Advances in Psychological Science ›› 2018, Vol. 26 ›› Issue (6): 951-965.doi: 10.3724/SP.J.1042.2018.00951
• Research Method • Next Articles
HU Chuan-Peng1,2(), KONG Xiang-Zhen3, Eric-Jan WAGENMAKERS4, Alexander LY4,5, PENG Kaiping1()
Received:
2017-10-10
Online:
2018-06-10
Published:
2018-04-28
Contact:
HU Chuan-Peng,PENG Kaiping
E-mail:hcp4715@hotmail.com;pengkp@mail.tsinghua.edu.cn
CLC Number:
HU Chuan-Peng, KONG Xiang-Zhen, Eric-Jan WAGENMAKERS, Alexander LY, PENG Kaiping. The Bayes factor and its implementation in JASP: A practical primer[J]. Advances in Psychological Science, 2018, 26(6): 951-965.
假设检验中的问题 | 贝叶斯因子 | 传统推理 | 参考文献 |
---|---|---|---|
1. 同时考虑H0和H1的支持证据 | √ | × | 10, 11 |
2. 可以用来支持H0 | √ | × | 12, 13 |
3. 不“严重”地倾向于反对H0 | √ | × | 14, 15, 16 |
4. 可以随着数据累积来监控证据的强度 | √ | × | 17, 18 |
5. 不依赖于未知的或者不存在的抽样计划 | √ | × | 19, 20 |
假设检验中的问题 | 贝叶斯因子 | 传统推理 | 参考文献 |
---|---|---|---|
1. 同时考虑H0和H1的支持证据 | √ | × | 10, 11 |
2. 可以用来支持H0 | √ | × | 12, 13 |
3. 不“严重”地倾向于反对H0 | √ | × | 14, 15, 16 |
4. 可以随着数据累积来监控证据的强度 | √ | × | 17, 18 |
5. 不依赖于未知的或者不存在的抽样计划 | √ | × | 19, 20 |
贝叶斯因子, BF10 | 解释 |
---|---|
> 100 | 极强的证据支持H1 |
30 ~ 100 | 非常强的证据支持H1 |
10 ~ 30 | 较强的证据支持H1 |
3 ~ 10 | 中等程度的证据支持H1 |
1 ~ 3 | 较弱的证据支持H1 |
1 | 没有证据 |
1/3 ~ 1 | 较弱的证据支持H0 |
1/10 ~ 1/3 | 中等程度的证据支持H0 |
1/30 ~ 1/10 | 较强的证据支持H0 |
1/100 ~ 1/30 | 非常强的证据支持H0 |
< 1/100 | 极强的证据支持H0 |
贝叶斯因子, BF10 | 解释 |
---|---|
> 100 | 极强的证据支持H1 |
30 ~ 100 | 非常强的证据支持H1 |
10 ~ 30 | 较强的证据支持H1 |
3 ~ 10 | 中等程度的证据支持H1 |
1 ~ 3 | 较弱的证据支持H1 |
1 | 没有证据 |
1/3 ~ 1 | 较弱的证据支持H0 |
1/10 ~ 1/3 | 中等程度的证据支持H0 |
1/30 ~ 1/10 | 较强的证据支持H0 |
1/100 ~ 1/30 | 非常强的证据支持H0 |
< 1/100 | 极强的证据支持H0 |
[1] | 胡传鹏, 王非, 过继成思, 宋梦迪, 隋洁, 彭凯平 . ( 2016). 心理学研究中的可重复性问题: 从危机到契机. 心理科学进展, 24( 9), 1504-1518. |
[2] | 骆大森 . ( 2017). 心理学可重复性危机两种根源的评估. 心理与行为研究, 15( 5), 577-586. |
[3] | 钟建军, Dienes, Z., 陈中永 . ( 2017). 心理研究中引入贝叶斯统计推断的必要性、应用思路与领域. 心理科学, 40( 6), 1477-1482. |
[4] |
Bahadur,R. R., &Bickel, P. J . ( 2009). An optimality property of Bayes' test statistics. Lecture Notes-Monograph Series, 57, 18-30.
doi: 10.2307/30250033 URL |
[5] |
Baker, M.(2016). 1,500 scientists lift the lid on reproducibility. Nature, 533, 452-454.
doi: 10.1038/533452a URL pmid: 27225100 |
[6] |
Begley,C. G., & Ellis, L. M . ( 2012). Drug development: Raise standards for preclinical cancer research. Nature, 483( 7391), 531-533.
doi: 10.1038/483531a URL |
[7] |
Bem,D. J . ( 2011). Feeling the future: Experimental evidence for anomalous retroactive influences on cognition and affect. Journal of Personality and Social Psychology, 100( 3), 407-425.
doi: 10.1037/a0021524 URL pmid: 21280961 |
[8] |
Bem D. J., Utts J., & Johnson W. O . ( 2011). Must psychologists change the way they analyze their data? Journal of Personality and Social Psychology, 101( 4), 716-719.
doi: 10.1037/a0024777 URL pmid: 21928916 |
[9] |
Benjamin D. J., Berger J. O., Johannesson M., Nosek B. A., Wagenmakers E.-J., Berk R., … Johnson V. E . ( 2018). Redefine statistical significance. Nature Human Behaviour, 2( 1), 6-10.
doi: 10.1038/s41562-017-0189-z URL |
[10] |
Berger,J. O., & Berry, D. A . ( 1988). Statistical analysis and the illusion of objectivity. American Scientist, 76( 2), 159-165.
doi: 10.1016/S0730-725X(97)00243-9 URL |
[11] |
Berger,J. O., & Delampady, M.(1987). Testing precise hypotheses. Statistical Science, 2( 3), 317-335.
doi: 10.1214/ss/1177013238 URL |
[12] | Berger,J. O., & Wolpert, R. L . ( 1988). The likelihood principle (2nd ed.). Hayward (CA): Institute of Mathematical Statistics. |
[13] |
Carpenter B., Gelman A., Hoffman M. D., Lee D., Goodrich B., Betancourt M., … Riddell A . ( 2017). Stan: A probabilistic programming language. Journal of Statistical Software, 76( 1), 1-32.
doi: 10.18637/jss.v076.i01 URL |
[14] | Chambers C. D., Feredoes E., Muthukumaraswamy S. D., & Etchells P. J . ( 2014). Instead of “playing the game” it is time to change the rules: Registered Reports at AIMS Neuroscience and beyond. AIMS Neuroscience, 1( 1), 4-17. |
[15] |
Chen X., Lu B., & Yan C.-G . ( 2018). Reproducibility of R-fMRI metrics on the impact of different strategies for multiple comparison correction and sample sizes. Human Brain Mapping, 39( 1), 300-318.
doi: 10.1002/hbm.23843 URL pmid: 29024299 |
[16] |
Cumming, G.(2014). The new statistics: Why and how. Psychological Science, 25( 1), 7-29.
doi: 10.1177/0956797613504966 URL |
[17] |
Depaoli, S.,& van de Schoot, R.(2017). Improving transparency and replication in Bayesian statistics: The WAMBS-Checklist. Psychological Methods, 22( 2), 240-261.
doi: 10.1037/met0000065 URL pmid: 26690773 |
[18] | Dienes, Z.(2008). Understanding psychology as a science: An introduction to scientific and statistical inference. London, UK: Palgrave Macmillan. |
[19] |
Dienes, Z.(2011). Bayesian versus orthodox statistics: Which side are you on? Perspectives on Psychological Science, 6( 3), 274-290.
doi: 10.1177/1745691611406920 URL pmid: 26168518 |
[20] |
Dienes, Z.(2014). Using Bayes to get the most out of non-significant results. Frontiers in Psychology, 5, 781.
doi: 10.3389/fpsyg.2014.00781 URL pmid: 4114196 |
[21] |
Ebersole C. R., Atherton O. E., Belanger A. L., Skulborstad H. M., Allen J. M., Banks J. B., .. Nosek B. A . ( 2016). Many Labs 3: Evaluating participant pool quality across the academic semester via replication. Journal of Experimental Social Psychology, 67, 68-82.
doi: 10.1016/j.jesp.2015.10.012 URL |
[22] |
Edwards, W.(1965). Tactical note on the relation between scientific and statistical hypotheses. Psychological Bulletin, 63( 6), 400-402.
doi: 10.1037/h0021967 URL pmid: 14314074 |
[23] |
Edwards W., Lindman H., & Savage L. J . ( 1963). Bayesian statistical inference for psychological research. Psychological Review, 70( 3), 193-242.
doi: 10.1037/h0044139 URL |
[24] |
Etz A .(in press). Introduction to the concept of likelihood and its applications.Advances in Methods and Practices in Psychological Science.
doi: 10.1177/2515245917744314 URL |
[25] |
Francis, G.(2013). Replication, statistical consistency, and publication bias. Journal of Mathematical Psychology, 57( 5), 153-169.
doi: 10.1016/j.jmp.2013.02.003 URL |
[26] |
Gallistel,C. R . ( 2009). The importance of proving the null. Psychological Review, 116( 2), 439-453.
doi: 10.1037/a0015251 URL pmid: 2859953 |
[27] |
Gigerenzer, G.(2004). Mindless statistics. The Journal of Socio-Economics, 33( 5), 587-606.
doi: 10.1016/j.socec.2004.09.033 URL |
[28] |
Greenland S., Senn S. J., Rothman K. J., Carlin J. B., Poole C., Goodman S. N., … Altman D. G . ( 2016). Statistical tests, P values, confidence intervals, and power: A guide to misinterpretations. European Journal of Epidemiology, 31( 4), 337-350.
doi: 10.1007/s10654-016-0149-3 URL |
[29] |
Gronau,Q. F., & Wagenmakers, E.-J.(2017). Bayesian evidence accumulation in experimental mathematics: A case study of four irrational numbers. Experimental Mathematics, 1-10.
doi: 10.1080/10586458.2016.1256006 URL |
[30] |
Halsey L. G., Curran-Everett D., Vowler S. L., & Drummond G. B . ( 2015). The fickle P value generates irreproducible results. Nature Methods, 12( 3), 179-185.
doi: 10.1038/nmeth.3288 URL pmid: 25719825 |
[31] | Hoijtink, H.(2011). Informative hypotheses: Theory and practice for behavioral and social scientists. Boca Raton, FL: Chapman & Hall/CRC. |
[32] |
Hoijtink H., van Kooten P., & Hulsker K . ( 2016). Why Bayesian psychologists should change the way they use the Bayes factor. Multivariate Behavioral Research, 51( 1), 2-10.
doi: 10.1080/00273171.2014.969364 URL pmid: 26881951 |
[33] | JASP Team. ( 2017). JASP (Version 0.8.2) [Computer software]. |
[34] |
Jeffreys, H.(1935). Some tests of significance, treated by the theory of probability. Mathematical Proceedings of the Cambridge Philosophical Society, 31( 2), 203-222.
doi: 10.1017/S030500410001330X URL |
[35] |
Jeffreys, H.(1938). Significance tests when several degrees of freedom arise simultaneously. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 165( 921), 161-198.
doi: 10.1098/rspa.1938.0052 URL |
[36] | Jeffreys, H. (1961). Theory of probability (3rd ed.). Oxford, UK: Oxford University Press. |
[37] |
Johnson,V. E . ( 2013). Revised standards for statistical evidence. Proceedings of the National Academy of Sciences of the United States of America, 110( 48), 19313-19317.
doi: 10.1073/pnas.1313476110 URL |
[38] |
Kerr,N. L . ( 1998). HARKing: Hypothesizing after the results are known. Personality and Social Psychology Review, 2( 3), 196-217.
doi: 10.1207/s15327957pspr0203_4 URL pmid: 15647155 |
[39] |
Klein R. A., Ratliff K. A., Vianello M., Adams R. B., Jr., Bahník Š., Bernstein M. J., … Nosek B. A . ( 2014). Investigating variation in replicability: A “many labs” replication project. Social Psychology, 45( 3), 142-152.
doi: 10.1027/1864-9335/a000178 URL |
[40] |
Klugkist I., Laudy O., & Hoijtink H . ( 2005). Inequality constrained analysis of variance: A Bayesian approach. Psychological Methods, 10( 4), 477-493.
doi: 10.1037/1082-989X.10.4.477 URL pmid: 16393001 |
[41] | Kruschke J. K. (2014). Doing Bayesian data analysis: A tutorial with R, JAGS, and stan (2nd ed.). San Diego, CA: Academic Press/Elsevier. |
[42] |
Kruschke,J. K., & Liddell, T. M . ( 2017a). Bayesian data analysis for newcomers. Psychonomic Bulletin & Review, 1-23.
doi: 10.3758/s13423-017-1272-1 URL pmid: 28405907 |
[43] | Kruschke,J. K., & Liddell, T. M . ( 2017 b). The Bayesian New Statistics: Hypothesis testing, estimation, meta-analysis, and power analysis from a Bayesian perspective. Psychonomic Bulletin & Review, 1-29. |
[44] |
Lakens, D.(2017). Equivalence tests: A practical primer for t-Tests, correlations, and meta-analyses. Social Psychological and Personality Science, 8( 4), 355-362.
doi: 10.1177/1948550617697177 URL |
[45] |
Lindley,D. V . ( 1993). The analysis of experimental data: The appreciation of tea and wine. Teaching Statistics, 15( 1), 22-25.
doi: 10.1111/j.1467-9639.1993.tb00252.x URL |
[46] |
Lindsay,D. S . ( 2015). Replication in psychological science. Psychological Science, 26( 12), 1827-1832.
doi: 10.1177/0956797615616374 URL |
[47] |
Lunn D., Spiegelhalter D., Thomas A., & Best N . ( 2009). The BUGS project: Evolution, critique and future directions. Statistics in Medicine, 28( 25), 3049-3067.
doi: 10.1002/sim.3680 URL pmid: 19630097 |
[48] | Ly A., Etz A., Marsman M., & Wagenmakers E.-J . ( 2017). Replication Bayes factors from evidence updating. PsyArXiv. Retrieved from |
[49] |
Ly A., Marsman M., & Wagenmakers E.-J . ( 2018). Analytic posteriors for Pearson’s correlation coefficient. Statistica Neerlandica, 72, 4-13.
doi: 10.1111/stan.12111 URL |
[50] |
Ly A., Verhagen J., & Wagenmakers E.-J . (2016a). An evaluation of alternative methods for testing hypotheses, from the perspective of Harold Jeffreys. Journal of Mathematical Psychology, 72, 43-55.
doi: 10.1016/j.jmp.2016.01.003 URL |
[51] |
Ly A., Verhagen J., & Wagenmakers E.-J . (2016b). Harold Jeffreys’s default Bayes factor hypothesis tests: Explanation, extension, and application in psychology. Journal of Mathematical Psychology, 72, 19-32.
doi: 10.1016/j.jmp.2015.06.004 URL |
[52] |
Marsman, M.,& Wagenmakers, E.-J.(2017 a). Bayesian benefits with JASP. European Journal of Developmental Psychology, 14( 5), 545-555.
doi: 10.1080/17405629.2016.1259614 URL |
[53] |
Marsman, M.,& Wagenmakers, E.-J.(2017 b). Three insights from a bayesian interpretation of the one-sided P value. Educational and Psychological Measurement, 77( 3), 529-539.
doi: 10.1177/0013164416669201 URL |
[54] |
Masson,M. E. J . ( 2011). A tutorial on a practical Bayesian alternative to null-hypothesis significance testing. Behavior Research Methods, 43( 3), 679-690.
doi: 10.3758/s13428-010-0049-5 URL pmid: 21302025 |
[55] |
Matzke D., Nieuwenhuis S., van Rijn H., Slagter H. A., van der Molen, M. W., & Wagenmakers E.-J . ( 2015). The effect of horizontal eye movements on free recall: A preregistered adversarial collaboration. Journal of Experimental Psychology: General, 144( 1), e1-e15.
doi: 10.1037/xge0000038 URL pmid: 25621378 |
[56] |
Miller, G.(2011). ESP paper rekindles discussion about statistics. Science, 331( 6015), 272-273.
doi: 10.1126/science.331.6015.272 URL pmid: 21252321 |
[57] |
Morey R. D., Hoekstra R., Rouder J. N., Lee M. D., & Wagenmakers E.-J . ( 2016). The fallacy of placing confidence in confidence intervals. Psychonomic Bulletin & Review, 23( 1), 103-123.
doi: 10.3758/s13423-015-0947-8 URL pmid: 26450628 |
[58] |
Morey,R. D., & Rouder, J. N . ( 2011). Bayes factor approaches for testing interval null hypotheses. Psychological Methods, 16( 4), 406-419.
doi: 10.1037/a0024377 URL pmid: 21787084 |
[59] |
Mulder J., Klugkist I., van de Schoot R., Meeus W. H. J., Selfhout M., & Hoijtink H . ( 2009). Bayesian model selection of informative hypotheses for repeated measurements. Journal of Mathematical Psychology, 53( 6), 530-546.
doi: 10.1016/j.jmp.2009.09.003 URL |
[60] |
Munafò M. R., Nosek B. A., Bishop D. V. M., Button K. S., Chambers C. D., Percie du Sert N., … Ioannidis, J. P. A.(2017). A manifesto for reproducible science. Nature Human Behaviour, 1( 1), 0021.
doi: 10.1038/s41562-016-0021 URL |
[61] |
Nosek B. A., Alter G., Banks G. C., Borsboom D., Bowman S. D., Breckler S. J., … Yarkoni T . ( 2015). Promoting an open research culture. Science, 348( 6242), 1422-1425.
doi: 10.1126/science.aab2374 URL |
[62] |
Nosek B. A., Spies J. R., & Motyl M . ( 2012). Scientific Utopia: II. Restructuring incentives and practices to promote truth over publishability. Perspectives on Psychological Science, 7( 6), 615-631.
doi: 10.1177/1745691612459058 URL |
[63] | Open Science Collaboration. ( 2015). Estimating the reproducibility of psychological science. Science, 349(6251), aac4716. |
[64] | Plummer, M.(2003). JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. Paper presented at the Proceedings of the 3rd International Workshop on Distributed Statistical Computing (DSC 2003). |
[65] |
Poldrack R. A., Baker C. I., Durnez J., Gorgolewski K. J., Matthews P. M., Munafò M. R., … Yarkoni T . ( 2017). Scanning the horizon: Towards transparent and reproducible neuroimaging research. Nature Reviews Neuroscience, 18( 2), 115-126.
doi: 10.1038/nrn.2016.167 URL pmid: 28053326 |
[66] |
Poldrack,R. A., & Gorgolewski, K. J . ( 2017). OpenfMRI: Open sharing of task fMRI data. NeuroImage, 144, 259-261.
doi: 10.1016/j.neuroimage.2015.05.073 URL pmid: 4669234 |
[67] |
Rouder,J. N . ( 2014). Optional stopping: No problem for Bayesians. Psychonomic Bulletin & Review, 21( 2), 301-308.
doi: 10.3758/s13423-014-0595-4 URL pmid: 24659049 |
[68] |
Rouder,J. N., & Morey, R. D . ( 2011). A Bayes factor meta-analysis of Bem’s ESP claim. Psychonomic Bulletin & Review, 18( 4), 682-689.
doi: 10.3758/s13423-011-0088-7 URL pmid: 21573926 |
[69] |
Rouder J. N., Morey R. D., Speckman P. L., & Province J. M . ( 2012). Default Bayes factors for ANOVA designs. Journal of Mathematical Psychology, 56( 5), 356-374.
doi: 10.1016/j.jmp.2012.08.001 URL |
[70] |
Rouder J. N., Morey R. D., Verhagen J., Swagman A. R., & Wagenmakers E.-J . ( 2017). Bayesian analysis of factorial designs. Psychological Methods, 22( 2), 304-321.
doi: 10.1037/met0000057 URL pmid: 27280448 |
[71] | Rouder J. N., Speckman P. L., Sun D. C., Morey R. D., & Iverson G . ( 2009). Bayesian t tests for accepting and rejecting the null hypothesis. Psychonomic Bulletin & Review, 16( 2), 225-237. |
[72] | Salsburg, D.(2001). The lady tasting tea: How statistics revolutionized science in the twentieth century. New York, NY: W. H. Freeman and Company. |
[73] |
Salvatier J., Wiecki T. V., & Fonnesbeck C . ( 2016). Probabilistic programming in Python using PyMC3. Peer J Computer Science, 2, e55.
doi: 10.7717/peerj-cs.55 URL |
[74] |
Schervish,M. J . ( 1996). P values: What they are and what they are not. The American Statistician, 50( 3), 203-206.
doi: 10.2307/2684655 URL |
[75] | Schlaifer, R.,& Raiffa, H.(1961). Applied statistical decision theory. Boston: Harvard University. |
[76] |
Schönbrodt F. D., Wagenmakers E.-J., Zehetleitner M., & Perugini M . ( 2017). Sequential hypothesis testing with Bayes factors: Efficiently testing mean differences. Psychological Methods, 22( 2), 322-339.
doi: 10.1037/met0000061 URL pmid: 26651986 |
[77] |
Scott,J. G., & Berger, J. O . ( 2006). An exploration of aspects of Bayesian multiple testing. Journal of Statistical Planning and Inference, 136( 7), 2144-2162.
doi: 10.1016/j.jspi.2005.08.031 URL |
[78] |
Scott,J. G., & Berger, J. O . ( 2010). Bayes and empirical- Bayes multiplicity adjustment in the variable-selection problem. The Annals of Statististics, 38( 5), 2587-2619.
doi: 10.1214/10-AOS792 URL |
[79] |
Sellke T., Bayarri M. J., & Berger J. O . ( 2001). Calibration of ρ values for testing precise null hypotheses. The American Statistician, 55( 1), 62-71.
doi: 10.1198/000313001300339950 URL |
[80] |
Stephens, M.,& Balding, D. J . ( 2009). Bayesian statistical methods for genetic association studies. Nature Reviews Genetics, 10( 10), 681-690.
doi: 10.1038/nrg2615 URL pmid: 1976315119763151 |
[81] |
Stulp G., Buunk A. P., Verhulst S., & Pollet T. V . ( 2013). Tall claims? Sense and nonsense about the importance of height of US presidents. The Leadership Quarterly, 24( 1), 159-171.
doi: 10.1016/j.leaqua.2012.09.002 URL |
[82] |
Topolinski, S.,& Sparenberg, P.(2012). Turning the hands of time. Social Psychological and Personality Science, 3( 3), 308-314.
doi: 10.1177/1948550611419266 URL |
[83] |
van de Schoot R., Winter S., Ryan O., Zondervan- Zwijnenburg M., & Depaoli S . ( 2017). A systematic review of Bayesian papers in psychology: The last 25 years. Psychological Methods, 22( 2), 217-239.
doi: 10.1037/met0000100 URL pmid: 28594224 |
[84] |
Vanpaemel, W.(2010). Prior sensitivity in theory testing: An apologia for the Bayes factor. Journal of Mathematical Psychology, 54( 6), 491-498.
doi: 10.1016/j.jmp.2010.07.003 URL |
[85] |
Wagenmakers, E.-J.(2007). A practical solution to the pervasive problems of p values. Psychonomic Bulletin & Review, 14( 5), 779-804.
doi: 10.3758/BF03194105 URL pmid: 18087943 |
[86] |
Wagenmakers E.-J., Beek T. F., Rotteveel M., Gierholz A., Matzke D., Steingroever H., … Pinto Y . ( 2015). Turning the hands of time again: A purely confirmatory replication study and a Bayesian analysis. Frontiers in Psychology, 6, 494.
doi: 10.3389/fpsyg.2015.00494 URL pmid: 25964771 |
[87] |
Wagenmakers E.-J., Lodewyckx T., Kuriyal H., & Grasman R . ( 2010). Bayesian hypothesis testing for psychologists: A tutorial on the Savage-Dickey method. Cognitive Psychology, 60( 3), 158-189.
doi: 10.1016/j.cogpsych.2009.12.001 URL pmid: 20064637 |
[88] |
Wagenmakers E.-J., Love J., Marsman M., Jamil T., Ly A., Verhagen J., … van Doorn J . ( 2017). Bayesian inference for psychology. Part II: Example applications with JASP. Psychonomic Bulletin & Review, 1-19.
doi: 10.3758/s13423-017-1323-7 URL pmid: 28685272 |
[89] |
Wagenmakers E.-J., Marsman M., Jamil T., Ly A., Verhagen J., Love J., … Morey R. D . ( 2017). Bayesian inference for psychology. Part I: Theoretical advantages and practical ramifications. Psychonomic Bulletin & Review, 1-23.
doi: 10.3758/s13423-017-1343-3 URL |
[90] |
Wagenmakers E.-J., Verhagen J., Ly A., Matzke D., Steingroever H., Rouder J. N., & Morey R. D . ( 2017). The need for Bayesian hypothesis testing in psychological science. In S. O. Lilienfeld & I. D. Waldman (Eds.), Psychological science under scrutiny(pp. 123-138). Chichester: John Wiley & Sons, Inc.
doi: 10.1002/9781119095910.ch8 URL |
[91] |
Wagenmakers E.-J., Wetzels R., Borsboom D., & van der Maas, H. L. J.(2011). Why psychologists must change the way they analyze their data: The case of psi: Comment on Bem (2011). Journal of Personality and Social Psychology, 100( 3), 426-432.
doi: 10.1037/a0022790 URL pmid: 212809651 |
[92] |
Wagenmakers E.-J., Wetzels R., Borsboom D., van der Maas, H. L. J., & Kievit R. A . ( 2012). An agenda for purely confirmatory research. Perspectives on Psychological Science, 7( 6), 632-638.
doi: 10.1177/1745691612463078 URL pmid: 26168122 |
[93] | Wasserstein,R. L., & Lazar, N. A . ( 2016). The ASA's statement on p-values: Context, process, and purpose. The American Statistician, 70( 2), 129-133. |
[94] |
Wetzels R., Matzke D., Lee M. D., Rouder J. N., Iverson G. J., & Wagenmakers E.-J . ( 2011). Statistical evidence in experimental psychology: An empirical comparison ssing 855 t tests. Perspectives on Psychological Science, 6( 3), 291-298.
doi: 10.1177/1745691611406923 URL |
[95] |
Zhu J., Chen J. F., Hu W. B., & Zhang B . ( 2017). Big Learning with Bayesian methods. National Science Review, 4( 4), 627-651.
doi: 10.1093/nsr/nwx044 URL |
[96] | Ziliak S. T., & McCloskey, D. N.( 2008) . The cult of statistical significance. Ann Arbor: University of Michigan Press. |
[97] |
Zuo X.-N., Anderson J. S., Bellec P., Birn R. M., Biswal B. B., Blautzik J., … Milham M. P . ( 2014). An open science resource for establishing reliability and reproducibility in functional connectomics. Nature Scientific Data, 1, 140049.
doi: 10.1038/sdata.2014.49 URL pmid: 25977800 |
[98] |
Zuo, X.-N.,&Xing, X.-X.(2014). Test-retest reliabilities of resting-state FMRI measurements in human brain functional connectomics: A systems neuroscience perspective. Neuroscience & Biobehavioral Reviews, 45, 100-118.
doi: 10.1016/j.neubiorev.2014.05.009 URL pmid: 24875392 |
[1] | ZHU Xun, GU Xin. Evaluation of predictors’ relative importance: Methods and applications [J]. Advances in Psychological Science, 2023, 31(1): 145-158. |
[2] | WANG Jun, SONG Qiongya, XU Yuepei, JIA Binbin, LU Chunlei, CHEN Xi, DAI Zixu, HUANG Zhiyue, LI Zhenjiang, LIN Jingxi, LUO Wanying, SHI Sainan, ZHANG Yingying, ZANG Yufeng, ZUO Xi-Nian, HU Chuanpeng. Interpreting nonsignificant results: A quantitative investigation based on 500 Chinese psychological research [J]. Advances in Psychological Science, 2021, 29(3): 381-393. |
[3] | WANG Meng-Cheng, DENG Qiaowen, BI Xiangyang. Latent variable modeling using Bayesian methods [J]. Advances in Psychological Science, 2017, 25(10): 1682-1695. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||