心理科学进展 ›› 2025, Vol. 33 ›› Issue (5): 729-743.doi: 10.3724/SP.J.1042.2025.0729 cstr: 32111.14.2025.0729
• 研究构想 • 下一篇
收稿日期:2024-11-12
出版日期:2025-05-15
发布日期:2025-03-20
通讯作者:
雷旭, E-mail: xlei@swu.edu.cn基金资助:
LEI Xu(
), WENG Linman, YU Jing
Received:2024-11-12
Online:2025-05-15
Published:2025-03-20
摘要:
清醒静息和睡眠都有利于记忆离线巩固。但两者在记忆巩固中的联系和区别, 特别是共有的认知神经机制我们仍知之甚少。本研究拟采用脑电、功能磁共振、时域干涉电刺激、计算神经科学建模等多项前沿技术, 从三个方面开展工作: 第一, 通过清醒和睡眠的联合神经影像实验, 对比记忆巩固在两种状态中的神经活动, 揭示记忆离线巩固的本质特征; 第二, 搭建基于神经重放的闭环刺激系统, 从因果关系出发探究记忆离线巩固的神经特征; 第三, 开展基于实时神经反馈的海马电刺激研究, 开发针对记忆巩固调控的方案。本研究的开展, 对阐明记忆离线巩固的神经机制具有重要的理论意义, 也为未来清醒状态下记忆巩固的调控提供了科学依据。
中图分类号:
雷旭, 翁琳曼, 喻婧. (2025). 清醒静息过程的记忆巩固: 来自脑电和功能磁共振的证据. 心理科学进展 , 33(5), 729-743.
LEI Xu, WENG Linman, YU Jing. (2025). Memory consolidation during wakeful rest: Evidence from EEG and fMRI. Advances in Psychological Science, 33(5), 729-743.
| [1] |
刘威, 陈瑞欣, 郭金朋. (2024). 应激下人类情景记忆巩固的神经重放机制. 心理科学进展, 32(7), 1031-1047. https://link.cnki.net/urlid/11.4766.R.20240509.0846.010
doi: 10.3724/SP.J.1042.2024.01031 URL |
| [2] |
Antony, J. W., Gobel, E. W., O'Hare, J. K., Reber, P. J., & Paller, K. A. (2012). Cued memory reactivation during sleep influences skill learning. Nature Neuroscience, 15(8), 1114-1116. https://doi.org/10.1038/nn.3152
doi: 10.1038/nn.3152 URL pmid: 22751035 |
| [3] | Bang, J. W., Sasaki, Y., Watanabe, T., & Rahnev, D. (2018). Feature-specific awake reactivation in human V1 after visual training. The Journal of Neuroscience, 38(45), 9648-9657. https://doi.org/10.1523/jneurosci.0884-18.2018 |
| [4] |
Barrett, T. R., & Ekstrand, B. R. (1972). Effect of sleep on memory. 3. Controlling for time-of-day effects. Journal of Experimental Psychology, 96(2), 321-327. https://doi.org/10.1037/h0033625
doi: 10.1037/h0033625 URL pmid: 4345763 |
| [5] | Baxter, B. S., Mylonas, D., Kwok, K. S., Talbot, C. E., Patel, R., Zhu, L.,... Manoach, D. S. (2023). The effects of closed- loop auditory stimulation on sleep oscillatory dynamics in relation to motor procedural memory consolidation. Sleep, 46(10). https://doi.org/10.1093/sleep/zsad206 |
| [6] | Brodt, S., Inostroza, M., Niethard, N., & Born, J. (2023). Sleep- A brain-state serving systems memory consolidation. Neuron, 111(7), 1050-1075. https://doi.org/10.1016/j.neuron.2023.03.005 |
| [7] | Buzsáki, G. (1996). The hippocampo-neocortical dialogue. Cereb Cortex, 6(2), 81-92. https://doi.org/10.1093/cercor/6.2.81 |
| [8] |
Buzsáki, G. (2015). Hippocampal sharp wave-ripple: A cognitive biomarker for episodic memory and planning. Hippocampus, 25(10), 1073-1188. https://doi.org/10.1002/hipo.22488
doi: 10.1002/hipo.22488 URL pmid: 26135716 |
| [9] |
Carr, M. F., Jadhav, S. P., & Frank, L. M. (2011). Hippocampal replay in the awake state: A potential substrate for memory consolidation and retrieval. Nature Neuroscience, 14(2), 147-153. https://doi.org/10.1038/nn.2732
doi: 10.1038/nn.2732 URL pmid: 21270783 |
| [10] | Cellini, N., & Capuozzo, A. (2018). Shaping memory consolidation via targeted memory reactivation during sleep. Annals of the New York Academy of Sciences, 1426(1), 52-71. https://doi.org/10.1111/nyas.13855 |
| [11] | Choi, J., & Jun, S. C. (2022). Spindle-targeted acoustic stimulation may stabilize an ongoing nap. Journal of Sleep Research, 31(6), e13583. https://doi.org/10.1111/jsr.13583 |
| [12] | Choi, J., Won, K., & Jun, S. C. (2019). Acoustic stimulation following sleep spindle activity may enhance procedural memory consolidation during a nap. IEEE Access, 7, 56297-56307. https://doi.org/10.1109/ACCESS.2019.2913457 |
| [13] |
Christoff, K., Irving, Z. C., Fox, K. C., Spreng, R. N., & Andrews-Hanna, J. R. (2016). Mind-wandering as spontaneous thought: A dynamic framework. Nature Reviews Neuroscience, 17(11), 718-731. https://doi.org/10.1038/nrn.2016.113
doi: 10.1038/nrn.2016.113 URL pmid: 27654862 |
| [14] | Cousins, J. N., El-Deredy, W., Parkes, L. M., Hennies, N., & Lewis, P. A. (2014). Cued memory reactivation during slow-wave sleep promotes explicit knowledge of a motor sequence. The Journal of Neuroscience, 34(48), 15870-15876. https://doi.org/10.1523/jneurosci.1011-14.2014 |
| [15] | Dastgheib, M., Kulanayagam, A., & Dringenberg, H. C. (2022). Is the role of sleep in memory consolidation overrated? Neuroscience & Biobehavioral Reviews, 140, 104799. https://doi.org/10.1016/j.neubiorev.2022.104799 |
| [16] |
Davidson, T. J., Kloosterman, F., & Wilson, M. A. (2009). Hippocampal replay of extended experience. Neuron, 63(4), 497-507. https://doi.org/10.1016/j.neuron.2009.07.027
doi: 10.1016/j.neuron.2009.07.027 URL pmid: 19709631 |
| [17] |
Destexhe, A., Hughes, S. W., Rudolph, M., & Crunelli, V. (2007). Are corticothalamic 'up' states fragments of wakefulness? Trends in Neurosciences, 30(7), 334-342. https://doi.org/10.1016/j.tins.2007.04.006
doi: 10.1016/j.tins.2007.04.006 URL pmid: 17481741 |
| [18] | Deuker, L., Olligs, J., Fell, J., Kranz, T. A., Mormann, F., Montag, C.,... Axmacher, N. (2013). Memory consolidation by replay of stimulus-specific neural activity. The Journal of Neuroscience, 33(49), 19373-19383. https://doi.org/10.1523/jneurosci.0414-13.2013 |
| [19] |
Dewar, M., Alber, J., Butler, C., Cowan, N., & Della Sala, S. (2012). Brief wakeful resting boosts new memories over the long term. Psychological Science, 23(9), 955-960. https://doi.org/10.1177/0956797612441220
doi: 10.1177/0956797612441220 URL pmid: 22829465 |
| [20] |
Diekelmann, S., & Born, J. (2010). The memory function of sleep. Nature Reviews Neuroscience, 11(2), 114-126. https://doi.org/10.1038/nrn2762
doi: 10.1038/nrn2762 URL pmid: 20046194 |
| [21] |
Dudai, Y., Karni, A., & Born, J. (2015). The consolidation and transformation of memory. Neuron, 88(1), 20-32. https://doi.org/10.1016/j.neuron.2015.09.004
doi: 10.1016/j.neuron.2015.09.004 URL pmid: 26447570 |
| [22] |
Ego-Stengel, V., & Wilson, M. A. (2010). Disruption of ripple-associated hippocampal activity during rest impairs spatial learning in the rat. Hippocampus, 20(1), 1-10. https://doi.org/10.1002/hipo.20707
doi: 10.1002/hipo.20707 URL pmid: 19816984 |
| [23] |
Fernández-Ruiz, A., Oliva, A., Fermino de Oliveira, E., Rocha-Almeida, F., Tingley, D., & Buzsáki, G. (2019). Long-duration hippocampal sharp wave ripples improve memory. Science, 364(6445), 1082-1086. https://doi.org/10.1126/science.aax0758
doi: 10.1126/science.aax0758 URL pmid: 31197012 |
| [24] | Foster, D. J., & Wilson, M. A. (2006). Reverse replay of behavioural sequences in hippocampal place cells during the awake state. Nature, 440(7084), 680-683. https://doi.org/10.1038/nature04587 |
| [25] |
Frankland, P. W., & Bontempi, B. (2005). The organization of recent and remote memories. Nature Reviews Neuroscience, 6(2), 119-130. https://doi.org/10.1038/nrn1607
doi: 10.1038/nrn1607 URL pmid: 15685217 |
| [26] | Gais, S., Lucas, B., & Born, J. (2006). Sleep after learning aids memory recall. Learning & Memory, 13(3), 259-262. https://doi.org/10.1101/lm.132106 |
| [27] | Genzel, L., & Robertson, E. M. (2015). To Replay, Perchance to Consolidate. PLoS Biology, 13(10), e1002285. https://doi.org/10.1371/journal.pbio.1002285 |
| [28] |
Geva-Sagiv, M., Mankin, E. A., Eliashiv, D., Epstein, S., Cherry, N., Kalender, G.,... Fried, I. (2023). Augmenting hippocampal-prefrontal neuronal synchrony during sleep enhances memory consolidation in humans. Nature Neuroscience, 26(6), 1100-1110. https://doi.org/10.1038/s41593-023-01324-5
doi: 10.1038/s41593-023-01324-5 URL pmid: 37264156 |
| [29] | Gilson, M., Nitsche, M. A., & Peigneux, P. (2021). Prefrontal transcranial direct current stimulation globally improves learning but does not selectively potentiate the benefits of targeted memory reactivation on awake memory consolidation. Brain Sciences, 11(8), 1104. https://doi.org/10.3390/brainsci11081104 |
| [30] |
Girardeau, G., Benchenane, K., Wiener, S. I., Buzsáki, G., & Zugaro, M. B. (2009). Selective suppression of hippocampal ripples impairs spatial memory. Nature Neuroscience, 12(10), 1222-1223. https://doi.org/10.1038/nn.2384
doi: 10.1038/nn.2384 URL pmid: 19749750 |
| [31] |
Grossman, N., Bono, D., Dedic, N., Kodandaramaiah, S. B., Rudenko, A., Suk, H. J.,... Boyden, E. S. (2017). Noninvasive deep brain stimulation via temporally interfering electric fields. Cell, 169(6), 1029-1041.e1016. https://doi.org/10.1016/j.cell.2017.05.024
doi: S0092-8674(17)30584-6 URL pmid: 28575667 |
| [32] | Guo, W., He, Y., Zhang, W., Sun, Y., Wang, J., Liu, S., & Ming, D. (2023). A novel non-invasive brain stimulation technique: "Temporally interfering electrical stimulation". Frontiers in Neuroscience, 17, 1092539. https://doi.org/10.3389/fnins.2023.1092539 |
| [33] |
Helfrich, R. F., Mander, B. A., Jagust, W. J., Knight, R. T., & Walker, M. P. (2018). Old brains come uncoupled in sleep: Slow wave-spindle synchrony, brain atrophy, and forgetting. Neuron, 97(1), 221-230.e4. https://doi.org/10.1016/j.neuron.2017.11.020
doi: S0896-6273(17)31073-5 URL pmid: 29249289 |
| [34] | Hu, X., Cheng, L. Y., Chiu, M. H., & Paller, K. A. (2020). Promoting memory consolidation during sleep: A meta- analysis of targeted memory reactivation. Psychological Bulletin, 146(3), 218-244. https://doi.org/10.1037/bul0000223 |
| [35] |
Humiston, G. B., Tucker, M. A., Summer, T., & Wamsley, E. J. (2019). Resting states and memory consolidation: A preregistered replication and meta-analysis. Scientific Reports, 9(1), 19345. https://doi.org/10.1038/s41598-019-56033-6
doi: 10.1038/s41598-019-56033-6 URL pmid: 31852988 |
| [36] |
Humiston, G. B., & Wamsley, E. J. (2018). A brief period of eyes-closed rest enhances motor skill consolidation. Neurobiology of Learning and Memory, 155, 1-6. https://doi.org/10.1016/j.nlm.2018.06.002
doi: S1074-7427(18)30139-4 URL pmid: 29883710 |
| [37] | Inayat, S., Qandeel, Nazariahangarkolaee, M., Singh, S., McNaughton, B. L., Whishaw, I. Q., & Mohajerani, M. H. (2020). Low acetylcholine during early sleep is important for motor memory consolidation. Sleep, 43(6). https://doi. org/10.1093/sleep/zsz297 |
| [38] |
Ji, D., & Wilson, M. A. (2007). Coordinated memory replay in the visual cortex and hippocampus during sleep. Nature Neuroscience, 10(1), 100-107. https://doi.org/10.1038/nn1825
doi: 10.1038/nn1825 URL pmid: 17173043 |
| [39] |
Karlsson, M. P., & Frank, L. M. (2009). Awake replay of remote experiences in the hippocampus. Nature Neuroscience, 12(7), 913-918. https://doi.org/10.1038/nn.2344
doi: 10.1038/nn.2344 URL pmid: 19525943 |
| [40] | Ketz, N., Jones, A. P., Bryant, N. B., Clark, V. P., & Pilly, P. K. (2018). Closed-loop slow-wave tACS improves sleep-dependent long-term memory generalization by modulating endogenous oscillations. The Journal of Neuroscience, 38(33), 7314-7326. https://doi.org/10.1523/jneurosci.0273-18.2018 |
| [41] |
Klinzing, J. G., Niethard, N., & Born, J. (2019). Mechanisms of systems memory consolidation during sleep. Nature Neuroscience, 22(10), 1598-1610. https://doi.org/10.1038/s41593-019-0467-3
doi: 10.1038/s41593-019-0467-3 URL pmid: 31451802 |
| [42] | Kudrimoti, H. S., Barnes, C. A., & McNaughton, B. L. (1999). Reactivation of hippocampal cell assemblies: Effects of behavioral state, experience, and EEG dynamics. The Journal of Neuroscience, 19(10), 4090-4101. https://doi.org/10.1523/jneurosci.19-10-04090.1999 |
| [43] |
Lakatos, P., Gross, J., & Thut, G. (2019). A new unifying account of the roles of neuronal entrainment. Current Biology, 29(18), R890-R905. https://doi.org/10.1016/j.cub.2019.07.075
doi: 10.1016/j.cub.2019.07.075 URL |
| [44] |
Landmann, N., Kuhn, M., Piosczyk, H., Feige, B., Baglioni, C., Spiegelhalder, K.,... Nissen, C. (2014). The reorganisation of memory during sleep. Sleep Medicine Reviews, 18(6), 531-541. https://doi.org/10.1016/j.smrv.2014.03.005
doi: 10.1016/j.smrv.2014.03.005 URL pmid: 24813468 |
| [45] | Latchoumane, C. V., Ngo, H. V., Born, J., & Shin, H. S. (2017). Thalamic spindles promote memory formation during sleep through triple phase-locking of cortical, thalamic, and hippocampal rhythms. Neuron, 95(2), 424-435.e6. https://doi.org/10.1016/j.neuron.2017.06.025 |
| [46] | Liu, Y., Dolan, R. J., Higgins, C., Penagos, H., Woolrich, M. W., Ólafsdóttir, H. F.,... Behrens, T. E. (2021). Temporally delayed linear modelling (TDLM) measures replay in both animals and humans. Elife, 10, https://doi.org/10.7554/eLife.66917 |
| [47] |
Liu, Y., Dolan, R. J., Kurth-Nelson, Z., & Behrens, T. E. J. (2019). Human replay spontaneously reorganizes experience. Cell, 178(3), 640-652.e14. https://doi.org/10.1016/j.cell.2019.06.012
doi: S0092-8674(19)30640-3 URL pmid: 31280961 |
| [48] | Liu, Z. X., Grady, C., & Moscovitch, M. (2018). The effect of prior knowledge on post-encoding brain connectivity and its relation to subsequent memory. Neuroimage, 167, 211-223. https://doi.org/10.1016/j.neuroimage.2017.11.032 |
| [49] |
Lustenberger, C., Boyle, M. R., Alagapan, S., Mellin, J. M., Vaughn, B. V., & Fröhlich, F. (2016). Feedback-controlled transcranial alternating current stimulation reveals a functional role of sleep spindles in motor memory consolidation. Current Biology, 26(16), 2127-2136. https://doi.org/10.1016/j.cub.2016.06.044
doi: 10.1016/j.cub.2016.06.044 URL pmid: 27476602 |
| [50] |
McNamara, C. G., Tejero-Cantero, Á., Trouche, S., Campo- Urriza, N., & Dupret, D. (2014). Dopaminergic neurons promote hippocampal reactivation and spatial memory persistence. Nature Neuroscience, 17(12), 1658-1660. https://doi.org/10.1038/nn.3843
doi: 10.1038/nn.3843 URL pmid: 25326690 |
| [51] |
Mednick, S. C., Cai, D. J., Shuman, T., Anagnostaras, S., & Wixted, J. T. (2011). An opportunistic theory of cellular and systems consolidation. Trends in Neurosciences, 34(10), 504-514. https://doi.org/10.1016/j.tins.2011.06.003
doi: 10.1016/j.tins.2011.06.003 URL pmid: 21742389 |
| [52] |
Mölle, M., & Born, J. (2011). Slow oscillations orchestrating fast oscillations and memory consolidation. Progress in Brain Research, 193, 93-110. https://doi.org/10.1016/b978-0-444-53839-0.00007-7
doi: 10.1016/B978-0-444-53839-0.00007-7 URL pmid: 21854958 |
| [53] | Mölle, M., Marshall, L., Gais, S., & Born, J. (2002). Grouping of spindle activity during slow oscillations in human non-rapid eye movement sleep. The Journal of Neuroscience, 22(24), 10941-10947. https://doi.org/10.1523/jneurosci.22-24-10941.2002 |
| [54] | Mushtaq, M., Marshall, L., Ul Haq, R., & Martinetz, T. (2024). Possible mechanisms to improve sleep spindles via closed loop stimulation during slow wave sleep: A computational study. PLoS One, 19(6), e0306218. https://doi.org/10.1371/journal.pone.0306218 |
| [55] | Ngo, H. V., Martinetz, T., Born, J., & Mölle, M. (2013). Auditory closed-loop stimulation of the sleep slow oscillation enhances memory. Neuron, 78(3), 545-553. https://doi.org/10.1016/j.neuron.2013.03.006 |
| [56] | Ngo, H. V., & Staresina, B. P. (2022). Shaping overnight consolidation via slow-oscillation closed-loop targeted memory reactivation. Proceedings of the National Academy of Sciences, 119(44), e2123428119. https://doi.org/10.1073/pnas.2123428119 |
| [57] | Niethard, N., Ngo, H. V., Ehrlich, I., & Born, J. (2018). Cortical circuit activity underlying sleep slow oscillations and spindles. Proceedings of the National Academy of Sciences, 115(39), E9220-E9229. https://doi.org/10.1073/pnas.1805517115 |
| [58] |
Nokia, M. S., Mikkonen, J. E., Penttonen, M., & Wikgren, J. (2012). Disrupting neural activity related to awake-state sharp wave-ripple complexes prevents hippocampal learning. Frontiers in Behavioral Neuroscience, 6, 84. https://doi.org/10.3389/fnbeh.2012.00084
doi: 10.3389/fnbeh.2012.00084 URL pmid: 23316148 |
| [59] | O'Keefe, J., Burgess, N., Donnett, J. G., Jeffery, K. J., & Maguire, E. A.(1998). Place cells, navigational accuracy, and the human hippocampus. Philosophical Transactions of the Royal Society of London, 353(1373), 1333-1340. https://doi.org/10.1098/rstb.1998.0287 |
| [60] |
O'Neill, J., Pleydell-Bouverie, B., Dupret, D., & Csicsvari, J.(2010). Play it again: Reactivation of waking experience and memory. Trends in Neurosciences, 33(5), 220-229. https://doi.org/10.1016/j.tins.2010.01.006
doi: 10.1016/j.tins.2010.01.006 URL pmid: 20207025 |
| [61] | Oyanedel, C. N., Durán, E., Niethard, N., Inostroza, M., & Born, J. (2020). Temporal associations between sleep slow oscillations, spindles and ripples. The European Journal of Neuroscience, 52(12), 4762-4778. https://doi.org/10.1111/ejn.14906 |
| [62] | Paller, K. A., Creery, J. D., & Schechtman, E. (2021). Memory and sleep: How sleep cognition can change the waking mind for the better. Annual Review of Psychology, 72, 123-150. https://doi.org/10.1146/annurev-psych-010419-050815 |
| [63] | Pavlides, C., & Winson, J. (1989). Influences of hippocampal place cell firing in the awake state on the activity of these cells during subsequent sleep episodes. The Journal of Neuroscience, 9(8), 2907-2918. https://doi.org/10.1523/jneurosci.09-08-02907.1989 |
| [64] |
Peigneux, P., Laureys, S., Fuchs, S., Collette, F., Perrin, F., Reggers, J.,... Maquet, P. (2004). Are spatial memories strengthened in the human hippocampus during slow wave sleep? Neuron, 44(3), 535-545. https://doi.org/10.1016/j.neuron.2004.10.007
doi: 10.1016/j.neuron.2004.10.007 URL pmid: 15504332 |
| [65] |
Plihal, W., & Born, J. (1997). Effects of early and late nocturnal sleep on declarative and procedural memory. Journal of Cognitive Neuroscience, 9(4), 534-547. https://doi.org/10.1162/jocn.1997.9.4.534
doi: 10.1162/jocn.1997.9.4.534 URL pmid: 23968216 |
| [66] |
Polanía, R., Nitsche, M. A., & Ruff, C. C. (2018). Studying and modifying brain function with non-invasive brain stimulation. Nature Neuroscience, 21(2), 174-187. https://doi.org/10.1038/s41593-017-0054-4
doi: 10.1038/s41593-017-0054-4 URL pmid: 29311747 |
| [67] |
Rasch, B., & Born, J. (2013). About sleep's role in memory. Physiological Reviews, 93(2), 681-766. https://doi.org/10.1152/physrev.00032.2012
doi: 10.1152/physrev.00032.2012 URL pmid: 23589831 |
| [68] |
Rasch, B., Büchel, C., Gais, S., & Born, J. (2007). Odor cues during slow-wave sleep prompt declarative memory consolidation. Science, 315(5817), 1426-1429. https://doi. org/10.1126/science.1138581
doi: 10.1126/science.1138581 pmid: 17347444 |
| [69] | Rosanova, M., & Ulrich, D. (2005). Pattern-specific associative long-term potentiation induced by a sleep spindle-related spike train. The Journal of Neuroscience, 25(41), 9398-9405. https://doi.org/10.1523/jneurosci.2149-05.2005 |
| [70] | Rubin, D. B., Hosman, T., Kelemen, J. N., Kapitonava, A., Willett, F. R., Coughlin, B. F.,... Cash, S. S. (2022). Learned motor patterns are replayed in human motor cortex during sleep. The Journal of Neuroscience, 42(25), 5007-5020. https://doi.org/10.1523/jneurosci.2074-21.2022 |
| [71] |
Rudoy, J. D., Voss, J. L., Westerberg, C. E., & Paller, K. A. (2009). Strengthening individual memories by reactivating them during sleep. Science, 326(5956), 1079. https://doi. org/10.1126/science.1179013
doi: 10.1126/science.1179013 URL pmid: 19965421 |
| [72] | Sandrini, M., Manenti, R., Gobbi, E., Rusich, D., Bartl, G., & Cotelli, M. (2019). Transcranial direct current stimulation applied after encoding facilitates episodic memory consolidation in older adults. Neurobiology of Learning and Memory, 163, 107037. https://doi.org/10.1016/j.nlm.2019.107037 |
| [73] |
Schapiro, A. C., McDevitt, E. A., Rogers, T. T., Mednick, S. C., & Norman, K. A. (2018). Human hippocampal replay during rest prioritizes weakly learned information and predicts memory performance. Nature Communications, 9(1), 3920. https://doi.org/10.1038/s41467-018-06213-1
doi: 10.1038/s41467-018-06213-1 URL pmid: 30254219 |
| [74] |
Schreiner, T., Petzka, M., Staudigl, T., & Staresina, B. P. (2021). Endogenous memory reactivation during sleep in humans is clocked by slow oscillation-spindle complexes. Nature Communications, 12(1), 3112. https://doi.org/10.1038/s41467-021-23520-2
doi: 10.1038/s41467-021-23520-2 URL pmid: 34035303 |
| [75] | Schuck, N. W., & Niv, Y. (2019). Sequential replay of nonspatial task states in the human hippocampus. Science, 364(6447), eaaw5181. https://doi.org/10.1126/science.aaw5181 |
| [76] |
Seibt, J., Richard, C. J., Sigl-Glöckner, J., Takahashi, N., Kaplan, D. I., Doron, G.,... Larkum, M. E. (2017). Cortical dendritic activity correlates with spindle-rich oscillations during sleep in rodents. Nature Communications, 8(1), 684. https://doi.org/10.1038/s41467-017-00735-w
doi: 10.1038/s41467-017-00735-w URL pmid: 28947770 |
| [77] |
Shtoots, L., Nadler, A., Partouche, R., Sharir, D., Rothstein, A., Shati, L., & Levy, D. A. (2024). Frontal midline theta transcranial alternating current stimulation enhances early consolidation of episodic memory. NPJ Science of Learning, 9(1), 8. https://doi.org/10.1038/s41539-024-00222-0
doi: 10.1038/s41539-024-00222-0 URL pmid: 38365886 |
| [78] | Sirota, A., Csicsvari, J., Buhl, D., & Buzsáki, G. (2003). Communication between neocortex and hippocampus during sleep in rodents. Proceedings of the National Academy of Sciences, 100(4), 2065-2069. https://doi.org/10.1073/pnas.0437938100 |
| [79] | Spanò, G., Gómez, R. L., Demara, B. I., Alt, M., Cowen, S. L., & Edgin, J. O. (2018). REM sleep in naps differentially relates to memory consolidation in typical preschoolers and children with Down syndrome. Proceedings of the National Academy of Sciences, 115(46), 11844-11849. https://doi.org/10.1073/pnas.1811488115 |
| [80] | Squire, L. R., Genzel, L., Wixted, J. T., & Morris, R. G. (2015). Memory consolidation. Cold Spring Harbor Perspectives in Biology, 7(8), a021766. https://doi.org/10.1101/cshperspect.a021766 |
| [81] |
Steriade, M. (2006). Grouping of brain rhythms in corticothalamic systems. Neuroscience, 137(4), 1087-1106. https://doi.org/10.1016/j.neuroscience.2005.10.029
doi: 10.1016/j.neuroscience.2005.10.029 URL pmid: 16343791 |
| [82] |
Tambini, A., & Davachi, L. (2019). Awake reactivation of prior experiences consolidates memories and biases cognition. Trends in Cognitive Sciences, 23(10), 876-890. https://doi.org/10.1016/j.tics.2019.07.008
doi: S1364-6613(19)30183-4 URL pmid: 31445780 |
| [83] |
Tambini, A., & D'Esposito, M. (2020). Causal contribution of awake post-encoding processes to episodic memory consolidation. Current Biology, 30(18), 3533-3543.e7. https://doi.org/10.1016/j.cub.2020.06.063
doi: S0960-9822(20)30915-5 URL pmid: 32735812 |
| [84] |
Tambini, A., Ketz, N., & Davachi, L. (2010). Enhanced brain correlations during rest are related to memory for recent experiences. Neuron, 65(2), 280-290. https://doi.org/10.1016/j.neuron.2010.01.001
doi: 10.1016/j.neuron.2010.01.001 URL pmid: 20152133 |
| [85] | Tang, W., Shin, J. D., Frank, L. M., & Jadhav, S. P. (2017). Hippocampal-prefrontal reactivation during learning is stronger in awake compared with sleep states. The Journal of Neuroscience, 37(49), 11789-11805. https://doi.org/10.1523/jneurosci.2291-17.2017 |
| [86] |
Timofeev, I. (2011). Neuronal plasticity and thalamocortical sleep and waking oscillations. Progress in Brain Research, 193, 121-144. https://doi.org/10.1016/b978-0-444-53839-0.00009-0
doi: 10.1016/B978-0-444-53839-0.00009-0 URL pmid: 21854960 |
| [87] |
Vaz, A. P., Wittig, J. H., Jr., Inati, S. K., & Zaghloul, K. A. (2020). Replay of cortical spiking sequences during human memory retrieval. Science, 367(6482), 1131-1134. https://doi.org/10.1126/science.aba0672
doi: 10.1126/science.aba0672 URL pmid: 32139543 |
| [88] |
Violante, I. R., Alania, K., Cassarà, A. M., Neufeld, E., Acerbo, E., Carron, R.,... Grossman, N. (2023). Non- invasive temporal interference electrical stimulation of the human hippocampus. Nature Neuroscience, 26(11), 1994-2004. https://doi.org/10.1038/s41593-023-01456-8
doi: 10.1038/s41593-023-01456-8 URL pmid: 37857775 |
| [89] | Wamsley, E. J. (2022). Offline memory consolidation during waking rest. Nature Reviews Psychology, 1(8), 441-453. https://doi.org/10.1038/s44159-022-00072-w |
| [90] | Wamsley, E. J., & Collins, M. (2024). Effect of cognitive load on time spent offline during wakefulness. Cereb Cortex, 34(2), bhae022. https://doi.org/10.1093/cercor/bhae022 |
| [91] | Wang, S. Y., Baker, K. C., Culbreth, J. L., Tracy, O., Arora, M., Liu, T.,... Wamsley, E. J. (2021). 'Sleep-dependent' memory consolidation? Brief periods of post-training rest and sleep provide an equivalent benefit for both declarative and procedural memory. Learning & Memory, 28(6), 195-203. https://doi.org/10.1101/lm.053330.120 |
| [92] |
Wilson, M. A., & McNaughton, B. L. (1994). Reactivation of hippocampal ensemble memories during sleep. Science, 265(5172), 676-679. https://doi.org/10.1126/science.8036517
doi: 10.1126/science.8036517 URL pmid: 8036517 |
| [93] |
Wittkuhn, L., & Schuck, N. W. (2021). Dynamics of fMRI patterns reflect sub-second activation sequences and reveal replay in human visual cortex. Nature Communications, 12(1), 1795. https://doi.org/10.1038/s41467-021-21970-2
doi: 10.1038/s41467-021-21970-2 URL pmid: 33741933 |
| [94] | Zhou, Z., Kahana, M. J., & Schapiro, A. C. (2024). A unifying account of replay as context-driven memory reactivation. eLife, 13. https://doi.org/10.7554/eLife.99931.1 |
| [1] | 刘威, 陈瑞欣, 郭金朋. 应激下人类情景记忆巩固的神经重放机制[J]. 心理科学进展, 2024, 32(7): 1031-1047. |
| [2] | 彭芝琳, 郑若颖, 胡晓晴, 张丹丹. 睡眠对婴幼儿学习的记忆巩固作用[J]. 心理科学进展, 2024, 32(2): 287-299. |
| [3] | 周帆, 田昊月, 姜英杰. 记忆快速巩固:基于图式的学习与重复再激活[J]. 心理科学进展, 2024, 32(11): 1854-1871. |
| [4] | 何美亨, 汝涛涛, 李乐, 李丝雨, 张辰泽, 周国富. 日间光暴露对睡眠的优化效果及作用机制[J]. 心理科学进展, 2023, 31(9): 1698-1713. |
| [5] | 张婕, 张火垠, 李红, 雷怡. 睡眠对恐惧学习的影响及其认知神经机制[J]. 心理科学进展, 2023, 31(4): 631-640. |
| [6] | 邹迪, 李红, 王福顺. 唤醒定义探析及其认知神经生理基础[J]. 心理科学进展, 2022, 30(9): 2020-2033. |
| [7] | 康丹, 李佳佳, 蔡术. 学前儿童睡眠问题与语言障碍的关系[J]. 心理科学进展, 2022, 30(6): 1270-1281. |
| [8] | 李谷静, 张丽蓉, 米莉, 贺辉, 卢竞, 罗程, 尧德中. 舞动治疗:一种自下而上的精神分裂症干预探索[J]. 心理科学进展, 2021, 29(8): 1371-1380. |
| [9] | 王正雨, 胡金生. 睡眠对创造性问题解决的影响: 基于记忆重组的解释[J]. 心理科学进展, 2021, 29(7): 1251-1263. |
| [10] | 钱柳, 汝涛涛, 罗雪, 牛佳兴, 马永骏, 周国富. 睡眠限制对认知功能的影响及其潜在作用机制[J]. 心理科学进展, 2020, 28(9): 1493-1507. |
| [11] | 王潇, 吴国榕, 吴欣然, 邱江, 陈红. 语言功能偏侧化及其与利手、功能连接的关系[J]. 心理科学进展, 2020, 28(5): 778-789. |
| [12] | 彭嘉熙, 赵鹿鸣, 方鹏, 曹云飞, 苗丹民, 肖玮. 睡眠剥夺对风险决策的影响机制探讨[J]. 心理科学进展, 2020, 28(11): 1789-1799. |
| [13] | 陈永进, 黄惠珍, 支愧云, 张尚贤, 林秋韵, 王庆娅, 安蔚. 睡眠时型与抑郁的关系及其机制 *[J]. 心理科学进展, 2020, 28(10): 1713-1722. |
| [14] | 龙芳芳, 李昱辰, 陈晓宇, 李子媛, 梁腾飞, 刘强. 视觉工作记忆的巩固加工:时程、模式及机制[J]. 心理科学进展, 2019, 27(8): 1404-1416. |
| [15] | 秦海霞, 赵文瑞, 喻婧, 雷旭. 失眠患者静息态脑网络的改变:网络内与网络间的功能连接异常[J]. 心理科学进展, 2019, 27(2): 289-300. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||