心理科学进展 ›› 2025, Vol. 33 ›› Issue (5): 843-862.doi: 10.3724/SP.J.1042.2025.0843 cstr: 32111.14.2025.0843
收稿日期:
2024-10-10
出版日期:
2025-05-15
发布日期:
2025-03-20
通讯作者:
张丽, E-mail: lilyking_0717@126.com基金资助:
XUE Xiaoran1, CUI Wei1, ZHANG Li2()
Received:
2024-10-10
Online:
2025-05-15
Published:
2025-03-20
摘要: 空间导航是不可或缺的基本认知能力, 尽管已有大量研究探讨其性别差异, 但关于差异的存在和大小尚无定论。本研究对173项研究(总样本量N = 26604)和372个独立效应量进行三水平元分析, 结果表明, 大多数条件下男性的空间导航能力强于女性, 但性别差异受年龄、表征方式、时间限制、任务环境、测试场景、辅+助装备的调节, 在婴幼儿期、成年晚期的人群中, 以及室内−室外双重测试和无辅助设备条件下, 空间导航能力的性别差异不显著。本研究明确了空间导航能力的性别差异及其调节因素, 为教育实践中缩小性别差异提供了参考。
中图分类号:
薛笑然, 崔伟, 张丽. (2025). 空间导航能力性别差异的三水平元分析. 心理科学进展 , 33(5), 843-862.
XUE Xiaoran, CUI Wei, ZHANG Li. (2025). A three-level meta-analysis of gender differences in spatial navigation ability. Advances in Psychological Science, 33(5), 843-862.
调节变量 | k | Intercept/mean d [95% CI] | B [95% CI] | F (df1, df2) | p | 水平2方差 | 水平3方差 | ||
---|---|---|---|---|---|---|---|---|---|
(1)样本特征 | |||||||||
a. 年龄 | 368 | ||||||||
婴幼儿期(0至4岁) | 2 | −0.83 [−1.73, 0.07] | F(6, 361) = 2.91 | 0.009** | 0.02*** | 0.13*** | |||
儿童期(4至12岁) | 39 | 0.43 [0.24, 0.62]*** | 1.25 [0.01, 0.03]** | ||||||
青春期(12至18岁) | 2 | 0.59 [0.23, 1.41]** | 1.42 [0.20, 3.63]* | ||||||
成年早期(18至40岁) | 243 | 0.43 [0.36, 0.51]*** | 1.26 [0.36, 2.16]** | ||||||
成年中期(40至65岁) | 9 | 0.68 [0.11, 1.25]* | 1.51 [0.44, 2.57]** | ||||||
成年晚期(65岁以上) | 6 | 0.32 [−0.16, 0.80] | 1.14 [0.12, 2.16]* | ||||||
跨年龄 | 67 | 0.22 [0.09, 0.36]*** | 1.05 [0.14, 1.96]* | ||||||
b. 地区 | 372 | ||||||||
亚洲 | 44 | 0.35 [0.17, 0.53]*** | F(6, 365) = 0.53 | 0.786 | 0.02*** | 0.14*** | |||
欧洲 | 146 | 0.39 [0.28, 0.49]*** | 0.03 [−0.18, 0.24] | ||||||
北美洲 | 156 | 0.40 [0.29, 0.50]*** | 0.04 [−0.17, 0.25] | ||||||
南美洲 | 2 | 0.69 [−0.17, 1.56] | 0.34 [−0.55, 1.23] | ||||||
非洲 | 5 | 0.20 [−0.30, 0.69] | −0.16 [−0.68, 0.37] | ||||||
大洋洲 | 8 | 0.67 [0.27, 1.07]** | 0.31 [−0.12, 0.75] | ||||||
跨国 | 11 | 0.43 [0.11, 0.76]** | 0.08 [−0.29, 0.46] | ||||||
(2)研究设计特征 | |||||||||
a. 表征方式 | 372 | ||||||||
自我中心 | 208 | 0.34 [0.26, 0.43]*** | F(1, 370) = 3.44 | 0.064† | 0.02*** | 0.13*** | |||
环境中心 | 164 | 0.43 [0.35, 0.51]*** | 0.09 [−0.18, 0.01] | ||||||
b. 时间限制 | 372 | ||||||||
限时 | 173 | 0.44 [0.36, 0.53]*** | F(1, 370) = 3.42 | 0.065† | 0.02*** | 0.13*** | |||
不限时 | 199 | 0.35 [0.27, 0.43]*** | −0.096 [−0.20, 0.01] | ||||||
c. 任务环境 | 372 | ||||||||
室内 | 190 | 0.38 [0.30, 0.46]*** | F(3, 368) = 3.28 | 0.022* | 0.13*** | 0.08*** | |||
室外 | 146 | 0.35 [0.26, 0.44]*** | −0.02 [−0.13, 0.08] | ||||||
水迷宫 | 34 | 0.66 [0.47, 0.86]*** | 0.29 [0.08, 0.50]** | ||||||
室内−室外 | 2 | −0.06 [−0.73, 0.61] | −0.44 [−1.11, 0.23] | ||||||
d. 测试场景 | 372 | ||||||||
真实场景 | 101 | 0.25 [0.14, 0.36]*** | F(1, 370) = 9.74 | 0.002** | 0.02*** | 0.13*** | |||
视频场景 | 271 | 0.45 [0.37, 0.52]*** | 0.20 [0.07, 0.33]** | ||||||
e. 辅助装备 | 372 | ||||||||
电子设备 | 277 | 0.45 [0.38, 0.52]*** | F(2, 369) = 7.41 | 0.000*** | 0.02*** | 0.13*** | |||
纸笔工具 | 50 | 0.37 [0.22, 0.51]*** | −0.08 [−0.23, 0.07] | ||||||
无设备 | 45 | 0.13 [−0.02, 0.28] | −0.32 [−0.48, −0.15]*** | ||||||
(3)评估特征 | |||||||||
a. 任务类型 | |||||||||
闭环任务 | 2 | 0.07 [−0.43, 0.57] | F(7, 364) = 1.17 | 0.32 | 0.02 | 0.14 | |||
地图绘制任务 | 13 | 0.31 [0.09, 0.53]** | 0.24 [−0.30, 0.78] | ||||||
地图使用任务 | 9 | 0.32 [0.06, 0.59]* | 0.25 [−0.31, 0.81] | ||||||
路标再认记忆任务 | 34 | 0.31 [0.18, 0.43]*** | 0.24 [−0.27, 0.74] | ||||||
路线描述任务 | 8 | 0.41 [0.14, 0.67]** | 0.34 [−0.22, 0.90] | ||||||
路线学习与重走任务 | 150 | 0.38 [0.29, 0.46]*** | 0.30 [−0.19, 0.80] | ||||||
目标指向任务 | 114 | 0.38 [0.29, 0.48]*** | 0.31 [−0.19, 0.82] | ||||||
虚拟水迷宫任务 | 42 | 0.58 [0.40, 0.76]*** | 0.51 [−0.02, 1.03] | ||||||
b. 测量指标 | 372 | ||||||||
反应时 | 85 | 0.47 [0.37, 0.57]*** | F(5, 366) = 1.92 | 0.09 | 0.02*** | 0.14*** | |||
总距离 | 38 | 0.29 [0.16, 0.41]*** | −0.19 [−0.32, −0.05]** | ||||||
正确率 | 139 | 0.39 [0.30, 0.47]*** | −0.09 [−0.20, 0.03] | ||||||
速度 | 16 | 0.48 [0.27, 0.70]*** | 0.01 [−0.22, 0.23] | ||||||
偏差程度 | 78 | 0.35 [0.24, 0.46]*** | −0.12 [−0.25, 0.01] | ||||||
效率 | 16 | 0.31 [0.09, 0.52]** | −0.17 [−0.40, 0.06] |
表1 调节效应检验结果
调节变量 | k | Intercept/mean d [95% CI] | B [95% CI] | F (df1, df2) | p | 水平2方差 | 水平3方差 | ||
---|---|---|---|---|---|---|---|---|---|
(1)样本特征 | |||||||||
a. 年龄 | 368 | ||||||||
婴幼儿期(0至4岁) | 2 | −0.83 [−1.73, 0.07] | F(6, 361) = 2.91 | 0.009** | 0.02*** | 0.13*** | |||
儿童期(4至12岁) | 39 | 0.43 [0.24, 0.62]*** | 1.25 [0.01, 0.03]** | ||||||
青春期(12至18岁) | 2 | 0.59 [0.23, 1.41]** | 1.42 [0.20, 3.63]* | ||||||
成年早期(18至40岁) | 243 | 0.43 [0.36, 0.51]*** | 1.26 [0.36, 2.16]** | ||||||
成年中期(40至65岁) | 9 | 0.68 [0.11, 1.25]* | 1.51 [0.44, 2.57]** | ||||||
成年晚期(65岁以上) | 6 | 0.32 [−0.16, 0.80] | 1.14 [0.12, 2.16]* | ||||||
跨年龄 | 67 | 0.22 [0.09, 0.36]*** | 1.05 [0.14, 1.96]* | ||||||
b. 地区 | 372 | ||||||||
亚洲 | 44 | 0.35 [0.17, 0.53]*** | F(6, 365) = 0.53 | 0.786 | 0.02*** | 0.14*** | |||
欧洲 | 146 | 0.39 [0.28, 0.49]*** | 0.03 [−0.18, 0.24] | ||||||
北美洲 | 156 | 0.40 [0.29, 0.50]*** | 0.04 [−0.17, 0.25] | ||||||
南美洲 | 2 | 0.69 [−0.17, 1.56] | 0.34 [−0.55, 1.23] | ||||||
非洲 | 5 | 0.20 [−0.30, 0.69] | −0.16 [−0.68, 0.37] | ||||||
大洋洲 | 8 | 0.67 [0.27, 1.07]** | 0.31 [−0.12, 0.75] | ||||||
跨国 | 11 | 0.43 [0.11, 0.76]** | 0.08 [−0.29, 0.46] | ||||||
(2)研究设计特征 | |||||||||
a. 表征方式 | 372 | ||||||||
自我中心 | 208 | 0.34 [0.26, 0.43]*** | F(1, 370) = 3.44 | 0.064† | 0.02*** | 0.13*** | |||
环境中心 | 164 | 0.43 [0.35, 0.51]*** | 0.09 [−0.18, 0.01] | ||||||
b. 时间限制 | 372 | ||||||||
限时 | 173 | 0.44 [0.36, 0.53]*** | F(1, 370) = 3.42 | 0.065† | 0.02*** | 0.13*** | |||
不限时 | 199 | 0.35 [0.27, 0.43]*** | −0.096 [−0.20, 0.01] | ||||||
c. 任务环境 | 372 | ||||||||
室内 | 190 | 0.38 [0.30, 0.46]*** | F(3, 368) = 3.28 | 0.022* | 0.13*** | 0.08*** | |||
室外 | 146 | 0.35 [0.26, 0.44]*** | −0.02 [−0.13, 0.08] | ||||||
水迷宫 | 34 | 0.66 [0.47, 0.86]*** | 0.29 [0.08, 0.50]** | ||||||
室内−室外 | 2 | −0.06 [−0.73, 0.61] | −0.44 [−1.11, 0.23] | ||||||
d. 测试场景 | 372 | ||||||||
真实场景 | 101 | 0.25 [0.14, 0.36]*** | F(1, 370) = 9.74 | 0.002** | 0.02*** | 0.13*** | |||
视频场景 | 271 | 0.45 [0.37, 0.52]*** | 0.20 [0.07, 0.33]** | ||||||
e. 辅助装备 | 372 | ||||||||
电子设备 | 277 | 0.45 [0.38, 0.52]*** | F(2, 369) = 7.41 | 0.000*** | 0.02*** | 0.13*** | |||
纸笔工具 | 50 | 0.37 [0.22, 0.51]*** | −0.08 [−0.23, 0.07] | ||||||
无设备 | 45 | 0.13 [−0.02, 0.28] | −0.32 [−0.48, −0.15]*** | ||||||
(3)评估特征 | |||||||||
a. 任务类型 | |||||||||
闭环任务 | 2 | 0.07 [−0.43, 0.57] | F(7, 364) = 1.17 | 0.32 | 0.02 | 0.14 | |||
地图绘制任务 | 13 | 0.31 [0.09, 0.53]** | 0.24 [−0.30, 0.78] | ||||||
地图使用任务 | 9 | 0.32 [0.06, 0.59]* | 0.25 [−0.31, 0.81] | ||||||
路标再认记忆任务 | 34 | 0.31 [0.18, 0.43]*** | 0.24 [−0.27, 0.74] | ||||||
路线描述任务 | 8 | 0.41 [0.14, 0.67]** | 0.34 [−0.22, 0.90] | ||||||
路线学习与重走任务 | 150 | 0.38 [0.29, 0.46]*** | 0.30 [−0.19, 0.80] | ||||||
目标指向任务 | 114 | 0.38 [0.29, 0.48]*** | 0.31 [−0.19, 0.82] | ||||||
虚拟水迷宫任务 | 42 | 0.58 [0.40, 0.76]*** | 0.51 [−0.02, 1.03] | ||||||
b. 测量指标 | 372 | ||||||||
反应时 | 85 | 0.47 [0.37, 0.57]*** | F(5, 366) = 1.92 | 0.09 | 0.02*** | 0.14*** | |||
总距离 | 38 | 0.29 [0.16, 0.41]*** | −0.19 [−0.32, −0.05]** | ||||||
正确率 | 139 | 0.39 [0.30, 0.47]*** | −0.09 [−0.20, 0.03] | ||||||
速度 | 16 | 0.48 [0.27, 0.70]*** | 0.01 [−0.22, 0.23] | ||||||
偏差程度 | 78 | 0.35 [0.24, 0.46]*** | −0.12 [−0.25, 0.01] | ||||||
效率 | 16 | 0.31 [0.09, 0.52]** | −0.17 [−0.40, 0.06] |
调节变量 | k | B [95% CI] | |
---|---|---|---|
Intercept | −0.57 [−1.46, 0.33] | ||
年龄 | 儿童期(4至12岁) | 39 | 1.10 [0.20, 1.99]* |
青春期(12至18岁) | 2 | 1.20 [0.02, 2.38]* | |
成年早期(18至40岁) | 243 | 1.07 [0.19, 1.96]* | |
成年中期(40至65岁) | 9 | 1.12 [0.08, 2.16]* | |
成年晚期(65岁以上) | 6 | 1.05 [0.07, 2.03]* | |
跨年龄 | 67 | 0.81 [−0.07, 1.70] | |
任务环境 | 室外 | 146 | 0.01 [−0.09, 0.12] |
水迷宫 | 34 | 0.23 [0.01, 0.44]* | |
室内−室外 | 2 | −0.37 [−1.06, 0.31] | |
表征方式 | 环境中心 | 164 | −0.10 [−0.19, 0.00] |
时间限制 | 不限时 | 199 | −0.07 [−0.17, 0.03] |
测试场景 | 视频场景 | 271 | 0.03 [−0.18, 0.25] |
辅助装备 | 纸笔工具 | 50 | −0.02 [−0.23, 0.19] |
无设备 | 45 | −0.26 [−0.51, −0.01]* | |
多重回归模型 k = 368 F(14, 353) = 3.42 p < 0.001 | 水平2方差 水平3方差 | ||
0.02*** 0.11*** |
表2 调节变量的多重回归分析
调节变量 | k | B [95% CI] | |
---|---|---|---|
Intercept | −0.57 [−1.46, 0.33] | ||
年龄 | 儿童期(4至12岁) | 39 | 1.10 [0.20, 1.99]* |
青春期(12至18岁) | 2 | 1.20 [0.02, 2.38]* | |
成年早期(18至40岁) | 243 | 1.07 [0.19, 1.96]* | |
成年中期(40至65岁) | 9 | 1.12 [0.08, 2.16]* | |
成年晚期(65岁以上) | 6 | 1.05 [0.07, 2.03]* | |
跨年龄 | 67 | 0.81 [−0.07, 1.70] | |
任务环境 | 室外 | 146 | 0.01 [−0.09, 0.12] |
水迷宫 | 34 | 0.23 [0.01, 0.44]* | |
室内−室外 | 2 | −0.37 [−1.06, 0.31] | |
表征方式 | 环境中心 | 164 | −0.10 [−0.19, 0.00] |
时间限制 | 不限时 | 199 | −0.07 [−0.17, 0.03] |
测试场景 | 视频场景 | 271 | 0.03 [−0.18, 0.25] |
辅助装备 | 纸笔工具 | 50 | −0.02 [−0.23, 0.19] |
无设备 | 45 | −0.26 [−0.51, −0.01]* | |
多重回归模型 k = 368 F(14, 353) = 3.42 p < 0.001 | 水平2方差 水平3方差 | ||
0.02*** 0.11*** |
*为元分析中使用的文献 | |
[1] | * 方浩, 宋章通, 杨流, 马义涛, 秦前清. (2019). VR移动城市导航地图设计中的空间认知要素. 武汉大学学报: 信息科学版, 44(8), 1124-1130. |
[2] | * 房慧聪. (2012). 空间焦虑与导航方式对寻路行为的影响. 心理与行为研究, 10(6), 413-418. |
[3] | * 房慧聪, 周琳. (2012). 大学生寻路策略与空间焦虑的关系. 人类工效学, 18(4), 57-60. |
[4] | * 房慧聪, 周琳. (2012). 性别、寻路策略与导航方式对寻路行为的影响. 心理学报, 44(8), 1058-1065. |
[5] |
* 高雪原, 董卫华, 童依依, 崔迪扬. (2016). 场认知方式、性别和惯用空间语对地理空间定向能力影响的实验研究. 地球信息科学学报, 18(11), 1513-1521.
doi: 10.3724/SP.J.1047.2016.01513 |
[6] | * 李义双, 冯成志, 史新广. (2021). 虚拟三维场景下视听觉地标导航作用差异. 人类工效学, 27(2), 27-32. |
[7] | * 王芳芳, 梁雪, 刘任远, 武文博, 吴思楚, 陆加明,... 张冰. (2017). 年轻人海马亚区体积与空间导航的相关性研究. 中国CT和MRI杂志, 15(5), 1-4. |
[8] | 王琳, 王亮. (2017). 认知地图的神经环路基础. 生物化学与生物物理进展, 44(3), 187-197. |
[9] | * 应申, 庄园, 黄丽娜, 陈乃镔, 张雯博. (2020). 性别和认知差异对三维空间寻路结果的影响. 武汉大学学报: 信息科学版, 45(3), 317-324. |
[10] | * 赵梦雅, 肖承丽. (2019). 大尺度真实环境中多种空间任务的性别差异比较——以商场和办公楼为例. 心理研究, 12(3), 262-271. |
[11] |
* Acevedo, S. F., Piper, B. J., Craytor, M. J., Benice, T. S., & Raber, J. (2010). Apolipoprotein E4 and sex affect neurobehavioral performance in primary school children. Pediatric Research, 67(3), 293-299.
doi: 10.1203/PDR.0b013e3181cb8e68 pmid: 19952867 |
[12] | * Adhanom, I. B., Al-Zayer, M., Macneilage, P., & Folmer, E. (2021). Field-of-view restriction to reduce VR sickness does not impede spatial learning in women. ACM Transactions on Applied Perception, 18(2), 1-17. |
[13] | * Allison, C., Redhead, E. S., & Chan, W. (2017). Interaction of task difficulty and gender stereotype threat with a spatial orientation task in a virtual nested environment. Learning and Motivation, 57, 22-35. |
[14] | Amoo, E. O., Adekola, P. O., Oladosun, M., & Ajayi, M. P. (2019). Science, technology and poverty eradication: Any connection with demography. International Journal of Civil Engineering and Technology, 10(2), 231-243. |
[15] |
Andersen, N. E., Dahmani, L., Konishi, K., & Bohbot, V. D. (2012). Eye tracking, strategies, and sex differences in virtual navigation. Neurobiology of Learning and Memory, 97(1), 81-89.
doi: 10.1016/j.nlm.2011.09.007 pmid: 22001012 |
[16] |
Arnold, A. E. G. F., Burles, F., Krivoruchko, T., Liu, I., Rey, C. D., Levy, R. M., & Iaria, G. (2013). Cognitive mapping in humans and its relationship to other orientation skills. Experimental Brain Research, 224(3), 359-372.
doi: 10.1007/s00221-012-3316-0 pmid: 23124810 |
[17] | Assink, M., & Wibbelink, C. J. (2016). Fitting three-level meta-analytic models in R: A step-by-step tutorial. The Quantitative Methods for Psychology, 12(3), 154-174. |
[18] |
* Astur, R. S., Purton, A. J., Zaniewski, M. J., Cimadevilla, J., & Markus, E. J. (2016). Human sex differences in solving a virtual navigation problem. Behavioural Brain Research, 308, 236-243.
doi: 10.1016/j.bbr.2016.04.037 pmid: 27108050 |
[19] |
Barkley, C. L., & Gabriel, K. I. (2007). Sex differences in cue perception in a visual scene: Investigation of cue type. Behavioral Neuroscience, 121(2), 291-300.
pmid: 17469918 |
[20] | Bartlett, K. A., & Camba, J. D. (2023). Gender differences in spatial ability: A critical review. Educational Psychology Review, 35(1), Article e8. https://doi.org/10.1007/s10648-023-09728-2 |
[21] | * Bernal, A., Mateo-Martínez, R., & Paolieri, D. (2020). Influence of sex, menstrual cycle, and hormonal contraceptives on egocentric navigation with or without landmarks. Psychoneuroendocrinology, 120, Article e104768. https://doi.org/10.1016/j.psyneuen.2020.104768 |
[22] | Berry, T., & Wilkins, J. (2017). The gendered portrayal of inanimate characters in children’s books. Journal of Children’s Literature, 43(2), 4-15. |
[23] |
* Berteau-Pavy, F., Park, B., & Raber, J. (2007). Effects of sex and APOE ε4 on object recognition and spatial navigation in the elderly. Neuroscience, 147(1), 6-17.
pmid: 17509769 |
[24] | * Bocchi, A., Palermo, L., Boccia, M., Palmiero, M., D’Amico, S., & Piccardi, L. (2020). Object recognition and location: Which component of object location memory for landmarks is affected by gender? Evidence from four to ten year-old children. Applied Neuropsychology: Child, 9(1), 31-40. |
[25] | * Bocchi, A., Palmiero, M., Redondo, J. M. C., Tascón, L., Nori, R., & Piccardi, L. (2021). The role of gender and familiarity in a modified version of the Almeria Boxes Room Spatial Task. Brain Sciences, 11(6), Article e681. https://doi.org/10.3390/brainsci11060681 |
[26] | * Boccia, M., Vecchione, F., Piccardi, L., & Guariglia, C. (2017). Effect of cognitive style on learning and retrieval of navigational environments. Frontiers in Pharmacology, 8, Article e496. https://doi.org/10.3389/fphar.2017.00496 |
[27] | * Boone, A. P., Gong, X., & Hegarty, M. (2018). Sex differences in navigation strategy and efficiency. Memory and Cognition, 46(6), 909-922. |
[28] | * Boone, A. P., Maghen, B., & Hegarty, M. (2019). Instructions matter: Individual differences in navigation strategy and ability. Memory and Cognition, 47(7), 1401-1414. |
[29] | * Brucato, M., Nazareth, A., & Newcombe, N. S. (2022). Longitudinal development of cognitive mapping from childhood to adolescence. Journal of Experimental Child Psychology, 219, Article e105412. |
[30] | * Brunswick, N., Martin, G. N., & Marzano, L. (2010). Visuospatial superiority in developmental dyslexia: Myth or reality? Learning and Individual Differences, 20(5), 421-426. |
[31] | * Buckley, M. G., & Bast, T. (2018). A new human delayed- matching-to-place test in a virtual environment reverse- translated from the rodent watermaze paradigm: Characterization of performance measures and sex differences. Hippocampus, 28(11), 796-812. |
[32] |
Burg, A. (1968). Lateral visual field as related to age and sex. Journal of Applied Psychology, 52, 10-15.
pmid: 5638441 |
[33] |
* Burkitt, J., Widman, D., & Saucier, D. M. (2007). Evidence for the influence of testosterone in the performance of spatial navigation in a virtual water maze in women but not in men. Hormones and Behavior, 51(5), 649-654.
pmid: 17462646 |
[34] | * Burte, H., Turner, B. O., Miller, M. B., & Hegarty, M. (2018). The neural basis of individual differences in directional sense. Frontiers in Human Neuroscience, 12, Article e410. https://doi.org/10.3389/fnhum.2018.00410 |
[35] |
Bussey, K., & Bandura, A. (1999). Social cognitive theory of gender development and differentiation. Psychological Review, 106(4), 676-713.
doi: 10.1037/0033-295x.106.4.676 pmid: 10560326 |
[36] | * Campos, A., & Campos-Juanatey, D. (2020). Do gender, discipline, and mental rotation influence orientation on "You- Are-Here" maps. SAGE Open, 10(1), Article e215824401989880. https://doi.org/10.1177/215824401989880 |
[37] |
* Cánovas, R., García, R. F., & Cimadevilla, J. M. (2011). Effect of reference frames and number of cues available on the spatial orientation of males and females in a virtual memory task. Behavioural Brain Research, 216(1), 116-121.
doi: 10.1016/j.bbr.2010.07.026 pmid: 20655953 |
[38] | * Cashdan, E., Marlowe, F. W., Crittenden, A., Porter, C., & Wood, B. M. (2012). Sex differences in spatial cognition among Hadza foragers. Evolution and Human Behavior, 33(4), 274-284. |
[39] | * Castelli, L., Corazzini, L. L., & Geminiani, G. C. (2008). Spatial navigation in large-scale virtual environments: Gender differences in survey tasks. Computers in Human Behavior, 24(4), 1643-1667. |
[40] |
* Cazzato, V., Basso, D., Cutini, S., & Bisiacchi, P. (2010). Gender differences in visuospatial planning: An eye movements study. Behavioural Brain Research, 206(2), 177-183.
doi: 10.1016/j.bbr.2009.09.010 pmid: 19761799 |
[41] |
* Ceccanti, M., Coriale, G., Hamilton, D. A., Carito, V., Coccurello, R., Scalese, B.,... Fiore, M. (2018). Virtual Morris task responses in individuals in an abstinence phase from alcohol. Canadian Journal of Physiology and Pharmacology, 96(2), 128-136.
doi: 10.1139/cjpp-2017-0013 pmid: 28763626 |
[42] |
* Chai, X. J., & Jacobs, L. F. (2009). Sex differences in directional cue use in a virtual landscape. Behavioral Neuroscience, 123(2), 276-283.
doi: 10.1037/a0014722 pmid: 19331451 |
[43] |
* Chai, X. J., & Jacobs, L. F. (2010). Effects of cue types on sex differences in human spatial memory. Behavioural Brain Research, 208(2), 336-342.
doi: 10.1016/j.bbr.2009.11.039 pmid: 19963014 |
[44] |
* Chamizo, V. D., Artigas, A. A., Sansa, J., & Banterla, F. (2011). Gender differences in landmark learning for virtual navigation: The role of distance to a goal. Behavioural Processes, 88(1), 20-26.
doi: 10.1016/j.beproc.2011.06.007 pmid: 21736927 |
[45] | * Chang, W.-T. (2020). The effects of age, gender, and control device in a virtual reality driving simulation. Symmetry, 12(6), Article e995. https://doi.org/10.3390/sym12060995 |
[46] | * Chebat, J.-C., Gélinas-Chebat, C., & Therrien, K. (2008). Gender-related wayfinding time of mall shoppers. Journal of Business Research, 61(10), 1076-1082. |
[47] | * Chen, C. H., Chang, W. C., & Chang, W. T. (2009). Gender differences in relation to wayfinding strategies, navigational support design, and wayfinding task difficulty. Journal of Environmental Psychology, 29(2), 220-226. |
[48] | * Chen, C.-H., & Chen, M.-X. (2020). Wayfinding in virtual environments with landmarks on overview maps. Interacting with Computers, 32(3), 316-329. |
[49] |
* Chen, W., Liu, B., Li, X., Wang, P., & Wang, B. (2020). Sex differences in spatial memory. Neuroscience, 443, 140-147.
doi: S0306-4522(20)30392-4 pmid: 32710913 |
[50] | * Cherep, L. A., Kelly, J. W., Miller, A., Lim, A. F., & Gilbert, S. B. (2023). Individual differences in teleporting through virtual environments. Journal of Experimental Psychology: Applied, 29(1), 111-123. |
[51] |
Cheung, M. W. L. (2014). Modeling dependent effect sizes with three-level meta-analyses: A structural equation modeling approach. Psychological Methods, 19(2), 211-229.
doi: 10.1037/a0032968 pmid: 23834422 |
[52] |
Cheung, M. W. L. (2019). A guide to conducting a meta-analysis with non-independent effect sizes. Neuropsychology Review, 29(4), 387-396.
doi: 10.1007/s11065-019-09415-6 pmid: 31446547 |
[53] | * Chrastil, E. R., & Warren, W. H. (2015). Active and passive spatial learning in human navigation: Acquisition of graph knowledge. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41(4), 1162-1178. |
[54] |
* Cimadevilla, J. M., Cánovas, R., Iribarne, L., Soria, A., & López, L. (2011). A virtual-based task to assess place avoidance in humans. Journal of Neuroscience Methods, 196(1), 45-50.
doi: 10.1016/j.jneumeth.2010.12.026 pmid: 21219930 |
[55] | * Coluccia, E., Iosue, G., & Antonella Brandimonte, M. (2007). The relationship between map drawing and spatial orientation abilities: A study of gender differences. Journal of Environmental Psychology, 27(2), 135-144. |
[56] | Coutrot, A., Manley, E., Goodroe, S., Gahnstrom, C., Filomena, G., Yesiltepe, D.,... Spiers, H. J. (2022). Entropy of city street networks linked to future spatial navigation ability. Nature, 604, 104-110. |
[57] | * Coutrot, A., Schmidt, S., Coutrot, L., Pittman, J., Hong, L., Wiener, J. M.,... Spiers, H. J. (2019). Virtual navigation tested on a mobile app is predictive of real-world wayfinding navigation performance. PLoS ONE, 14(3), Article e0213272. https://doi.org/10.1371/journal.pone.0213272 |
[58] |
Coutrot, A., Silva, R., Manley, E., de Cothi, W., Sami, S., Bohbot, V. D.,... Spiers, H. J. (2018). Global determinants of navigation ability. Current Biology, 28(17), 2861-2866.
doi: S0960-9822(18)30771-1 pmid: 30100340 |
[59] | * Cushman, L. A., & Duffy, C. J. (2007). The sex specificity of navigational strategies in Alzheimer disease. Alzheimer Disease and Associated Disorders, 21(2), 122-129. |
[60] |
* Dahmani, L., Ledoux, A. A., Boyer, P., & Bohbot, V. D. (2012). Wayfinding: The effects of large displays and 3-D perception. Behavior Research Methods, 44(2), 447-454.
doi: 10.3758/s13428-011-0158-9 pmid: 22045563 |
[61] | * Daugherty, A. M., Yuan, P., Dahle, C. L., Bender, A. R., Yang, Y., & Raz, N. (2015). Path complexity in virtual water maze navigation: Differential associations with age, sex, and regional brain volume. Cerebral Cortex, 25(9), 3122-3131. |
[62] | * Davis, H. E., Stack, J., & Cashdan, E. (2021). Cultural change reduces gender differences in mobility and spatial ability among seminomadic pastoralist-forager children in Northern Namibia. Human Nature, 32(1), 178-206. |
[63] | * De Goede, M., & Postma, A. (2015). Learning your way in a city: Experience and gender differences in configurational knowledge of one’s environment. Frontiers in Psychology, 6, Article e402. https://doi.org/10.3389/fpsyg.2015.00402 |
[64] | * Delage, V., Trudel, G., Retanal, F., & Maloney, E. A. (2022). Spatial anxiety and spatial ability: Mediators of gender differences in math anxiety. Journal of Experimental Psychology: General, 151(4), 921-933. |
[65] | Dong, W., Qin, T., Yang, T., Liao, H., Liu, B., Meng, L., & Liu, Y. (2022). Wayfinding behavior and spatial knowledge acquisition: Are they the same in virtual reality and in real-world environments. Annals of the American Association of Geographers, 112(1), 226-246. |
[66] | * Dong, W., Zhan, Z., Liao, H., Meng, L., & Liu, J. (2020). Assessing similarities and differences between males and females in visual behaviors in spatial orientation tasks. ISPRS International Journal of Geo-Information, 9(2), Article e115. https://doi.org/10.3390/ijgi9020115 |
[67] |
Duval, S., & Tweedie, R. (2000). Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics, 56(2), 455-463.
doi: 10.1111/j.0006-341x.2000.00455.x pmid: 10877304 |
[68] | Ellemers, N. (2018). Gender stereotypes. Annual Review of Psychology, 69(1), 275-298. |
[69] | * Fajnerová, I., Rodriguez, M., Levčík, D., Konrádová, L., Mikoláš, P., Brom, C.,... Horáček, J. (2014). A virtual reality task based on animal research - Spatial learning and memory in patients after the first episode of schizophrenia. Frontiers in Behavioral Neuroscience, 8, Article e157. https://doi.org/10.3389/fnbeh.2014.00157 |
[70] | * Fang, H., Hu, Y., Yang, L., & Liu, Y. (2020). The role of phonological loop and visuospatial sketchpad in virtual maze wayfinding. Journal of Environmental Psychology, 67, Article e101378. https://doi.org/j.jenvp.2019.101378 |
[71] |
* Ferguson, T. D., Livingstone-Lee, S. A., & Skelton, R. W. (2019). Incidental learning of allocentric and egocentric strategies by both men and women in a dual-strategy virtual Morris Water Maze. Behavioural Brain Research, 364, 281-295.
doi: S0166-4328(18)31401-3 pmid: 30794853 |
[72] |
* Fernandez-Baizan, C., Arias, J. L., & Mendez, M. (2019). Spatial memory in young adults: Gender differences in egocentric and allocentric performance. Behavioural Brain Research, 359, 694-700.
doi: S0166-4328(18)30950-1 pmid: 30273614 |
[73] | * Fernandez-Baizan, C., Arias, J. L., & Mendez, M. (2020). Spatial memory assessment reveals age-related differences in egocentric and allocentric memory performance. Behavioural Brain Research, 388, Article e112646. https://doi.org/10.1016/j.bbr.2020.112646 |
[74] | * Fortenbaugh, F. C., Chaudhury, S., Hicks, J. C., Hao, L., & Turano, K. A. (2007). Gender differences in cue preference during path integration in virtual environments. ACM Transactions on Applied Perception, 4(1), Article e6. https://doi.org/10.1145/1227134.1227140 |
[75] | * Foti, F., Ruscio, K., Cento, G., Pullano, L., & Di Nuovo, S. (2023). Can an observational training improve the ability of children to navigate in familiar and unfamiliar environments? Journal of Environmental Psychology, 86, Article e101954. https://doi.org/10.1016/j.jenvp.2023.101954 |
[76] | * Gabriel, K. I., Hong, S. M., Chandra, M., Lonborg, S. D., & Barkley, C. L. (2011). Gender differences in the effects of acute stress on spatial ability. Sex Roles, 64(1-2), 81-89. |
[77] | * Gagnon, K. T., Cashdan, E. A., Stefanucci, J. K., & Creem- Regehr, S. H. (2016). Sex differences in exploration behavior and the relationship to harm avoidance. Human Nature, 27(1), 82-97. |
[78] |
* Gagnon, K. T., Thomas, B. J., Munion, A., Creem-Regehr, S. H., Cashdan, E. A., & Stefanucci, J. K. (2018). Not all those who wander are lost: Spatial exploration patterns and their relationship to gender and spatial memory. Cognition, 180, 108-117.
doi: S0010-0277(18)30173-2 pmid: 30015210 |
[79] |
Gao, S., Assink, M., Cipriani, A., & Lin, K. (2017). Associations between rejection sensitivity and mental health outcomes: A meta-analytic review. Clinical Psychology Review, 57, 59-74
doi: S0272-7358(17)30122-8 pmid: 28841457 |
[80] | * Gazova, I., Laczó, J., Rubinova, E., Mokrisova, I., Hyncicova, E., Andel, R.,... Hort, J. (2013). Spatial navigation in young versus older adults. Frontiers in Aging Neuroscience, 5, Article e94. https://doi.org/10.3389/fnagi.2013.00094 |
[81] |
* Gerven, D. V., Schneider, A. N., Wuitchik, D. M., & Skelton, R. W. (2012). Direct measurement of spontaneous strategy selection in a virtual Morris water maze shows females choose an allocentric strategy at least as often as males do. Behavioral Neuroscience, 126(3), 465-478.
doi: 10.1037/a0027992 pmid: 22642888 |
[82] | * Goeke, C., Kornpetpanee, S., Köster, M., Fernández-Revelles, A. B., Gramann, K., & König, P. (2015). Cultural background shapes spatial reference frame proclivity. Scientific Reports, 5(1), Article e11426. https://doi.org/10.1038/srep11426 |
[83] |
Grön, G., Wunderlich, A. P., Spitzer, M., Tomczak, R., & Riepe, M. W. (2000). Brain activation during human navigation: Gender-different neural networks as substrate of performance. Nature Neuroscience, 3(4), 404-408.
doi: 10.1038/73980 pmid: 10725932 |
[84] | Hafting, T., Fyhn, M., Molden, S., Moser, M. B., & Moser, E. I. (2005). Microstructure of a spatial map in the entorhinal cortex. Nature, 436(7052), 801-806. |
[85] | Halpern, D. F. (2011). Sex differences in cognitive abilities (4th ed.). Erlbaum. |
[86] | Harrer, M., Cuijpers, P., Furukawa, T. A., & Ebert, D. D. (2021). Doing meta-analysis with R: A hands-on guide. Chapman and Hall/CRC Press. |
[87] | * Harris, T., Scheuringer, A., & Pletzer, B. (2019). Perspective and strategy interactively modulate sex differences in a 3D navigation task. Biology of Sex Differences, 10(1), Article e17. https://doi.org/10.1186/s13293-019-0232-z |
[88] |
* Head, D., & Isom, M. (2010). Age effects on wayfinding and route learning skills. Behavioural Brain Research, 209(1), 49-58.
doi: 10.1016/j.bbr.2010.01.012 pmid: 20085784 |
[89] | * Hedge, C., Weaver, R., & Schnall, S. (2017). Spatial learning and wayfinding in an immersive environment: The digital fulldome. Cyberpsychology, Behavior, and Social Networking, 20(5), 327-333. |
[90] | Hemmer, I., Hemmer, M., Neidhardt, E., Obermaier, G., Uphues, R., & Wrenger, K. (2013). The influence of children’s prior knowledge and previous experience on their spatial orientation skills in an urban environment. Education 3-13, 43(2), 184-196. |
[91] | * Hilliard, D., Passow, S., Thurm, F., Schuck, N. W., Garthe, A., Kempermann, G., & Li, S.-C. (2019). Noisy galvanic vestibular stimulation modulates spatial memory in young healthy adults. Scientific Reports, 9(1), Article e9310. https://doi.org/10.1038/s41598-019-45757-0 |
[92] |
Hills, T. T., Todd, P. M., Lazer, D., Redish, A. D., & Couzin, I. D. (2015). Exploration versus exploitation in space, mind, and society. Trends in Cognitive Sciences, 19(1), 46-54.
doi: 10.1016/j.tics.2014.10.004 pmid: 25487706 |
[93] | Hofstede, G. (1984). Culture’s consequences: International differences in work-related values. Sage Publications. |
[94] | * Holden, M. P., & Hampson, E. (2021). Endogenous variation in estradiol in women affects the weighting of metric and categorical information in spatial location memory. Hormones and Behavior, 128, Article e104909. https://doi.org/10.1016/j.yhbeh.2020.104909 |
[95] | * Hölscher, C., Büchner, S. J., Meilinger, T., & Strube, G. (2009). Adaptivity of wayfinding strategies in a multi-building ensemble: The effects of spatial structure, task requirements, and metric information. Journal of Environmental Psychology, 29(2), 208-219. |
[96] | Hox, J. J., Moerbeek, M., & van de Schoot, R. (2017). Multilevel analysis: Techniques and applications. Routledge. |
[97] | * Huang, X., & Voyer, D. (2017). Timing and sex effects on the "Spatial Orientation Test": A World War II map reading test. Spatial Cognition and Computation, 17(4), 251-272. |
[98] | Hults, C. M., Francis, R. C., Clint, E. K., Smith, W., Sober, E. R., Garland Jr, T., & Rhodes, J. S. (2024). Still little evidence sex differences in spatial navigation are evolutionary adaptations. Royal Society Open Science, 11(1), Article e231532. https://doi.org/10.1098/rsos.231532 |
[99] | * Hund, A. M., & Gill, D. M. (2014). What constitutes effective wayfinding directions: The interactive role of descriptive cues and memory demands. Journal of Environmental Psychology, 38, 217-224. |
[100] | Hund, A. M., & Minarik, J. L. (2006). Getting from here to there: Spatial anxiety, wayfinding strategies, direction type, and wayfinding efficiency. Spatial Cognition and Computation, 6(3), 179-201. |
[101] | Hund, A. M., & Padgitt, A. J. (2010). Direction giving and following in the service of wayfinding in a complex indoor environment. Journal of Environmental Psychology, 30(4), 553-564. |
[102] |
Hyde, J. S. (2005). The gender similarities hypothesis. American Psychologist, 60(6), 581-592.
doi: 10.1037/0003-066X.60.6.581 pmid: 16173891 |
[103] | * Irving, S., Schöberl, F., Pradhan, C., Brendel, M., Bartenstein, P., Dieterich, M., Brandt, T., & Zwergal, A. (2018). A novel real-space navigation paradigm reveals age- and gender-dependent changes of navigational strategies and hippocampal activation. Journal of Neurology, 265(1), 113-126. |
[104] | * Ishikawa, T., & Takahashi, K. (2014). Relationships between methods for presenting information on navigation tools and users’ wayfinding behavior. Cartographic Perspectives, 75, 17-28. |
[105] | Jang, H., Boesch, C., Mundry, R., Kandza, V., & Janmaat, K. R. (2019). Sun, age and test location affect spatial orientation in human foragers in rainforests. Proceedings of the Royal Society B: Biological Sciences, 286(1912), Article e20190934. https://doi.org/10.1098/rspb.2019.0934 |
[106] |
* Jelínek, M., Květon, P., & Vobořil, D. (2015). Innovative testing of spatial ability: Interactive responding and the use of complex stimuli material. Cognitive Processing, 16(1), 45-55.
doi: 10.1007/s10339-014-0639-8 pmid: 25362549 |
[107] | * Kastens, K. A., & Liben, L. S. (2007). Eliciting self- explanations improves children’s performance on a field-based map skills task. Cognition and Instruction, 25(1), 45-74. |
[108] | * Kelly, J. W., McNamara, T. P., Bodenheimer, B., Carr, T. H., & Rieser, J. J. (2009). Individual differences in using geometric and featural cues to maintain spatial orientation: Cue quantity and cue ambiguity are more important than cue type. Psychonomic Bulletin & Review, 16(1), 176-181. |
[109] | Kim, B., Lee, S., & Lee, J. (2007). Gender differences in spatial navigation. Proceedings of World Academy of Science Engineering and Technology, 25, 297-300. |
[110] | Kimura, D. (1999). Sex and cognition. The MIT Press. |
[111] |
* Kober, S. E., & Neuper, C. (2011). Sex differences in human EEG theta oscillations during spatial navigation in virtual reality. International Journal of Psychophysiology, 79(3), 347-355.
doi: 10.1016/j.ijpsycho.2010.12.002 pmid: 21146566 |
[112] | Kong, X. Z., Huang, Y., Hao, X., Hu, S., & Liu, J. (2017). Sex-linked association between cortical scene selectivity and navigational ability. Neuroimage, 158, 397-405. |
[113] | Kong, X. Z., Pu, Y., Wang, X., Xu, S., Hao, X., Zhen, Z., & Liu, J. (2017). Intrinsic hippocampal-caudate interaction correlates with human navigation [Preprint]. BioRxiv, Article e116129. https://doi.org/10.1101/11612 ] |
[114] |
* Korthauer, L. E., Nowak, N. T., Frahmand, M., & Driscoll, I. (2017). Cognitive correlates of spatial navigation: Associations between executive functioning and the virtual Morris Water Task. Behavioural Brain Research, 317, 470-478.
doi: S0166-4328(16)30766-5 pmid: 27720743 |
[115] | * Koulouri, T., Lauria, S., Macredie, R. D., & Chen, S. (2012). Are we there yet?: The role of gender on the effectiveness and efficiency of user-robot communication in navigational tasks. ACM Transactions on Computer-Human Interaction, 19(1), 1-29. |
[116] | * Kremmyda, O., Hüfner, K., Flanagin, V. L., Hamilton, D. A., Linn, J., Strupp, M., Jahn, K., & Brandt, T. (2016). Beyond dizziness: Virtual navigation, spatial anxiety and hippocampal volume in bilateral vestibulopathy. Frontiers in Human Neuroscience, 10, Article e139. https://doi.org/10.3389/fnhum.2016.00139 |
[117] | Labate, E., Pazzaglia, F., & Hegarty, M. (2014). What working memory subcomponents are needed in the acquisition of survey knowledge? Evidence from direction estimation and shortcut tasks. Journal of Environmental Psychology, 37, 73-79. |
[118] |
Lauer, J., Yhang, E., & Lourenco, S. F. (2019). The development of gender differences in spatial reasoning: A meta-analytic review. Psychological Bulletin, 145(6), 537-565.
doi: 10.1037/bul0000191 pmid: 30973235 |
[119] |
Lavenex, P. B., & Lavenex, P. (2010). Spatial relational learning and memory abilities do not differ between men and women in a real-world, open-field environment. Behavioural Brain Research, 207(1), 125-137.
doi: 10.1016/j.bbr.2009.09.046 pmid: 19800920 |
[120] |
Learmonth, A. E., Newcombe, N. S., Sheridan, N., & Jones, M. (2008). Why size counts: Children’s spatial reorientation in large and small enclosures. Developmental Science, 11(3), 414-426.
doi: 10.1111/j.1467-7687.2008.00686.x pmid: 18466375 |
[121] | Lee, Y., Capraro, R. M., & Bicer, A. (2019). Gender difference on spatial visualization by college students’ major types as STEM and non-STEM: A meta-analysis. International Journal of Mathematical Education in Science and Technology, 50(8), 1241-1255. |
[122] | * Lemieux, C. L., Collin, C. A., & Watier, N. N. (2019). Gender differences in metacognitive judgments and performance on a goal-directed wayfinding task. Journal of Cognitive Psychology, 31(4), 453-466. |
[123] |
* León, I., Cimadevilla, J. M., & Tascón, L. (2014). Developmental gender differences in children in a virtual spatial memory task. Neuropsychology, 28(4), 485-495.
doi: 10.1037/neu0000054 pmid: 24588700 |
[124] | * Liang, H.-N., Lu, F., Shi, Y., Nanjappan, V., & Papangelis, K. (2019). Evaluating the effects of collaboration and competition in navigation tasks and spatial knowledge acquisition within virtual reality environments. Future Generation Computer Systems, 95, 855-866. |
[125] | * Liao, H., & Dong, W. (2017). An exploratory study investigating gender effects on using 3D maps for spatial orientation in wayfinding. ISPRS International Journal of Geo-Information, 6(3), Article e60. https://doi.org/10.3390/ijgi6030060 |
[126] |
* Liben, L. S., Myers, L. J., Christensen, A. E., & Bower, C. A. (2013). Environmental-scale map use in middle childhood: Links to spatial skills, strategies, and gender. Child Development, 84(6), 2047-2063.
doi: 10.1111/cdev.12090 pmid: 23550840 |
[127] | * Lin, C. T., Huang, T. Y., Lin, W. J., Chang, S. Y., Lin, Y. H., Ko, L. W., Hung, D. L., & Chang, E. C. (2012). Gender differences in wayfinding in virtual environments with global or local landmarks. Journal of Environmental Psychology, 32(2), 89-96. |
[128] |
* Lind, S. E., Williams, D. M., Raber, J., Peel, A., & Bowler, D. M. (2013). Spatial navigation impairments among intellectually high-functioning adults with autism spectrum disorder: Exploring relations with theory of mind, episodic memory, and episodic future thinking. Journal of Abnormal Psychology, 122(4), 1189-1199.
doi: 10.1037/a0034819 pmid: 24364620 |
[129] |
Linn, M. C., & Petersen, A. C. (1985). Emergence and characterization of sex differences in spatial ability: A meta-analysis. Child Development, 56(6), 1479-1498.
pmid: 4075870 |
[130] | Lipsey, M. W., & Wilson, D. B. (2001). Practical meta analysis. Sage Publications. |
[131] | Lithfous, S., Dufour, A., & Després, O. (2013). Spatial navigation in normal aging and the prodromal stage of Alzheimer’s disease: Insights from imaging and behavioral studies. Ageing Research Reviews, 12(1), 201-213. |
[132] |
* Liu, I., Levy, R. M., Barton, J. J. S., & Iaria, G. (2011). Age and gender differences in various topographical orientation strategies. Brain Research, 1410, 112-119.
doi: 10.1016/j.brainres.2011.07.005 pmid: 21803342 |
[133] |
Lloyd, J., Persaud, N. V., & Powell, T. E. (2009). Equivalence of real-world and virtual-reality route learning: A pilot study. Cyberpsychology and Behavior, 12(4), 423-427.
doi: 10.1089/cpb.2008.0326 pmid: 19514820 |
[134] | Long, X., Deng, B., Young, C. K., Liu, G. L., Zhong, Z., Chen, Q.,... Zhang, S. J. (2022). Sharp tuning of head direction and angular head velocity cells in the somatosensory cortex. Advanced Science, 9(14), Article e2200020. https://doi.org/10.1002/advs.202200020 |
[135] | Long, X., Wang, X., Deng, B., Shen, R., Lv, S. Q., & Zhang, S. J. (2024). Intrinsic bipolar head‐direction cells in the medial entorhinal cortex. Advanced Science, Article e2401216. https://doi.org/10.1002/advs.202401216 |
[136] |
Long, X., & Zhang, S. J. (2021). A novel somatosensory spatial navigation system outside the hippocampal formation. Cell Research, 31(6), 649-663.
doi: 10.1038/s41422-020-00448-8 pmid: 33462427 |
[137] | * Lopez, A., Postma, A., & Bosco, A. (2020). Categorical & coordinate spatial information: Can they be disentangled in sketch maps? Journal of Environmental Psychology, 68, Article e101392. https://doi.org/10.1016/j.jenvp.2020.101392 |
[138] |
* Lourenco, S. F., Addy, D., Huttenlocher, J., & Fabian, L. (2011). Early sex differences in weighting geometric cues. Developmental Science, 14(6), 1365-1378.
doi: 10.1111/j.1467-7687.2011.01086.x pmid: 22010896 |
[139] |
* Lövdén, M., Herlitz, A., Schellenbach, M., Grossman-Hutter, B., Krüger, A., & Lindenberger, U. (2007). Quantitative and qualitative sex differences in spatial navigation. Scandinavian Journal of Psychology, 48(5), 353-358.
pmid: 17877549 |
[140] | Lyons, I. M., Ramirez, G., Maloney, E. A., Rendina, D. N., Levine, S. C., & Beilock, S. L. (2018). Spatial anxiety: A novel questionnaire with subscales for measuring three aspects of spatial anxiety. Journal of Numerical Cognition, 4(3), 526-553. |
[141] | Maeda, Y., & Yoon, S. Y. (2013). A meta-analysis on gender differences in mental rotation ability measured by the Purdue spatial visualization tests: Visualization of rotations (PSVT: R). Educational Psychology Review, 25(1), 69-94. |
[142] |
* Mandolesi, L., Petrosini, L., Menghini, D., Addona, F., & Vicari, S. (2009). Children’s radial arm maze performance as a function of age and sex. International Journal of Developmental Neuroscience, 27(8), 789-797.
doi: 10.1016/j.ijdevneu.2009.08.010 pmid: 19716409 |
[143] |
Marchette, S. A., Bakker, A., & Shelton, A. L. (2011). Cognitive mappers to creatures of habit: Differential engagement of place and response learning mechanisms predicts human navigational behavior. Journal of Neuroscience, 31(43), 15264-15268.
doi: 10.1523/JNEUROSCI.3634-11.2011 pmid: 22031872 |
[144] | Martens, J., & Antonenko, P. D. (2012). Narrowing gender- based performance gaps in virtual environment navigation. Computers in Human Behavior, 28(3), 809-819. |
[145] | McKinney, S., Tomovic, C., Grant, M., & Hinton, K. (2017). Increasing STEM competence in urban, high poverty elementary school populations. K-12 Stem Education, 3(4), 267-282. |
[146] | * Meilinger, T., Riecke, B. E., & Bülthoff, H. H. (2014). Local and global reference frames for environmental spaces. Quarterly Journal of Experimental Psychology, 67(3), 542-569. |
[147] | * Memikoglu, I., & Demirkan, H. (2020). Exploring staircases as architectural cues in virtual vertical navigation. International Journal of Human-Computer Studies, 138, Article e102397. https://doi.org/10.1016/j.ijhcs.2020.102397 |
[148] |
Mendez-Lopez, M., Fidalgo, C., Osma, J., & Juan, M.C. (2020). Wayfinding strategy and gender-testing the mediating effects of wayfinding experience, personality and emotions. Psychology Research and Behavior Management, 13, 119-131.
doi: 10.2147/PRBM.S236735 pmid: 32099489 |
[149] | Meneghetti, C., Pazzaglia, F., & De Beni, R. (2011). Spatial mental representations derived from survey and route descriptions: When individuals prefer extrinsic frame of reference. Learning and Individual Differences, 21(2), 150-157. |
[150] | Merhav, M., & Wolbers, T. (2019). Aging and spatial cues influence the updating of navigational memories. Scientific Reports, 9(1), Article e11469. https://doi.org/10.1038/s41598-019-47971-2 |
[151] | * Merrill, E. C., Yang, Y., Roskos, B., & Steele, S. (2016). Sex differences in using spatial and verbal abilities influence route learning performance in a virtual environment: A comparison of 6- to 12-year old boys and girls. Frontiers in Psychology, 7, Article e258. https://doi.org/10.3389/fpsyg.2016.00258 |
[152] | Min, Y. H., & Ha, M. (2021). Contribution of colour-zoning differentiation to multidimensional spatial knowledge acquisition in symmetrical hospital wards. Indoor and Built Environment, 30(6), 787-800. |
[153] | Moffat, S. D., Hampson, E., & Hatzipantelis, M. (1998). Navigation in a "virtual" maze: Sex differences and correlation with psychometric measures of spatial ability in humans. Evolution and Human Behavior, 19, 73-87. |
[154] | Moser, M. B., & Moser, E. L. (2016). Where am I? Where am I going? Scientific American, 314(1), 26-33. |
[155] |
* Mueller, S. C., Verwilst, T., Van Branteghem, A., T’Sjoen, G., & Cools, M. (2016). The contribution of the androgen receptor (AR) in human spatial learning and memory: A study in women with complete androgen insensitivity syndrome (CAIS). Hormones and Behavior, 78, 121-126.
doi: 10.1016/j.yhbeh.2015.10.018 pmid: 26522496 |
[156] | * Munion, A. K., Stefanucci, J. K., Rovira, E., Squire, P., & Hendricks, M. (2019). Gender differences in spatial navigation: Characterizing wayfinding behaviors. Psychonomic Bulletin and Review, 26(6), 1933-1940. |
[157] | * Munoz-Montoya, F., Fidalgo, C., Juan, M.-C., & Mendez-Lopez, M. (2019). Memory for object location in augmented reality: The role of gender and the relationship among spatial and anxiety outcomes. Frontiers in Human Neuroscience, 13, Article e113. https://doi.org/10.3389/fnhum.2019.00113 |
[158] | * Münzer, S., & Stahl, C. (2011). Learning routes from visualizations for indoor wayfinding: Presentation modes and individual differences. Spatial Cognition and Computation, 11(4), 281-312. |
[159] | * Münzer, S., & Zadeh, M. V. (2016). Acquisition of spatial knowledge through self-directed interaction with a virtual model of a multi-level building: Effects of training and individual differences. Computers in Human Behavior, 64, 191-205. |
[160] |
* Nardi, D., Meloni, R., Orlandi, M., & Olivetti-Belardinelli, M. (2014). Where is uphill? Exploring sex differences when reorienting on a sloped environment presented through 2-D images. Perception, 43(4), 249-264.
pmid: 25109016 |
[161] | * Nardi, D., Newcombe, N. S., & Shipley, T. F. (2013). Reorienting with terrain slope and landmarks. Memory and Cognition, 41(2), 214-228. |
[162] | Nazareth, A., Huang, X., Voyer, D., & Newcombe, N. (2019). A meta-analysis of sex differences in human navigation skills. Psychonomic Bulletin and Review, 26(5), 1503-1528. |
[163] |
* Nazareth, A., Weisberg, S. M., Margulis, K., & Newcombe, N. S. (2018). Charting the development of cognitive mapping. Journal of Experimental Child Psychology, 170, 86-106.
doi: S0022-0965(17)30505-2 pmid: 29453130 |
[164] | * Němá, E., Kalina, A., Nikolai, T., Vyhnálek, M., Meluzínová, E., & Laczó, J. (2021). Spatial navigation in early multiple sclerosis: A neglected cognitive marker of the disease? Journal of Neurology, 268(1), 77-89. |
[165] |
* New, J., Krasnow, M. M., Truxaw, D., & Gaulin, S. J. C. (2007). Spatial adaptations for plant foraging: Women excel and calories count. Proceedings of the Royal Society B: Biological Sciences, 274(1626), 2679-2684.
pmid: 17711835 |
[166] |
* Newhouse, P., Newhouse, C., & Astur, R. (2007). Sex differences in visual-spatial learning using a virtual water maze in pre-pubertal children. Behavioural Brain Research, 183(1), 1-7.
pmid: 17629971 |
[167] | Noachtar, I., Harris, T. A., Hidalgo-Lopez, E., & Pletzer, B. (2022). Sex and strategy effects on brain activation during a 3D-navigation task. Communications Biology, 5(1), Article e234. https://doi.org/10.1038/s42003-022-03147-9 |
[168] | Nori, R., Mercuri, N., Giusberti, F., Bensi, L., & Gambetti, E. (2009). Influences of gender role socialization and anxiety on spatial cognitive style. The American Journal of Psychology, 122(4), 497-505. |
[169] | * Nori, R., & Piccardi, L. (2015). I believe I’m good at orienting myself… But is that true? Cognitive Processing, 16(3), 301-307. |
[170] | * Nori, R., Piccardi, L., Maialetti, A., Goro, M., Rossetti, A., Argento, O., & Guariglia, C. (2018). No gender differences in egocentric and allocentric environmental transformation after compensating for male advantage by manipulating familiarity. Frontiers in Neuroscience, 12, Article e204. https://doi.org/10.3389/fnins.2018.00204 |
[171] | * Nori, R., Piccardi, L., Migliori, M., Guidazzoli, A., Frasca, F., De Luca, D., & Giusberti, F. (2015). The virtual reality Walking Corsi Test. Computers in Human Behavior, 48, 72-77. |
[172] |
* Nowak, N. T., Diamond, M. P., Land, S. J., & Moffat, S. D. (2014). Contributions of sex, testosterone, and androgen receptor CAG repeat number to virtual Morris water maze performance. Psychoneuroendocrinology, 41, 13-22.
doi: 10.1016/j.psyneuen.2013.12.003 pmid: 24495604 |
[173] |
* Nowak, N. T., & Moffat, S. D. (2011). The relationship between second to fourth digit ratio, spatial cognition, and virtual navigation. Archives of Sexual Behavior, 40(3), 575-585.
doi: 10.1007/s10508-010-9668-2 pmid: 20809371 |
[174] | * Nowak, N. T., Murali, A., & Driscoll, I. (2015). Factors related to sex differences in navigating a computerized maze. Journal of Environmental Psychology, 43, 136-144. |
[175] | * Pacheco-Cobos, L., Rosetti, M., Cuatianquiz, C., & Hudson, R. (2010). Sex differences in mushroom gathering: Men expend more energy to obtain equivalent benefits. Evolution and Human Behavior, 31(4), 289-297. |
[176] | * Padilla, L. M., Creem-Regehr, S. H., Stefanucci, J. K., & Cashdan, E. A. (2017). Sex differences in virtual navigation influenced by scale and navigation experience. Psychonomic Bulletin and Review, 24(2), 582-590. |
[177] |
* Palermo, L., Iaria, G., & Guariglia, C. (2008). Mental imagery skills and topographical orientation in humans: A correlation study. Behavioural Brain Research, 192(2), 248-253.
doi: 10.1016/j.bbr.2008.04.014 pmid: 18502521 |
[178] |
* Palmiero, M., Nori, R., Rogolino, C., D’amico, S., & Piccardi, L. (2016). Sex differences in visuospatial and navigational working memory: The role of mood induced by background music. Experimental Brain Research, 234(8), 2381-2389.
doi: 10.1007/s00221-016-4643-3 pmid: 27052885 |
[179] | * Paperno, N., Rupp, M. A., Parkhurst, E. L., Maboudou- Tchao, E. M., Smither, J. A.-A., Bricout, J., & Behal, A. (2019). Age and gender differences in performance for operating a robotic manipulator. IEEE Transactions on Human-Machine Systems, 49(2), 137-149. |
[180] |
Persson, J., Herlitz, A., Engman, J., Morell, A., Sjölie, D., Wikström, J., & Söderlund, H. (2013). Remembering our origin: Gender differences in spatial memory are reflected in gender differences in hippocampal lateralization. Behavioural Brain Research, 256, 219-228.
doi: 10.1016/j.bbr.2013.07.050 pmid: 23938766 |
[181] |
* Piber, D., Nowacki, J., Mueller, S. C., Wingenfeld, K., & Otte, C. (2018). Sex effects on spatial learning but not on spatial memory retrieval in healthy young adults. Behavioural Brain Research, 336, 44-50.
doi: S0166-4328(17)31405-5 pmid: 28847444 |
[182] |
* Piccardi, L., Bianchini, F., Iasevoli, L., Giannone, G., & Guariglia, C. (2011). Sex differences in a landmark environmental re-orientation task only during the learning phase. Neuroscience Letters, 503(3), 181-185.
doi: 10.1016/j.neulet.2011.08.031 pmid: 21889578 |
[183] |
* Piccardi, L., Iaria, G., Ricci, M., Bianchini, F., Zompanti, L., & Guariglia, C. (2008). Walking in the Corsi test: Which type of memory do you need? Neuroscience Letters, 432(2), 127-131.
doi: 10.1016/j.neulet.2007.12.044 pmid: 18226450 |
[184] |
* Piccardi, L., Leonzi, M., D’Amico, S., Marano, A., & Guariglia, C. (2014). Development of navigational working memory: Evidence from 6- to 10-year-old children. British Journal of Developmental Psychology, 32(2), 205-217.
doi: 10.1111/bjdp.12036 pmid: 24588844 |
[185] | * Piccardi, L., Risetti, M., Nori, R., Tanzilli, A., Bernardi, L., & Guariglia, C. (2011). Perspective changing in primary and secondary learning: A gender difference study. Learning and Individual Differences, 21(1), 114-118. |
[186] | * Picucci, L., Caffò, A. O., & Bosco, A. (2011). Besides navigation accuracy: Gender differences in strategy selection and level of spatial confidence. Journal of Environmental Psychology, 31(4), 430-438. |
[187] |
Pintzka, C. W. S., Evensmoen, H. R., Lehn, H., & Håberg, A. K. (2016). Changes in spatial cognition and brain activity after a single dose of testosterone in healthy women. Behavioural Brain Research, 298, 78-90.
doi: 10.1016/j.bbr.2015.10.056 pmid: 26542812 |
[188] | * Pletzer, B., Steinbeisser, J., van Laak, L., & Harris, T. (2019). Beyond biological sex: Interactive effects of gender role and sex hormones on spatial abilities. Frontiers in Neuroscience, 13, Article e675. https://doi.org/10.3389/fnins.2019.00675 |
[189] | Postma, A., van Oers, M., Back, F., & Plukaard, S. (2012). Losing your car in the parking lot: Spatial memory in the real world. Applied Cognitive Psychology, 26(5), 680-686. |
[190] |
Poulter, S., Hartley, T., & Lever, C. (2018). The neurobiology of mammalian navigation. Current Biology, 28(17), 1023-1042.
doi: S0960-9822(18)30686-9 pmid: 30205053 |
[191] | Pruden, S. M., Levine, S. C., & Huttenlocher, J. (2011). Children’s spatial thinking: Does talk about the spatial world matter? Developmental Science, 14(6), 1417-1430. |
[192] | Pruden, S. M., Nazareth, A., Odean, R., Abad, C., Bravo, E., & Garcia, N. (2020). Movement, space, and the development of spatial thinking. In The Encyclopedia of Child and Adolescent Development (pp.1-15). Wiley. https://doi.org/10.1002/9781119171492.wecad029 |
[193] | * Pu, Y., Cornwell, B. R., Cheyne, D., & Johnson, B. W. (2020). Gender differences in navigation performance are associated with differential theta and high-gamma activities in the hippocampus and parahippocampus. Behavioural Brain Research, 391, Article e112664. https://doi.org/10.1016/j.bbr.2020.112664 |
[194] |
* Rahman, Q., & Koerting, J. (2008). Sexual orientation-related differences in allocentric spatial memory tasks. Hippocampus, 18(1), 55-63.
pmid: 17924523 |
[195] | * Richardson, A. E., Powers, M. E., & Bousquet, L. G. (2011). Video game experience predicts virtual, but not real navigation performance. Computers in Human Behavior, 27(1), 552-560. |
[196] | * Richardson, A. E., & VanderKaay Tomasulo, M. M. (2011). Influence of acute stress on spatial tasks in humans. Physiology and Behavior, 103(5), 459-466. |
[197] | * Rodriguez-Andres, D., Mendez-Lopez, M., Juan, M.-C., & Perez-Hernandez, E. (2018). A virtual object-location task for children: Gender and videogame experience influence navigation; age impacts memory and completion time. Frontiers in Psychology, 9, Article e451. https://doi.org/10.3389/fpsyg.2018.00451 |
[198] | * Rosenthal, H. E. S., Norman, L., Smith, S. P., & McGregor, A. (2012). Gender-based navigation stereotype improves men’s search for a hidden goal. Sex Roles, 67(11-12), 682-695. |
[199] | Santos, B. S., Dias, P., Pimentel, A., Baggerman, J. W., Ferreira, C., & Silva, S., & Madeira, J. (2008). Head-mounted display versus desktop for 3D navigation in virtual reality: A user study. Multimedia Tools and Applications, 37(2), 161-181. |
[200] | * Sargent, J. Q., Zacks, J. M., Hambrick, D. Z., & Lin, N. (2019). Event memory uniquely predicts memory for large-scale space. Memory and Cognition, 47(2), 212-228. |
[201] | * Scheuringer, A., & Pletzer, B. (2017). Sex differences and menstrual cycle dependent changes in cognitive strategies during spatial navigation and verbal fluency. Frontiers in Psychology, 8, Article e381. https://doi.org/10.3389/fpsyg.2017.00381 |
[202] | * Schoedel, R., Hilbert, S., Bühner, M., & Stachl, C. (2018). One way to guide them all: Wayfinding strategies and the examination of gender-specific navigational instructions in a real-driving context. Transportation Research Part F: Traffic Psychology and Behaviour, 58, 754-768. |
[203] | * Schoenfeld, R., Lehmann, W., & Leplow, B. (2010). Effects of age and sex in mental rotation and spatial learning from virtual environments. Journal of Individual Differences, 31(2), 78-82. |
[204] |
* Schoenfeld, R., Moenich, N., Mueller, F.-J., Lehmann, W., & Leplow, B. (2010). Search strategies in a human water maze analogue analyzed with automatic classification methods. Behavioural Brain Research, 208(1), 169-177.
doi: 10.1016/j.bbr.2009.11.022 pmid: 19931570 |
[205] | Schug, M. G. (2016a). Geographical cues and developmental exposure: Navigational style, wayfinding anxiety, and childhood experience in the Faroe Islands. Human Nature, 27(1), 68-81. |
[206] | Schug, M. G. (2016b). Factors in the development of spatial cognition in boys and girls. Boyhood Studies, 9(2), 44-55. |
[207] |
Silverman, I., Choi, J., & Peters, M. (2007). The hunter-gatherer theory of sex differences in spatial abilities: Data from 40 countries. Archives of Sexual Behavior, 36(2), 261-268.
doi: 10.1007/s10508-006-9168-6 pmid: 17351740 |
[208] | Silverman, I., & Eals, M. (1992). Sex differences in spatial abilities:Evolutionary theory and data. In J. H.Barkow, L.Cosmides, & J.Tooby (Eds.), The adapted mind: Evolutionary psychology and the generation of culture (pp. 533-549). Oxford University Press. |
[209] |
* Slone, E., Burles, F., & Iaria, G. (2016). Environmental layout complexity affects neural activity during navigation in humans. European Journal of Neuroscience, 43(9), 1146-1155.
doi: 10.1111/ejn.13218 pmid: 26990572 |
[210] | * Sneider, J. T., Cohen-Gilbert, J. E., Hamilton, D. A., Stein, E. R., Golan, N., Oot, E. N., Seraikas, A. M., Rohan, M. L., Harris, S. K., Nickerson, L. D., & Silveri, M. M. (2018). Adolescent hippocampal and prefrontal brain activation during performance of the virtual Morris water task. Frontiers in Human Neuroscience, 12, Article e238. https://doi.org/10.3389/fnhum.2018.00238 |
[211] |
* Sneider, J. T., Hamilton, D. A., Cohen-Gilbert, J. E., Crowley, D. J., Rosso, I. M., & Silveri, M. M. (2015). Sex differences in spatial navigation and perception in human adolescents and emerging adults. Behavioural Processes, 111, 42-50.
doi: 10.1016/j.beproc.2014.11.015 pmid: 25464337 |
[212] |
* Sneider, J. T., Rogowska, J., Sava, S., & Yurgelun-Todd, D. A. (2011). A preliminary study of sex differences in brain activation during a spatial navigation task in healthy adults. Perceptual and Motor Skills, 113(2), 461-480.
pmid: 22185061 |
[213] | * Sorrentino, P., Lardone, A., Pesoli, M., Liparoti, M., Montuori, S., Curcio, G., Sorrentino, G., Mandolesi, L., & Foti, F. (2019). The development of spatial memory analyzed by means of ecological walking task. Frontiers in Psychology, 10, Article e728. https://doi.org/10.3389/fpsyg.2019.00728 |
[214] | * Süzer, Ö. K., & Olguntürk, N. (2018). The aid of colour on visuospatial navigation of elderly people in a virtual polyclinic environment. Color Research and Application, 43. https://doi.org/10.1002/col.22272 |
[215] | Taillade, M., N’Kaoua, B., & Sauzéon, H. (2016). Age-related differences and cognitive correlates of self-reported and direct navigation performance: The effect of real and virtual test conditions manipulation. Frontiers in Psychology, 6, Article e2034. https://doi.org/10.3389/fpsyg.2015.02034 |
[216] |
* Tarampi, M. R., Heydari, N., & Hegarty, M. (2016). A tale of two types of perspective taking: Sex differences in spatial ability. Psychological Science, 27(11), 1507-1516.
pmid: 27658902 |
[217] |
* Tascón, L., Castillo, J., León, I., & Cimadevilla, J. M. (2018). Walking and non-walking space in an equivalent virtual reality task: Sexual dimorphism and aging decline of spatial abilities. Behavioural Brain Research, 347, 201-208.
doi: S0166-4328(17)32018-1 pmid: 29555340 |
[218] | * Tippett, W. J., Lee, J.-H., Mraz, R., Zakzanis, K. K., Snyder, P. J., Black, S. E., & Graham, S. J. (2009). Convergent validity and sex differences in healthy elderly adults for performance on 3D virtual reality navigation learning and 2D hidden maze tasks. Cyber Psychology and Behavior, 12(2), 169-174. |
[219] | * Tlauka, M., Williams, J., & Williamson, P. (2008). Spatial ability in secondary school students: Intra-sex differences based on self-selection for physical education. British Journal of Psychology, 99(3), 427-440. |
[220] | * Török, Á., Nguyen, T. P., Kolozsvári, O., Buchanan, R. J., & Nadasdy, Z. (2014). Reference frames in virtual spatial navigation are viewpoint dependent. Frontiers in Human Neuroscience, 8, Article e646. https://doi.org/doi.org/10.3389/fnhum.2014.00646 |
[221] | Trumble, B. C., Gaulin, S. J., Dunbar, M. D., Kaplan, H., & Gurven, M. (2016). No sex or age difference in dead- reckoning ability among Tsimane forager-horticulturalists. Human Nature, 27(1), 51-67. https://doi.org/10.1007/s12110-015-9246-3 |
[222] |
Uttal, D. H., Meadow, N. G., Tipton, E., Hand, L. L., Alden, A. R., Warren, C., & Newcombe, N. S. (2013). The malleability of spatial skills: A meta-analysis of training studies. Psychological Bulletin, 139(2), 352-402.
doi: 10.1037/a0028446 pmid: 22663761 |
[223] | * van der Ham, I. J. M., Claessen, M. H. G., Evers, A. W. M. & van der Kuil, M. N. A. (2020). Large-scale assessment of human navigation ability across the lifespan. Scientific Reports, 10(1), Article e3299. https://doi.org/10.1038/s41598-020-60302-0 |
[224] | * van der Ham, I. J. M., van der Kuil, M. N. A. & Claessen, M. H. G. (2021). Quality of self-reported cognition: Effects of age and gender on spatial navigation self-reports. Aging and Mental Health, 25(5), 873-878. |
[225] | * van Dun, C., van Kraaij, A., Wegman, J., Kuipers, J., Aarts, E., & Janzen, G. (2020). Sex differences and the role of gaming experience in spatial cognition performance in primary school children: An exploratory study. Brain Sciences, 11(7), Article e886. https://doi.org/10.3390/brainsci11070886 |
[226] | * van Hoogmoed, A. H., Wegman, J., van den Brink, D., & Janzen, G. (2022). Development of landmark use for navigation in children: Effects of age, sex, working memory and landmark type. Brain Sciences, 12(6), Article e776. https://doi.org/10.3390/brainsci12060776 |
[227] | * Vashro, L., Padilla, L., & Cashdan, E. (2016). Sex differences in mobility and spatial cognition: A test of the fertility and parental care hypothesis in Northwestern Namibia. Human Nature, 27(1), 16-34. |
[228] | * Ventura, M., Shute, V., Wright, T., & Zhao, W. (2013). An investigation of the validity of the virtual spatial navigation assessment. Frontiers in Psychology, 4, Article e852. https://doi.org/10.3389/fpsyg.2013.00852 |
[229] |
* Verde, P., Piccardi, L., Bianchini, F., Guariglia, C., Carrozzo, P., Morgagni, F.,... Tomao, E. (2015). Gender differences in navigational memory: Pilots vs. nonpilots. Aerospace Medicine and Human Performance, 86(2), 103-111.
doi: 10.3357/AMHP.4024.2015 pmid: 25946734 |
[230] | Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. Journal of Statistical Software, 36(3), 1-48. |
[231] | Vieites, V., Pruden, S. M., Shusterman, A., & Reeb-Sutherland, B. C. (2020). Using hippocampal-dependent eyeblink conditioning to predict individual differences in spatial reorientation strategies in 3- to 6-year-olds. Developmental Science, 23(1), Article e12867. https://doi.org/10.1111/desc.12867 |
[232] | * Vilar, E., Rebelo, F., & Noriega, P. (2012). Indoor human wayfinding performance using vertical and horizontal signage in virtual reality. Human Factors and Ergonomics in Manufacturing and Service Industries, 24(6), 601-615. |
[233] |
* von Stülpnagel, R., & Steffens, M. C. (2013). Active route learning in virtual environments: Disentangling movement control from intention, instruction specificity, and navigation control. Psychological Research, 77(5), 555-574.
doi: 10.1007/s00426-012-0451-y pmid: 22922991 |
[234] | Voyer, D. (2011). Time limits and gender differences on paper-and-pencil tests of mental rotation: A meta-analysis. Psychonomic Bulletin and Review, 18, 267-277. |
[235] | * Wang, C., Chen, Y., Zheng, S., & Liao, H. (2018). Gender and age differences in using indoor maps for wayfinding in real environments. ISPRS International Journal of Geo-Information, 8(1), Article e11. https://doi.org/10.3390/ijgi8010011 |
[236] | * Wang, J., Wang, Y. C., Shen, C. W., & Lin, P. C. (2020). Who needs automotive on-board navigation systems? Predicting operational performance from spatial anxiety and gender differences. Transportation Planning and Technology, 43(6), 539-552. |
[237] | * Weisberg, S. M., Nardi, D., Newcombe, N. S., & Shipley, T. F. (2014). Up by upwest: Is slope like north? Quarterly Journal of Experimental Psychology, 67(10), 1959-1976. |
[238] | * Weisberg, S. M., & Newcombe, N. S. (2016). How do (some) people make a cognitive map? Routes, places, and working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 42(5), 768-785. |
[239] | * Weisberg, S. M., Schinazi, V. R., Newcombe, N. S., Shipley, T. F., & Epstein, R. A. (2014). Variations in cognitive maps: Understanding individual differences in navigation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40(3), 669-682. |
[240] | * Wiener, J. M., Kmecova, H., & de Condappa, O. (2012). Route repetition and route retracing: Effects of cognitive aging. Frontiers in Aging Neuroscience, 4, Article e7. https://doi.org/10.3389/fnagi.2012.00007 |
[241] | * Woods, K. J., Thomas, K. G. F., Molteno, C. D., Jacobson, J. L., Jacobson, S. W., & Meintjes, E. M. (2018). Prenatal alcohol exposure affects brain function during place learning in a virtual environment differently in boys and girls. Brain and Behavior, 8(11), Article e01103. https://doi.org/10.1002/brb3.1103 |
[242] |
* Woolley, D. G., Vermaercke, B., de Beeck, H. O., Wagemans, J., Gantois, I., D’Hooge, R., Swinnen, S. P., & Wenderoth, N. (2010). Sex differences in human virtual water maze performance: Novel measures reveal the relative contribution of directional responding and spatial knowledge. Behavioural Brain Research, 208(2), 408-414.
doi: 10.1016/j.bbr.2009.12.019 pmid: 20035800 |
[243] | * Wu, C., Zhao, G., Lin, B., & Lee, J. (2013). Navigating a car in an unfamiliar country using an internet map: Effects of street language formats, map orientation consistency, and gender on driver performance, workload and multitasking strategy. Behaviour and Information Technology, 32(5), 425-437. |
[244] |
* Yasen, A. L., Raber, J., Miller, J. K., & Piper, B. J. (2015). Sex, but not Apolipoprotein E Polymorphism, differences in spatial performance in young adults. Archives of Sexual Behavior, 44(8), 2219-2226.
doi: 10.1007/s10508-015-0497-1 pmid: 25750133 |
[245] | * Youngson, N. L., Vollebregt, M., & Sutton, J. E. (2019). Individual differences in cognitive map accuracy: Investigating the role of landmark familiarity. Canadian Journal of Experimental Psychology / Revue Canadienne de Psychologie Expérimentale, 73(1), 37-46. |
[246] | * Yu, S., Boone, A. P., He, C., Davis, R. C., Hegarty, M., Chrastil, E. R., & Jacobs, E. G. (2021). Age-related changes in spatial navigation are evident by midlife and differ by sex. Psychological Science, 32(5), 692-704. |
[247] | Yuan, L., Kong, F., Luo, Y. M., Zeng, S. Y., Lan, J. J., & You, X. Q. (2019). Gender differences in large-scale and small-scale spatial ability: A systematic review based on behavioral and neuroimaging research. Frontiers in Behavioral Neuroscience, 13, Article e128. https://doi.org/10.3389/fnbeh.2019.00128 |
[248] |
* Yuan, P., Daugherty, A. M., & Raz, N. (2014). Turning bias in virtual spatial navigation: Age-related differences and neuroanatomical correlates. Biological Psychology, 96, 8-19.
doi: 10.1016/j.biopsycho.2013.10.009 pmid: 24192272 |
[249] | * Zancada-Menéndez, C., Sampedro-Piquero, P., Meneghetti, C., Labate, E., Begega, A., & López, L. (2015). Age differences in path learning: The role of interference in updating spatial information. Learning and Individual Differences, 38, 83-89. |
[250] | Zeng, X., Hedge, A., & Guimbretière, F. (2012). Fitts’ law in 3D space with coordinated hand movements. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 56(1), 990-994. |
[251] | Zhong, J. Y., & Moffat, S. D. (2016). Age-related differences in associative learning of landmarks and heading directions in a virtual navigation task. Frontiers in Aging Neuroscience, 8, Article e122. https://doi.org/10.3389/fnagi.2016.00122 |
[252] | * Zhou, Y., Cheng, X., Zhu, L., Qin, T., Dong, W., & Liu, J. (2020). How does gender affect indoor wayfinding under time pressure? Cartography and Geographic Information Science, 47(4), 367-380. |
[253] | * Zwergal, A., Schöberl, F., Xiong, G., Pradhan, C., Covic, A., Werner, P.,... Brandt, T. (2016). Anisotropy of human horizontal and vertical navigation in real space: Behavioral and PET correlates. Cerebral Cortex, 26(11), 4392-4404. |
[1] | 张露, 王子谦, 张清芳. 词汇获得年龄效应的认知机制: 三水平元分析[J]. 心理科学进展, 2025, 33(7): 1199-1220. |
[2] | 赵子卿, 余锦婷, 陈嘉彦, 王芸茹, 黄佳, 陈楚侨. 精神病临床高危人群的症状和功能改变:一项系统综述和三水平元分析[J]. 心理科学进展, 2025, 33(1): 42-61. |
[3] | 文思雁, 于旭晨, 金磊, 宫俊如, 张晓函, 孙敬林, 张杉, 吕厚超. 儿童青少年家庭功能障碍与心理健康关系的三水平元分析[J]. 心理科学进展, 2024, 32(5): 771-789. |
[4] | 袁悦, 吴志明, 谢秋实. 时间压力对个体工作结果的作用效果: 基于元分析的证据[J]. 心理科学进展, 2024, 32(3): 465-485. |
[5] | 孟现鑫, 陈怡静, 王馨怡, 袁加锦, 俞德霖. 学校联结与抑郁的关系:一项三水平元分析[J]. 心理科学进展, 2024, 32(2): 246-263. |
[6] | 诸彦含, 贺彬, 孙蕾. 状态权力感对亲社会行为的影响:一项三水平元分析[J]. 心理科学进展, 2024, 32(11): 1786-1799. |
[7] | 郭英, 田鑫, 胡东, 白书琳, 周蜀溪. 羞愧对亲社会行为影响的三水平元分析[J]. 心理科学进展, 2023, 31(3): 371-385. |
[8] | 从欣蕊, 武泽宇, 曼祖拉·艾山江, 姜云鹏, 刘妍, 吴瑕. 动作电子游戏对不同注意子网络的影响——来自元分析的证据[J]. 心理科学进展, 2023, 31(10): 1843-1855. |
[9] | 方杰, 温忠麟, 欧阳劲樱, 蔡保贞. 国内调节效应的方法学研究[J]. 心理科学进展, 2022, 30(8): 1703-1714. |
[10] | 方杰, 温忠麟. 基于两水平回归模型的调节效应分析及其效应量[J]. 心理科学进展, 2022, 30(5): 1183-1190. |
[11] | 齐玥, 秦邵天, 王可昕, 陈文锋. 面孔可信度评价调节:经验迁移假说的提出与验证[J]. 心理科学进展, 2022, 30(4): 715-722. |
[12] | 陈静, 冉光明, 张琪, 牛湘. 儿童和青少年同伴侵害与攻击行为关系的三水平元分析[J]. 心理科学进展, 2022, 30(2): 275-290. |
[13] | 方杰, 温忠麟. 纵向数据的调节效应分析[J]. 心理科学进展, 2022, 30(11): 2461-2472. |
[14] | 张建平, 林澍倩, 刘善仕, 张亚, 李焕荣. 领导授权赋能与领导有效性的关系:基于元分析的检验[J]. 心理科学进展, 2021, 29(9): 1576-1598. |
[15] | 汤明, 李伟强, 刘福会, 袁博. 内疚与亲社会行为的关系:来自元分析的证据[J]. 心理科学进展, 2019, 27(5): 773-788. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||