心理科学进展 ›› 2026, Vol. 34 ›› Issue (3): 499-514.doi: 10.3724/SP.J.1042.2026.0499 cstr: 32111.14.2026.0499
张秋霞, 陈伟海
收稿日期:2025-05-17
出版日期:2026-03-15
发布日期:2026-01-07
基金资助:ZHANG Qiuxia, CHEN Weihai
Received:2025-05-17
Online:2026-03-15
Published:2026-01-07
摘要: 工作记忆作为高级认知功能的核心, 依赖于前额叶-海马-内侧隔核神经环路的动态协同, 其中theta-gamma相位幅值耦合(TG-PAC)是跨脑区信息整合的关键机制。本文系统阐述了前额叶-海马-内侧隔核神经环路中theta-gamma相位幅值耦合在工作记忆中的核心调控作用。研究表明, 前额叶通过持续性神经活动维持工作记忆中的信息表征, 其theta振荡(4~8 Hz)通过相位调制gamma活动(30~80 Hz)形成认知控制的神经时间窗。海马作为空间信息处理的枢纽, 通过theta-gamma嵌套编码实现空间导航与工作记忆绑定, 其局部gamma振荡与theta振荡的耦合强度可预测记忆容量与行为表现。前额叶theta相位与海马gamma幅值的跨脑区耦合, 构成了认知控制与记忆存储的动态交互界面, 确保工作记忆任务的精准执行。内侧隔核作为关键中继节点, 其胆碱能、GABA能神经元通过调控海马theta振荡, 影响海马theta-gamma相位幅值耦合的强度与时空特性, 进而调节工作记忆效能。此外, TG-PAC异常与精神分裂症、阿尔茨海默病等认知功能障碍密切相关, 提示其作为潜在生物标志物和神经调控靶点的临床价值。本文创新性整合前额叶-海马-内侧隔核三节点环路之间的theta-gamma相位幅值耦合, 并展望未来研究需结合多模态成像、细胞特异性调控与计算建模, 以推动基于神经振荡耦合的认知障碍干预新策略。
张秋霞, 陈伟海. (2026). 前额叶-海马-内侧隔核环路的theta-gamma相位幅值耦合: 跨脑区协同与工作记忆调控机制. 心理科学进展 , 34(3), 499-514.
ZHANG Qiuxia, CHEN Weihai. (2026). Theta-gamma phase-amplitude coupling in the prefrontal-hippocampal- medial septal circuit: Mechanisms of cross-regional coordination and working memory regulation. Advances in Psychological Science, 34(3), 499-514.
| [1] 张力新, 王发颀, 王玲, 杨佳佳, 万柏坤.(2017). 认知功能研究中神经振荡交叉节律耦合应用研究进展. 生理学报, 69(6), 805-816. https://doi.org/10.13294/j.aps.2017.0041 [2] Abad-Perez,P., Molina-Payá, F. J., Martínez-Otero, L., Borrell, V., Redondo, R. L., & Brotons-Mas, J. R.(2023). Theta/ gamma co-modulation disruption after NMDAr blockade by MK-801 is associated with spatial working memory deficits in mice. Neuroscience, 519, 162-176. https://doi.org/10.1016/j.neuroscience.2023.03.022 [3] Adams E. J., Nguyen A. T., & Cowan N. (2018). Theories of working memory: Differences in definition, degree of modularity, role of attention, and purpose. Language, Speech, and Hearing Services in Schools, 49(3), 340-355. https://doi.org/10.1044/2018_LSHSS-17-0114 [4] Alekseichuk I., Turi Z.,Amador de Lara, G., Antal, A., & Paulus, W.(2016). Spatial working memory in humans depends on theta and high gamma synchronization in the prefrontal cortex. Current Biology, 262016.04.035 [5] Axmacher N., Henseler M. M., Jensen O., Weinreich I., Elger C. E., & Fell J. (2010). Cross-frequency coupling supports multi-item working memory in the human hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 107(7), 3228- 3233. https://doi.org/10.1073/pnas.0911531107 [6] Baddeley, A. (2003). Working memory: Looking back and looking forward. Nature Reviews. Neuroscience, 4(10), 829-839. https://doi.org/10.1038/nrn1201 [7] Barr M. S., Rajji T. K., Zomorrodi R., Radhu N., George T. P., Blumberger D. M.,& Daskalakis, Z. J.(2017). Impaired theta-gamma coupling during working memory performance in schizophrenia. Schizophrenia Research, 189, 104-110. https://doi.org/10.1016/j.schres.2017.01.044 [8] Benchenane K., Peyrache A., Khamassi M., Tierney P. L., Gioanni Y., Battaglia F. P.,& Wiener, S. I.(2010). Coherent theta oscillations and reorganization of spike timing in the hippocampal- prefrontal network upon learning. Neuron, 662010.05.013 [9] Benchenane K., Tiesinga P. H.,& Battaglia, F. P.(2011). Oscillations in the prefrontal cortex: A gateway to memory and attention. Current Opinion in Neurobiology, 212011.01.004 [10] Bonnefond M., Kastner S., & Jensen O. (2017). Communication between brain areas based on nested oscillations. eNeuro, 4(2), e0153-16.2017. https://doi.org/10.1523/ENEURO.0153-16.2017 [11] Bortz D. M., Feistritzer C. M., & Grace A. A. (2023). Medial prefrontal cortex to medial septum pathway activation improves cognitive flexibility in rats. The International Journal of Neuropsychopharmacology, 26(6), 426-437. https://doi.org/10.1093/ijnp/pyad019 [12] Buchanan S. L., Thompson R. H., Maxwell B. L., & Powell D. A. (1994). Efferent connections of the medial prefrontal cortex in the rabbit. Experimental Brain Research, 100(3), 469-483. https://doi.org/10.1007/BF02738406 [13] Buzsáki, G. (2002). Theta oscillations in the hippocampus. Neuron, 33(3), 325-340. https://doi.org/10.1016/s0896-6273(02)00586-x [14] Cassaday, H. J., Nelson, A. J.D., & Pezze, M. A.(2014). From attention to memory along the dorsal-ventral axis of the medial prefrontal cortex: Some methodological considerations. Frontiers in Systems Neuroscience, 8, 160. https://doi.org/10.3389/fnsys.2014.00160 [15] Chai W. J.,Abd Hamid, A. I., & Abdullah, J. M.(2018). Working memory from the psychological and neurosciences perspectives: A review. Frontiers in Psychology, 9, 401. https://doi.org/10.3389/fpsyg.2018.00401 [16] Chaieb L., Leszczynski M., Axmacher N., Höhne M., Elger C.,E., & Fell, J.(2015). Theta-gamma phase-phase coupling during working memory maintenance in the human hippocampus. Cognitive Neuroscience, 62015.1058254 [17] Chiba T., Kayahara T., & Nakano K. (2001). Efferent projections of infralimbic and prelimbic areas of the medial prefrontal cortex in the Japanese monkey, Macaca fuscata. Brain Research, 888(1), 83-101. https://doi.org/10.1016/s0006-8993(00)03013-4 [18] Cissé R. S., Krebs-Kraft D. L., & Parent M. B. (2008). Septal infusions of the hyperpolarization-activated cyclic nucleotide-gated channel (HCN-channel) blocker ZD7288 impair spontaneous alternation but not inhibitory avoidance. Behavioral Neuroscience, 122(3), 549-556. https://doi.org/10.1037/0735-7044.122.3.549 [19] Colgin L. L., Denninger T., Fyhn M., Hafting T., Bonnevie T., Jensen O., Moser M. -B., & Moser E. I. (2009). Frequency of gamma oscillations routes flow of information in the hippocampus. Nature, 462(7271), 353-357. https://doi.org/10.1038/nature08573 [20] Colgin, L. L., & Moser, E. I. (2010). Gamma oscillations in the hippocampus. Physiology, 25(5), 319-329. https://doi.org/10.1152/physiol.00021.2010 [21] Constantinidis, C., & Goldman-Rakic, P. S. (2002). Correlated discharges among putative pyramidal neurons and interneurons in the primate prefrontal cortex. Journal of Neurophysiology, 88(6), 3487-3497. https://doi.org/10.1152/jn.00188.2002 [22] Curtis C. E.,& Sprague, T. C.(2021). Persistent activity during working memory from front to back. Frontiers in Neural Circuits, 15, 696060. https://doi.org/10.3389/fncir.2021.696060 [23] Daume J., Kamiński J., Schjetnan A. G. P., Salimpour Y., Khan U., Kyzar M., … Rutishauser U. (2024). Control of working memory by phase-amplitude coupling of human hippocampal neurons. Nature, 629(8011), 393-401. https://doi.org/10.1038/s41586-024-07309-z [24] De Almeida L., Idiart M., & Lisman J. E. (2009). A second function of gamma frequency oscillations: An E%-max winner-take-all mechanism selects which cells fire. The Journal of Neuroscience, 29(23), 7497-7503. https://doi.org/10.1523/JNEUROSCI.6044-08.2009 [25] De Mooij-van Malsen, J. G., Röhrdanz, N., Buschhoff, A. -S., Schiffelholz, T., Sigurdsson, T., & Wulff, P.(2023). Task- specific oscillatory synchronization of prefrontal cortex, nucleus reuniens, and hippocampus during working memory. iScience, 262023. 107532 [26] Fernández A., Pinal D., Díaz F.,& Zurrón, M.(2021). Working memory load modulates oscillatory activity and the distribution of fast frequencies across frontal theta phase during working memory maintenance. Neurobiology of Learning and Memory, 183, 107476. https://doi.org/10.1016/j.nlm.2021.107476 [27] Fries, P. (2015). Rhythms for cognition: Communication through coherence. Neuron, 88(1), 220-235. https://doi.org/10.1016/j.neuron.2015.09.034 [28] Fuster, J. M., & Alexander, G. E. (1971). Neuron activity related to short-term memory. Science, 173(3997), 652- 654. https://doi.org/10.1126/science.173.3997.652 [29] Gemzik Z. M., Donahue M. M., & Griffin A. L. (2021). Optogenetic suppression of the medial septum impairs working memory maintenance. Learning & Memory, 28(10), 361-370. https://doi.org/10.1101/lm.053348.120 [30] Gemzik, Z. M., & Griffin, A. L. (2025). Medial septal theta stimulation enhances spatial working memory performance in rats. Learning & Memory, 32(4), a054075. https://doi. org/10.1101/lm.054075.124 [31] Gregoriou G. G., Gotts S. J., Zhou H., & Desimone R. (2009). High-frequency, long-range coupling between prefrontal and visual cortex during attention. Science, 324(5931), 1207-1210. https://doi.org/10.1126/science.1171402 [32] György, B. (2006). Rhythms of the brain (pp.136-174). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195301069.001.0001 [33] He Y., Guo W., Ren Z., Liu S.,& Ming, D.(2023). Gamma rhythm and theta-gamma coupling alternation in chronic unpredictable stress (CUS)-induced depression rats. 2023 45th Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2023.10340209 [34] Jensen O.,& Colgin, L. L.(2007). Cross-frequency coupling between neuronal oscillations. Trends in Cognitive Sciences, 112007.05.003 [35] Jimura K., Chushak M. S., Westbrook A., & Braver T. S. (2018). Intertemporal decision-making involves prefrontal control mechanisms associated with working memory. Cerebral Cortex, 28(4), 1105-1116. https://doi.org/10.1093/cercor/bhx015 [36] Jones K. T., Johnson E. L.,& Berryhill, M. E.(2020). Frontoparietal theta-gamma interactions track working memory enhancement with training and tDCS. NeuroImage, 211, 116615. https://doi.org/10.1016/j.neuroimage.2020.116615 [37] Kim C., Kroger J. K., Calhoun V. D.,& Clark, V. P.(2015). The role of the frontopolar cortex in manipulation of integrated information in working memory. Neuroscience Letters, 595, 25-29. https://doi.org/10.1016/j.neulet.2015.03.044 [38] Király B., Domonkos A., Jelitai M., Lopes-Dos-Santos V., Martínez-Bellver S., Kocsis B., … Hangya B. (2023). The medial septum controls hippocampal supra-theta oscillations. Nature Communications, 14(1), 6159. https://doi.org/10.1038/s41467-023-41746-0 [39] Kramis R., Vanderwolf C. H., & Bland B. H. (1975). Two types of hippocampal rhythmical slow activity in both the rabbit and the rat: Relations to behavior and effects of atropine, diethyl ether, urethane, and pentobarbital. Experimental Neurology, 49(1), 58-85. https://doi.org/10.1016/0014-4886(75)90195-8 [40] Leung, L. S. (1998). Generation of theta and gamma rhythms in the hippocampus. Neuroscience and Biobehavioral Reviews, 22(2), 275-290. https://doi.org/10.1016/s0149-7634(97)00014-6 [41] Leutgeb S., Leutgeb J. K., Barnes C. A., Moser E. I., McNaughton B. L., & Moser M. -B. (2005). Independent codes for spatial and episodic memory in hippocampal neuronal ensembles. Science, 309(5734), 619-623. https://doi.org/10.1126/science.1114037 [42] Li J., Cao D., Yu S., Xiao X., Imbach L., Stieglitz L., Sarnthein J., & Jiang T. (2023). Functional specialization and interaction in the amygdala-hippocampus circuit during working memory processing. Nature Communications, 14(1), 2921. https://doi.org/10.1038/s41467-023-38571-w [43] Li L.-B., Zhang, L., Sun, Y. -N., Han, L. -N., Wu, Z. -H., Zhang, Q. -J., & Liu, J.(2015). Activation of serotonin2A receptors in the medial septum-diagonal band of broca complex enhanced working memory in the hemiparkinsonian rats. Neuropharmacology, 91, 23-33. https://doi.org/10.1016/j.neuropharm.2014.11.025 [44] Lisman, J., & Buzsáki, G. (2008). A neural coding scheme formed by the combined function of gamma and theta oscillations. Schizophrenia Bulletin, 34(5), 974-980. https://doi.org/10.1093/schbul/sbn060 [45] Lisman, J. E., & Idiart, M. A. (1995). Storage of 7 +/- 2 short-term memories in oscillatory subcycles. Science, 267(5203), 1512-1515. https://doi.org/10.1126/science.7878473 [46] Lisman J. E.,& Jensen, O.(2013). The θ-γ neural code. Neuron, 77 2013.03.007 [47] Liu J., Tabisola K. M., & Morilak D. A. (2025). A projection from the medial prefrontal cortex to the lateral septum modulates coping behavior on the shock-probe test. Neuropsychopharmacology, 50(8), 1245-1255. https://doi.org/10.1038/s41386-025-02074-7 [48] López-Vázquez,M. Á., López-Loeza, E., Lajud Ávila, N., Gutiérrez-Guzmán, B. E., Hernández-Pérez, J. J., Reyes, Y. E., & Olvera-Cortés, M. E.(2014). Septal serotonin depletion in rats facilitates working memory in the radial arm maze and increases hippocampal high-frequency theta activity. European Journal of Pharmacology, 734, 105-113. https://doi.org/10.1016/j.ejphar.2014.04.005 [49] Manseau F., Danik M.,& Williams, S.(2005). A functional glutamatergic neurone network in the medial septum and diagonal band area. The Journal of Physiology, 5662005.089664 [50] Moore A. B., Li Z., Tyner C. E., Hu X., & Crosson B. (2013). Bilateral basal ganglia activity in verbal working memory. Brain and Language, 125(3), 316-323. https://doi.org/10.1016/j.bandl.2012.05.003 [51] Müller, C., & Remy, S. (2018). Septo-hippocampal interaction. Cell and Tissue Research, 373(3), 565-575. https://doi.org/10.1007/s00441-017-2745-2 [52] Murty V. P., Sambataro F., Radulescu E., Altamura M., Iudicello J., Zoltick B., … Mattay, V. S.(2011). Selective updating of working memory content modulates meso- cortico-striatal activity. NeuroImage, 572011.05.006 [53] O’Keefe, J., & Conway, D. H. (1978). Hippocampal place units in the freely moving rat: Why they fire where they fire. Experimental Brain Research, 31(4), 573-590. https://doi.org/10.1007/BF00239813 [54] O’Neill P. -K., Gordon J. A., & Sigurdsson T. (2013). Theta oscillations in the medial prefrontal cortex are modulated by spatial working memory and synchronize with the hippocampus through its ventral subregion. The Journal of Neuroscience, 33(35), 14211-14224. https://doi.org/10.1523/JNEUROSCI.2378-13.2013 [55] Pouille, F., & Scanziani, M. (2001). Enforcement of temporal fidelity in pyramidal cells by somatic feed-forward inhibition. Science, 293(5532), 1159-1163. https://doi.org/10.1126/science.1060342 [56] Roland J. J., Stewart A. L., Janke K. L., Gielow M. R., Kostek J. A., Savage L. M., Servatius R. J., & Pang, K. C. H. (2014). Medial septum-diagonal band of broca (MSDB) GABAergic regulation of hippocampal acetylcholine efflux is dependent on cognitive demands. The Journal of Neuroscience, 34(2), 506-514. https://doi.org/10.1523/JNEUROSCI.2352-13.2014 [57] Rose N. S., LaRocque J. J., Riggall A. C., Gosseries O., Starrett M. J., Meyering E. E., & Postle B. R. (2016). Reactivation of latent working memories with transcranial magnetic stimulation. Science, 354(6316), 1136-1139. https://doi.org/10.1126/science.aah7011 [58] Schneider M., Walter H., Moessnang C., Schäfer A., Erk S., Mohnke S., … Tost H. (2017). Altered DLPFC- hippocampus connectivity during working memory: Independent replication and disorder specificity of a putative genetic risk phenotype for schizophrenia. Schizophrenia Bulletin, 43(5), 1114-1122. https://doi.org/10.1093/schbul/sbx001 [59] Sesack S. R., Deutch A. Y., Roth R. H., & Bunney B. S. (1989). Topographical organization of the efferent projections of the medial prefrontal cortex in the rat: An anterograde tract-tracing study with Phaseolus vulgaris leucoagglutinin. The Journal of Comparative Neurology, 290(2), 213-242. https://doi.org/10.1002/cne.902900205 [60] Shirvalkar P. R., Rapp P. R., & Shapiro M. L. (2010). Bidirectional changes to hippocampal theta-gamma comodulation predict memory for recent spatial episodes. Proceedings of the National Academy of Sciences of the United States of America, 107(15), 7054-7059. https://doi.org/10.1073/pnas.0911184107 [61] Singer, W. (1993). Synchronization of cortical activity and its putative role in information processing and learning. Annual Review of Physiology, 55, 349-374. https://doi.org/10.1146/annurev.ph.55.030193.002025 [62] Solari, N., & Hangya, B. (2018). Cholinergic modulation of spatial learning, memory and navigation. The European Journal of Neuroscience, 48(5), 2199-2230. https://doi.org/10.1111/ejn.14089 [63] Spellman T., Rigotti M., Ahmari S. E., Fusi S., Gogos J. A., & Gordon J. A. (2015). Hippocampal-prefrontal input supports spatial encoding in working memory. Nature, 522(7556), 309-314. https://doi.org/10.1038/nature14445 [64] Stackman, R. W., & Walsh, T. J. (1992). Chlordiazepoxide- induced working memory impairments: Site specificity and reversal by flumazenil (RO15-1788). Behavioral and Neural Biology, 57(3), 233-243. https://doi.org/10.1016/0163-1047(92)90206-j [65] Swanson, L. W., & Cowan, W. M. (1979). The connections of the septal region in the rat. The Journal of Comparative Neurology, 186(4), 621-655. https://doi.org/10.1002/cne.901860408 [66] Takeuchi Y., Nagy A. J., Barcsai L., Li Q., Ohsawa M., Mizuseki K.,& Berényi, A.(2021). The medial septum as a potential target for treating brain disorders associated with oscillopathies. Frontiers in Neural Circuits, 15, 701080. https://doi.org/10.3389/fncir.2021.701080 [67] Tang Y., Xing Y., Sun L., Wang Z., Wang C., Yang K., … Zhao G. (2024). Transcranial alternating current stimulation for patients with mild Alzheimer’s disease (TRANSFORM- AD): A randomized controlled clinical trial. Alzheimer’s Research & Therapy, 16(1), 203. https://doi.org/10.1186/s13195-024-01570-0 [68] Tort A. B. L., Kramer M. A., Thorn C., Gibson D. J., Kubota Y., Graybiel A. M., & Kopell N. J. (2008). Dynamic cross-frequency couplings of local field potential oscillations in rat striatum and hippocampus during performance of a T-maze task. Proceedings of the National Academy of Sciences of the United States of America, 105(51), 20517- 20522. https://doi.org/10.1073/pnas.0810524105 [69] Tsanov, M. (2018). Differential and complementary roles of medial and lateral septum in the orchestration of limbic oscillations and signal integration. The European Journal of Neuroscience, 48(8), 2783-2794. https://doi.org/10.1111/ejn.13746 [70] Unal G., Joshi A., Viney T. J., Kis V., & Somogyi P. (2015). Synaptic targets of medial septal projections in the hippocampus and extrahippocampal cortices of the mouse. The Journal of Neuroscience, 35(48), 15812-15826. https://doi.org/10.1523/JNEUROSCI.2639-15.2015 [71] Van Den Berg,M., Toen, D., Verhoye, M., & Keliris, G. A.(2023). Alterations in theta-gamma coupling and sharp wave-ripple, signs of prodromal hippocampal network impairment in the TgF344-AD rat model. Frontiers in Aging Neuroscience, 15, 1081058. https://doi.org/10.3389/fnagi.2023.1081058 [72] Von Der Malsburg, C. (1985). Nervous structures with dynamical links. Berichte Der Bunsengesellschaft Für Physikalische Chemie, 89(6), 703-710. https://doi.org/10.1002/bbpc.19850890625 [73] Von Der Malsburg, C. (1994). The correlation theory of brain function. In E. Domany, J. L. van Hemmen, & K. Schulten (Eds), Models of Neural Networks: Temporal Aspects of Coding and Information Processing in Biological Systems(pp. 95-119). Springer. https://doi.org/10.1007/978-1-4612-4320-5_2 [74] Wulff P., Ponomarenko A. A., Bartos M., Korotkova T. M., Fuchs E. C., Bähner F., … Monyer H. (2009). Hippocampal theta rhythm and its coupling with gamma oscillations require fast inhibition onto parvalbumin-positive interneurons. Proceedings of the National Academy of Sciences of the United States of America, 106(9), 3561-3566. https://doi.org/10.1073/pnas.0813176106 [75] Zhang W., Guo L., & Liu D. (2022). Concurrent interactions between prefrontal cortex and hippocampus during a spatial working memory task. Brain Structure & Function, 227(5), 1735-1755. https://doi.org/10.1007/s00429-022-02469-y [76] Zhang X., Zhong W., Brankačk J., Weyer S. W., Müller U. C., Tort A. B. L., & Draguhn A. (2016). Impaired theta- gamma coupling in APP-deficient mice. Scientific Reports, 6, 21948. https://doi.org/10.1038/srep21948 [77] Zhang Y., Cao L., Varga V., Jing M., Karadas M., Li Y., & Buzsáki G. (2021). Cholinergic suppression of hippocampal sharp-wave ripples impairs working memory. Proceedings of the National Academy of Sciences of the United States of America, 118(15), e2016432118. https://doi.org/10.1073/pnas.2016432118 [78] Zhang Y., Zhang Y., Yu H., Yang Y., Li W.,& Qian, Z.(2017). Theta-gamma coupling in hippocampus during working memory deficits induced by low frequency electromagnetic field exposure. Physiology & Behavior, 179, 135-142. https://doi.org/10.1016/j.physbeh.2017.05.033 [79] Zutshi I., Brandon M. P., Fu M. L., Donegan M. L., Leutgeb J. K.,& Leutgeb, S.(2018). Hippocampal neural circuits respond to optogenetic pacing of theta frequencies by generating accelerated oscillation frequencies. Current Biology, 282018.02.061 |
| [1] | 田仁霞, 杨平, 郭园园, 吴瑕. 治疗孤独症谱系障碍:重复经颅磁刺激的潜在作用[J]. 心理科学进展, 2025, 33(4): 598-610. |
| [2] | 邓虎, 符艳冉, 吴刚. 时间干涉刺激干预精神分裂症工作记忆缺陷有效性与脑区特异性及跨频耦合机制[J]. 心理科学进展, 2025, 33(4): 620-631. |
| [3] | 吴际, 李会杰. 认知空间映射及其神经机制[J]. 心理科学进展, 2025, 33(1): 62-76. |
| [4] | 冯攀, 赵恒越, 姜雨矇, 张悦彤, 冯廷勇. 催产素影响条件化恐惧情绪加工的认知机制及神经基础[J]. 心理科学进展, 2024, 32(4): 557-567. |
| [5] | 周帆, 田昊月, 姜英杰. 记忆快速巩固:基于图式的学习与重复再激活[J]. 心理科学进展, 2024, 32(11): 1854-1871. |
| [6] | 魏宁, 宋锦涛, 周天罡. 空间位置信息对视觉工作记忆重复优势效应的影响[J]. 心理科学进展, 2023, 31(suppl.): 72-72. |
| [7] | 裴英名, 任衍具. 与工作记忆保持项目语义相关的干扰对搜索固定与变化目标的影响[J]. 心理科学进展, 2023, 31(suppl.): 75-75. |
| [8] | 邱余波, 潘嘉蔚, 吴静岚, 高在峰. 通过社会注意线索转移工作记忆中的注意焦点[J]. 心理科学进展, 2023, 31(suppl.): 76-76. |
| [9] | 谢燕, 曲折. 工作记忆容量对不同显著性干扰子的抑制功能的调控作用[J]. 心理科学进展, 2023, 31(suppl.): 78-78. |
| [10] | 黄一丰, 沈毅, 赵苑秀. 事件信息与客体信息在视觉工作记忆中的独立存储[J]. 心理科学进展, 2023, 31(suppl.): 81-81. |
| [11] | 罗钰萱, 张奇凯, 吴静岚, 高在峰. 社会交互信息在工作记忆中的表征方式:工作记忆中的“同事件优势”[J]. 心理科学进展, 2023, 31(suppl.): 82-82. |
| [12] | 肖芬妮, 孟迎芳. 目标探测促进知觉加工?视觉工作记忆中的注意促进效应[J]. 心理科学进展, 2023, 31(suppl.): 86-86. |
| [13] | 潘嘉蔚, 邱余波, 叶欣, 郭杨, 梁佳文, 高在峰. 利用连续报告任务检验感觉记忆和工作记忆中的唤起-偏向竞争[J]. 心理科学进展, 2023, 31(suppl.): 87-87. |
| [14] | 徐宇寒, 张琪. 抑制性线索引导对工作记忆内相应表征的抑制[J]. 心理科学进展, 2023, 31(suppl.): 90-90. |
| [15] | 吴静岚, 郭杨, 陈芝韵, 高在峰. 工作记忆组织社会交互信息的双重路径[J]. 心理科学进展, 2023, 31(suppl.): 104-104. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||