress-induced neuroplastic changes in the locus coeruleus/norepinephrine system. Neural Plasticity, 2018, 1892570.
URL pmid: 30008741 |
[9] |
Bouret, S., & Richmond, B. J. (2015). Sensitivity of locus ceruleus neurons to reward value for goal-directed actions. Journal of Neuroscience, 35(9), 4005-4014.
URL pmid: 25740528 |
[10] |
Briggs, J. F., & Fava, D. A. (2016). Immediate extinction attenuates spontaneous recovery and reinstatement in a passive avoidance paradigm. Perceptual and Motor Skills, 123(1), 5-16.
URL pmid: 27307156 |
[11] |
Britton, J. C., Evans, T. C., & Hernandez, M. V. (2014). Looking beyond fear and extinction learning: Considering novel treatment targets for anxiety. Current Behavioral Neuroscience Reports, 1(3), 134-143.
doi: 10.1007/s40473-014-0015-0 URL pmid: 25705579 |
[12] |
Bukalo, O., Pinard, C. R., Silverstein, S., Brehm, C., Hartley, N. D., Whittle, N., ... Holmes, A. (2015). Prefrontal inputs to the amygdala instruct fear extinction memory formation. Science Advances, 1(6), e1500251.
URL pmid: 26504902 |
[13] |
Cahill, L., Prins, B., Weber, M., & McGaugh, J. L. (1994). Beta-adrenergic activation and memory for emotional events. Nature, 371(6499), 702-704.
URL pmid: 7935815 |
[14] |
Careaga, M. B. L., Girardi, C. E. N., & Suchecki, D. (2016). Understanding posttraumatic stress disorder through fear conditioning, extinction and reconsolidation. Neuroscience & Biobehavioral Reviews, 71, 48-57.
URL pmid: 27590828 |
[15] |
Chandler, D. J., Gao, W-J., & Waterhouse, B. D. (2014). Heterogeneous organization of the locus coeruleus projections to prefrontal and motor cortices. Proceedings of the National Academy of Sciences of the United States of America, 111(18), 6816-6821.
URL pmid: 24753596 |
[16] |
Chandler, D. J., Jensen, P., McCall, J. G., Pickering, A. E., Schwarz, L. A., & Totah, N. K. (2019). Redefining noradrenergic neuromodulation of behavior: Impacts of a modular locus coeruleus architecture. Journal of Neuroscience, 39(42), 8239-8249.
URL pmid: 31619493 |
[17] | Chang, C. H., Berke, J. D., & Maren, S. (2010). Single-unit activity in the medial prefrontal cortex during immediate and delayed extinction of fear in rats. PLoS One, 5(8), e22971. |
[18] |
Chang, C. H., & Maren, S. (2009). Early extinction after fear conditioning yields a context-independent and short-term suppression of conditional freezing in rats. Learning and Memory, 16(1), 62-68.
URL pmid: 19141467 |
[19] |
Chang, C. H., & Maren, S. (2011). Medial prefrontal cortex activation facilitates re-extinction of fear in rats. Learning and Memory, 18(4), 221-225.
URL pmid: 21430044 |
[20] |
Cho, J-H., Deisseroth, K., & Bolshakov, V. Y. (2013). Synaptic encoding of fear extinction in mPFC-amygdala circuits. Neuron, 80(6), 1491-1507.
URL pmid: 24290204 |
[21] |
Do-Monte, F. H., Manzano-Nieves, G., Quiñones-Laracuente, K., Ramos-Medina, L., & Quirk, G. J. (2015). Revisiting the role of infralimbic cortex in fear extinction with optogenetics. Journal of Neuroscience, 35(8), 3607-3615.
URL pmid: 25716859 |
[22] |
Dunsmoor, J. E., Kroes, M. C. W., Moscatelli, C. M., Evans, M. D., Davachi, L., & Phelps, E. A. (2018). Event segmentation protects emotional memories from competing experiences encoded close in time. Nature Human Behaviour, 2(4), 291-299.
URL pmid: 30221203 |
[23] | Ebrahimi, C., Koch, S. P., Pietrock, C., Fydrich, T., Heinz, A., & Schlagenhauf, F. (2019). Opposing roles for amygdala and vmPFC in the return of appetitive conditioned responses in humans. Translation Psychiatry, 9(1), 148. |
[24] |
Fadok, J. P., Krabbe, S., Markovic, M., Courtin, J., Xu, C., Massi, L., ... Lüthi, A. (2017). A competitive inhibitory circuit for selection of active and passive fear responses. Nature, 542(7639), 96-100.
URL pmid: 28117439 |
[25] |
Fitzgerald, P. J., Giustino, T. F., Seemann, J. R., & Maren, S. (2015). Noradrenergic blockade stabilizes prefrontal activity and enables fear extinction under stress. Proceedings of the National Academy of Sciences of the United States of America, 112(28), E3729-3737.
URL pmid: 26124100 |
[26] |
Flores, S., Bailey, H. R., Eisenberg, M. L., & Zacks, J. M. (2017). Event segmentation improves event memory up to one month later. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43(8), 1183-1202.
URL pmid: 28383955 |
[27] |
Gafford, G. M., & Ressler, K. J. (2015). GABA and NMDA receptors in CRF neurons have opposing effects in fear acquisition and anxiety in central amygdala vs. bed nucleus of the stria terminalis. Hormones and Behavior, 76, 136-142.
URL pmid: 25888455 |
[28] |
Giustino, T. F., Fitzgerald, P. J., & Maren, S. (2016). Revisiting propranolol and PTSD: Memory erasure or extinction enhancement? Neurobiology of Learning and Memory, 130, 26-33.
URL pmid: 26808441 |
[29] |
Giustino, T. F., Fitzgerald, P. J., Ressler, R. L., & Maren, S. (2019). Locus coeruleus toggles reciprocal prefrontal firing to reinstate fear. Proceedings of the National Academy of Sciences of the United States of America, 116(17), 8570-8575.
URL pmid: 30971490 |
[30] |
Giustino, T. F., & Maren, S. (2015). The role of the medial prefrontal cortex in the conditioning and extinction of fear. Frontiers in Behavioral Neuroscience, 9, 298.
URL pmid: 26617500 |
[31] |
Giustino, T. F., & Maren, S. (2018). Noradrenergic modulation of fear conditioning and extinction. Frontiers in Behavioral Neuroscience, 12, 43.
URL pmid: 29593511 |
[32] |
Giustino, T. F., Ramanathan, K. R., Totty, M. S., Miles, O. W., & Maren, S. (2020). Locus coeruleus norepinephrine drives stress-induced increases in basolateral amygdala firing and impairs extinction learning. Journal of Neuroscience, 40(4), 907-916.
URL pmid: 31801809 |
[33] |
Giustino, T. F., Seemann, J. R., Acca, G. M., Goode, T. D., Fitzgerald, P. J., & Maren, S. (2017). Beta-adrenoceptor blockade in the basolateral amygdala, but not the medial prefrontal cortex, rescues the immediate extinction deficit. Neuropsychopharmacology, 42(13), 2537-2544.
URL pmid: 28462941 |
[34] |
Golkar, A., & Öhman, A. (2012). Fear extinction in humans: Effects of acquisition-extinction delay and masked stimulus presentations. Biological psychology, 91(2), 292-301.
URL pmid: 22898744 |
[35] |
Goode, T. D., & Maren, S. (2019). Common neurocircuitry mediating drug and fear relapse in preclinical models. Psychopharmacology, 236(1), 415-437.
doi: 10.1007/s00213-018-5024-3 URL pmid: 30255379 |
[36] |
Hayat, H., Regev, N., Matosevich, N., Sales, A., Paredes- Rodriguez, E., Krom, A. J., ... Nir, Y. (2020). Locus-coeruleus norepinephrine activity gates sensory-evoked awakenings from sleep. Science Advances, 6(15), eaaz4232.
URL pmid: 33355127 |
[37] |
Hollis, F., Sevelinges, Y., Grosse, J., Zanoletti, O., & Sandi, C. (2016). Involvement of CRFR1 in the basolateral amygdala in the immediate fear extinction deficit. eNeuro, 3(5). doi: 10.1523/ENEURO.0084-16.2016
URL pmid: 28032118 |
[38] |
Huff, N. C., Hernandez, J. A., Blanding, N. Q., & LaBar, K. S. (2009). Delayed extinction attenuates conditioned fear renewal and spontaneous recovery in humans. Behavioral Neuroscience, 123(4), 834-843.
URL pmid: 19634943 |
[39] |
Hupalo, S., & Berridge, C. W. (2016). Working memory impairing actions of corticotropin-releasing factor (CRF) neurotransmission in the prefrontal cortex. Neuropsychopharmacology, 41(11), 2733-2740.
URL pmid: 27272767 |
[40] |
Hupalo, S., Bryce, C. A., Bangasser, D. A., Berridge, C. W., Valentino, R. J., & Floresco, S. B. (2019). Corticotropin- releasing factor (CRF) circuit modulation of cognition and motivation. Neuroscience and Biobehavioral Reviews, 103, 50-59.
URL pmid: 31212019 |
[41] |
Hupalo, S., Martin, A. J., Green, R. K., Devilbiss, D. M., & Berridge, C. W. (2019). Prefrontal corticotropin-releasing factor (CRF) neurons act locally to modulate frontostriatal cognition and circuit function. Journal of Neuroscience, 39(11), 2080-2090.
URL pmid: 30651328 |
[42] |
Kim, S. C., Jo, Y. S., Kim, I. H., Kim, H., & Choi, J. S. (2010). Lack of medial prefrontal cortex activation underlies the immediate extinction deficit. Journal of Neuroscience, 30(3), 832-837.
URL pmid: 20089891 |
[43] |
Klavir, O., Prigge, M., Sarel, A., Paz, R., & Yizhar, O. (2017). Manipulating fear associations via optogenetic modulation of amygdala inputs to prefrontal cortex. Nature Neuroscience, 20(6), 836-844.
URL pmid: 28288126 |
[44] |
Korosi, A., & Baram, T. Z. (2008). The central corticotropin releasing factor system during development and adulthood. European Journal of Pharmacology, 583(2-3), 204-214.
URL pmid: 18275957 |
[45] |
MacPherson, K., Whittle, N., Camp, M., Gunduz-Cinar, O., Singewald, N., & Holmes, A. (2013). Temporal factors in the extinction of fear in inbred mouse strains differing in extinction efficacy. Biology of Mood & Anxiety Disorders, 3(1), 13.
URL pmid: 23830244 |
[46] |
Maren, S. (2014). Nature and causes of the immediate extinction deficit: A brief review. Neurobiology of Learning and Memory, 113, 19-24.
URL pmid: 24176924 |
[47] |
Maren, S., & Chang, C. H. (2006). Recent fear is resistant to extinction. Proceedings of the National Academy of Sciences of the United States of America, 103(47), 18020-18025.
URL pmid: 17090669 |
[48] |
Maren, S., & Holmes, A. (2016). Stress and fear extinction. Neuropsychopharmacology, 41(1), 58-79.
URL pmid: 26105142 |
[49] |
McCall, J. G., Al-Hasani, R., Siuda, E. R., Hong, D. Y., Norris, A. J., Ford, C. P., & Bruchas, M. R. (2015). CRH engagement of the locus coeruleus noradrenergic system mediates stress-induced anxiety. Neuron, 87(3), 605-620.
URL pmid: 26212712 |
[50] | McCall, J. G., Siuda, E. R., Bhatti, D. L., Lawson, L. A., McElligott, Z. A., Stuber, G. D., & Bruchas, M. R. (2017). Locus coeruleus to basolateral amygdala noradrenergic projections promote anxiety-like behavior. Elife, 6, e18247. |
[51] |
McGarry, L. M., & Carter, A. G. (2016). Inhibitory gating of basolateral amygdala inputs to the prefrontal cortex. Journal of Neuroscience, 36(36), 9391-9406.
URL pmid: 27605614 |
[52] |
McGaugh, J. L. (2000). Memory - A century of consolidation. Science, 287(5451), 248-251.
URL pmid: 10634773 |
[53] |
Merz, C. J., Hamacher-Dang, T. C., & Wolf, O. T. (2016). Immediate extinction promotes the return of fear. Neurobiology of Learning and Memory, 131, 109-116.
URL pmid: 26995309 |
[54] |
Merz, C. J., & Wolf, O. T. (2019). The immediate extinction deficit occurs in a nonemotional learning paradigm. Learning and Memory, 26(2), 39-45.
URL pmid: 30651376 |
[55] |
Mingote, S., de Bruin, J. P., & Feenstra, M. G. (2004). Noradrenaline and dopamine efflux in the prefrontal cortex in relation to appetitive classical conditioning. Journal of Neuroscience, 24(10), 2475-2480.
URL pmid: 15014123 |
[56] |
Monfils, M-H., Cowansage, K. K., Klann, E., & LeDoux, J. E. (2009). Extinction-reconsolidation boundaries: key to persistent attenuation of fear memories. Science, 324(5929), 951-955.
URL pmid: 19342552 |
[57] |
Myers, K. M., Ressler, K. J., & Davis, M. (2006). Different mechanisms of fear extinction dependent on length of time since fear acquisition. Learning and Memory, 13(2), 216-223.
doi: 10.1101/lm.119806 URL pmid: 16585797 |
[58] |
Norrholm, S. D., Vervliet, B., Jovanovic, T., Boshoven, W., Myers, K. M., Davis, M., ... Duncan, E. J. (2008). Timing of extinction relative to acquisition: A parametric analysis of fear extinction in humans. Behavioral Neuroscience, 122(5), 1016-1030.
URL pmid: 18823159 |
[59] |
Prouty, E. W., Waterhouse, B. D., & Chandler, D. J. (2017). Corticotropin releasing factor dose-dependently modulates excitatory synaptic transmission in the noradrenergic nucleus locus coeruleus. European Journal of Neuroscience, 45(5), 712-722.
doi: 10.1111/ejn.13501 URL |
[60] | Radvansky, G. A., & Zacks, J. M. (2017). Event boundaries in memory and cognition. Current Opinion in Behavoral Sciences, 17, 133-140. |
[61] | Rothbaum, B. O., Kearns, M. C., Reiser, E., Davis, J. S., Kerley, K. A., Rothbaum, A. O., ... Ressler, K. J. (2014). Early intervention following trauma may mitigate genetic risk for PTSD in civilians: A pilot prospective emergency department study. Journal of Clinical Psychiatry, 75(12), 1380-1387. |
[62] |
Schiller, D., Cain, C. K., Curley, N. G., Schwartz, J. S., Stern, S. A., Ledoux, J. E., & Phelps, E. A. (2008). Evidence for recovery of fear following immediate extinction in rats and humans. Learning and Memory, 15(6), 394-402.
URL pmid: 18509113 |
[63] |
Senn, V., Wolff, S. B., Herry, C., Grenier, F., Ehrlich, I., Grundemann, J., ... Lüthi, A. (2014). Long-range connectivity defines behavioral specificity of amygdala neurons. Neuron, 81(2), 428-437.
URL pmid: 24462103 |
[64] |
Siddiqui, S. A., Singh, S., Ranjan, V., Ugale, R., Saha, S., & Prakash, A. (2017). Enhanced histone acetylation in the infralimbic prefrontal cortex is associated with fear extinction. Cellular and Molecular Neurobiology, 37(7), 1287-1301.
URL pmid: 28097489 |
[65] |
Sierra-Mercado, D., Padilla-Coreano, N., & Quirk, G. J. (2011). Dissociable roles of prelimbic and infralimbic cortices, ventral hippocampus, and basolateral amygdala in the expression and extinction of conditioned fear. Neuropsychopharmacology, 36(2), 529-538.
doi: 10.1038/npp.2010.184 URL pmid: 20962768 |
[66] |
Singh, S., Siddiqui, S. A., Tripathy, S., Kumar, S., Saha, S., Ugale, R., ... Prakash, A. (2018). Decreased level of histone acetylation in the infralimbic prefrontal cortex following immediate extinction may result in deficit of extinction memory. Brain research bulletin, 140, 355-364.
URL pmid: 29908895 |
[67] |
Stafford, J. M., Maughan, D. K., Ilioi, E. C., & Lattal, K. M. (2013). Exposure to a fearful context during periods of memory plasticity impairs extinction via hyperactivation of frontal-amygdalar circuits. Learning and Memory, 20(3), 156-163.
URL pmid: 23422280 |
[68] |
Sun, Q., Gu, S. M., & Yang, J. J. (2018). Context and time matter: Effects of emotion and motivation on episodic memory overtime. Neural Plasticity, 2018, 7051925.
URL pmid: 29849564 |
[69] |
Totty, M. S., Payne, M. R., & Maren, S. (2019). Event boundaries do not cause the immediate extinction deficit after Pavlovian fear conditioning in rats. Scientific Reports, 9(1), 9459.
URL pmid: 31263140 |
[70] |
Tovote, P., Fadok, J. P., & Lüthi, A. (2015). Neuronal circuits for fear and anxiety. Nature Reviews Neuroscience, 16(6), 317-331.
doi: 10.1038/nrn3945 URL |
[71] |
Uematsu, A., Tan, B. Z., Ycu, E. A., Cuevas, J. S., Koivumaa, J., Junyent, F., ... Johansen, J. P. (2017). Modular organization of the brainstem noradrenaline system coordinates opposing learning states. Nature Neuroscience, 20(11), 1602-1611.
doi: 10.1038/nn.4642 URL pmid: 28920933 |
[72] |
Uribe-Mariño, A., Gassen, N. C., Wiesbeck, M. F., Balsevich, G., Santarelli, S., Solfrank, B., ... Schmidt, M. V. (2016). Prefrontal cortex corticotropin-releasing factor receptor 1 conveys acute stress-induced executive dysfunction. Biological Psychiatry, 80(10), 743-753.
URL pmid: 27318500 |
[73] |
Vervliet, B., Craske, M. G., & Hermans, D. (2013). Fear extinction and relapse: state of the art. Annual Review of Clinical Psychology, 9, 215-248.
URL pmid: 23537484 |
[74] |
Weston, C. S. E. (2014). Posttraumatic stress disorder: A theoretical model of the hyperarousal subtype. Frontiers in Psychiatry, 5, 37.
doi: 10.3389/fpsyt.2014.00037 URL pmid: 24772094 |
[75] |
Woods, A. M., & Bouton, M. E. (2008). Immediate extinction causes a less durable loss of performance than delayed extinction following either fear or appetitive conditioning. Learning and Memory, 15(12), 909-920.
URL pmid: 19050163 |
[76] | Zacks, J. M., Tversky, B., & Iyer, G. (2001). Perceiving, remembering, and communicating structure in events. Journal of Experimental Psychology: General, 130(1), 29-58. |
[77] |
Zitnik, G. A. (2016). Control of arousal through neuropeptide afferents of the locus coeruleus. Brain Research, 1641(Pt B), 338-350.
URL pmid: 26688115 |
[1] | LI Junjiao, CHEN Wei, SHI Pei, DONG Yuanyuan, ZHENG Xifu. The function and mechanisms of prediction error in updating fear memories [J]. Advances in Psychological Science, 2022, 30(4): 834-850. |
[2] | SHAO Yiru, ZHOU Chu. Event segmentation: How do we perceive and remember events? [J]. Advances in Psychological Science, 2019, 27(9): 1564-1573. |
[3] | ZHENG Panpan; LYU Zhenyong; Todd JACKSON. The acquisition, generalization and extinction of fear of pain [J]. Advances in Psychological Science, 2016, 24(7): 1065-1076. |
[4] | DU Yi;LI Liang. Animal Model and Neural Mechanisms of Top-Down Modulation of Auditory Sensorimotor Gating [J]. , 2011, 19(7): 944-958. |
[5] | LI Liang;LI Nan-Xin. Establishing New Animal Models for Studying Schizophrenia [J]. , 2008, 16(3): 399-403. |
[6] | WU Run-Guo;; LUO Yue-Jia. The Neural Basis of the Emotional Memory [J]. , 2008, 16(3): 458-463. |
[7] |
AN Xian-Li;ZHENG Xi-Geng.
The Animal Models and Neurobiological Mechanisms of Posttraumatic Stress Disorder [J]. , 2008, 16(3): 371-377. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||