心理科学进展 ›› 2023, Vol. 31 ›› Issue (11): 2040-2049.doi: 10.3724/SP.J.1042.2023.02040
收稿日期:
2022-11-23
出版日期:
2023-11-15
发布日期:
2023-08-28
通讯作者:
张晶晶, E-mail: jinger.zhang@outlook.com
基金资助:
DENG Shanwen, YANG Hao, ZUO Kangjie, ZHANG Jingjing()
Received:
2022-11-23
Online:
2023-11-15
Published:
2023-08-28
摘要:
音乐和语言的关系研究近年来得到了广泛关注。来自行为和认知神经科学的研究证据进一步表明, 音乐经验能够跨领域迁移至第二语言的习得, 表现为音乐经验在理解、产生及学习三个方面促进第二语言加工, 并且这种迁移效应的内在机制是通过促进音乐和语言的共同声学线索加工以及个体一般认知加工能力两种途径来实现的。在此基础之上, 未来研究可以从多个角度展开深入细致的探索, 澄清音乐经验和音乐天赋对二语加工的影响, 比较音乐经验影响母语加工和二语加工的联系与区别。
中图分类号:
邓善文, 杨好, 左康洁, 张晶晶. (2023). 音乐经验对第二语言加工的影响. 心理科学进展 , 31(11), 2040-2049.
DENG Shanwen, YANG Hao, ZUO Kangjie, ZHANG Jingjing. (2023). The effect of musical experience on second language processing. Advances in Psychological Science, 31(11), 2040-2049.
[1] |
蔡笑, 张清芳. (2020). 言语运动系统中前馈和反馈控制整合加工的作用机制. 心理科学进展, 28(4), 588-603.
doi: 10.3724/SP.J.1042.2020.00588 |
[2] | 彭聃龄. (2012). 普通心理学. 北京大学出版社. |
[3] | 杨玉芳. (2015). 心理语言学. 科学出版社. |
[4] | 张晶晶, 梁啸岳, 陈伊笛, 陈庆荣. (2020). 音乐句法加工的认知机制与音乐结构的影响模式. 心理科学进展, 28(6), 883-892. |
[5] |
张晶晶, 杨玉芳. (2019). 语言和音乐层级结构的加工. 心理科学进展, 27(12), 2043-2051.
doi: 10.3724/SP.J.1042.2019.02043 |
[6] | 张清芳, 杨玉芳. (2003). 言语产生中的词汇通达理论. 心理科学进展, 11(1), 6-11. |
[7] |
Baills, F., Zhang, Y., Cheng, Y., Bu, Y., & Prieto, P. (2021). Listening to songs and singing benefitted initial stages of second language pronunciation but not recall of word meaning. Language Learning, 71(2), 369-413.
doi: 10.1111/lang.v71.2 URL |
[8] | Belmon, J., Noyer-Martin, M., & Jhean-Larose, S. (2021). Effets d’un entraînement associant habiletés phonémiques et musicales sur la conscience phonémique des enfants de 5 ans. Enfance, 4, 363-390. |
[9] |
Besson, M., Chobert, J., & Marie, C. (2011). Transfer of training between music and speech: Common processing, attention, and memory. Frontiers in Psychology, 2, 94. https://doi.org/10.3389/fpsyg.2011.00094
doi: 10.3389/fpsyg.2011.00094 URL pmid: 21738519 |
[10] |
Bidelman, G. M., Weiss, M. W., Moreno, S., & Alain, C. (2014). Coordinated plasticity in brainstem and auditory cortex contributes to enhanced categorical speech perception in musicians. European Journal of Neuroscience, 40(4), 2662-2673.
doi: 10.1111/ejn.12627 pmid: 24890664 |
[11] |
Blomert, L. (2011). The neural signature of orthographic- phonological binding in successful and failing reading development. NeuroImage, 57(3), 695-703.
doi: 10.1016/j.neuroimage.2010.11.003 pmid: 21056673 |
[12] |
Burnham, D., Brooker, R., & Reid, A. (2015). The effects of absolute pitch ability and musical training on lexical tone perception. Psychology of Music, 43(6), 881-897.
doi: 10.1177/0305735614546359 URL |
[13] |
Busse, V., Hennies, C., Kreutz, G., & Roden, I. (2021). Learning grammar through singing? An intervention with EFL primary school learners. Learning and Instruction, 71, 101372. https://doi.org/10.1016/j.learninstruc.2020.101372
doi: 10.1016/j.learninstruc.2020.101372 URL |
[14] |
Carpentier, S. M., Moreno, S., & McIntosh, A. R. (2016). Short-term music training enhances complex, distributed neural communication during music and linguistic tasks. Journal of Cognitive Neuroscience, 28, 1603-1612.
doi: 10.1162/jocn_a_00988 pmid: 27243611 |
[15] |
Cason, N., Marmursztejn, M., D’Imperio, M., & Schön, D. (2020). Rhythmic abilities correlate with L2 prosody imitation abilities in typologically different languages. Language and Speech, 63(1), 149-165.
doi: 10.1177/0023830919826334 pmid: 30760163 |
[16] |
Chen, S., Yang, Y., & Wayland, R. (2021). Categorical perception of Mandarin pitch directions by Cantonese- speaking musicians and non-musicians. Frontiers in Psychology, 12, 713949. https://doi.org/10.3389/fpsyg.2021.713949
doi: 10.3389/fpsyg.2021.713949 URL |
[17] | Chen, S., Zhu, Y., Wayland, R., & Yang, Y. (2020). How musical experience affects tone perception efficiency by musicians of tonal and non-tonal speakers. PloS One, 15(5), e0232514. https://doi.org/10.1371/journal.pone.0232514 |
[18] |
Chobert, J., & Besson, M. (2013). Musical expertise and second language learning. Brain Sciences, 3(2), 923-940.
doi: 10.3390/brainsci3020923 pmid: 24961431 |
[19] | Christiner, M., & Reiterer, S. M. (2013). Song and speech: Examining the link between singing talent and speech imitation ability. Frontiers in Psychology, 21(4), 874. https://doi.org/10.3389/fpsyg.2013.00874 |
[20] |
Cooper, A., & Wang, Y. (2012). The influence of linguistic and musical experience on Cantonese word learning. Journal of the Acoustical Society of America, 131(6), 4756-4769.
doi: 10.1121/1.4714355 pmid: 22712948 |
[21] |
Corrigall, K. A., Schellenberg, E. G., & Misura, N. M. (2013). Music training, cognition, and personality. Frontiers in Psychology, 4, 222. https://doi.org/10.3389/fpsyg.2013.00222
doi: 10.3389/fpsyg.2013.00222 URL pmid: 23641225 |
[22] |
Coumel, M., Christiner, M., & Reiterer, S. (2019). Second language accent faking ability depends on musical abilities, not on working memory. Frontiers in Psychology, 10, 257. https://doi.org/10.3389/fpsyg.2019.00257
doi: 10.3389/fpsyg.2019.00257 URL pmid: 30809178 |
[23] | Crystal, D. (2011). A dictionary of linguistics and phonetics (6th ed.). Oxford, UK: Blackwell. |
[24] |
Degé, F., Kubicek, C., & Schwarzer, G. (2015). Associations between musical abilities and precursors of reading in preschool aged children. Frontiers in Psychology, 6, 1220. https://doi.org/10.3389/fpsyg.2015.01220
doi: 10.3389/fpsyg.2015.01220 URL pmid: 26347687 |
[25] |
Delogu, F., & Zheng, Y. (2020). Beneficial effects of musicality on the development of productive phonology skills in second language acquisition. Frontiers in Neuroscience, 14, 618. https://doi.org/10.3389/fnins.2020.00618
doi: 10.3389/fnins.2020.00618 URL pmid: 32733183 |
[26] |
Dittinger, E., Barbaroux, M., D'Imperio, M., Jäncke, L., Elmer, S., & Besson, M. (2016). Professional music training and novel word learning: From faster semantic encoding to longer-lasting word representations. Journal of Cognitive Neuroscience, 28(10), 1584-1602.
doi: 10.1162/jocn_a_00997 pmid: 27315272 |
[27] |
Dittinger, E., Chobert, J., Ziegler, J. C., & Besson, M. (2017). Fast brain plasticity during word learning in musically- trained children. Frontiers in Human Neuroscience, 11, 233. https://doi.org/10.3389/fnhum.2017.00233
doi: 10.3389/fnhum.2017.00233 URL pmid: 28553213 |
[28] |
Dittinger, E., D'Imperio, M., & Besson, M. (2018). Enhanced neural and behavioural processing of a nonnative phonemic contrast in professional musicians. European Journal of Neuroscience, 47(12), 1504-1516.
doi: 10.1111/ejn.13939 pmid: 29753304 |
[29] |
Dittinger, E., Korka, B., & Besson, M. (2021). Evidence for enhanced long-term memory in professional musicians and its contribution to novel word learning. Journal of Cognitive Neuroscience, 33(4), 662-682.
doi: 10.1162/jocn_a_01670 pmid: 33378241 |
[30] |
Dittinger, E., Scherer, J., Jäncke, L., Besson, M., & Elmer, S. (2019). Testing the influence of musical expertise on novel word learning across the lifespan using a cross-sectional approach in children, young adults and older adults. Brain and Language, 198, 104678. https://doi.org/10.1016/j. bandl.2019.104678
doi: 10.1016/j.bandl.2019.104678 URL |
[31] | Feng, H., Lian, J., & Zhao, Y. J. (2019, November). Effect of music training on the production of English lexial stress by Chinese English learners. Paper presented at 23rd International conference on Asian Language processing, Shanghai, China. |
[32] | Flaugnacco, E., Lopez, L., Terribili, C., Montico, M., Zoia, S., & Schön, D. (2015). Music training increases phonological awareness and reading skills in developmental dyslexia: A randomized control trial. PloS ONE, 10(9), e0138715. https://doi.org/10.1371/journal.pone.0138715 |
[33] |
Foncubierta, J. M., Machancoses, F. H., Buyse, K., & Fonseca-Mora, M. C. (2020). The acoustic dimension of reading: Does musical aptitude affect silent reading fluency?. Frontiers in Neuroscience, 14, 399. https://doi.org/10.3389/fnins.2020.00399
doi: 10.3389/fnins.2020.00399 URL pmid: 32410955 |
[34] |
Fotidzis, T. S., Moon, H., Steele, J. R., & Magne, C. L. (2018). Cross-modal priming effect of rhythm on visual word recognition and its relationships to music aptitude and reading achievement. Brain Sciences, 8(12), 210. https://doi.org/10.3390/brainsci8120210
doi: 10.3390/brainsci8120210 URL |
[35] | François, C., Jaillet, F., Takerkart, S., & Schön, D. (2014). Faster sound stream segmentation in musicians than in nonmusicians. PloS ONE, 9(7), e101340. https://doi.org/10.1371/journal.pone.0101340 |
[36] |
Gat, I. B., & Keith, R. W. (1978). An effect of linguistic experience. Auditory word discrimination by native and non-native speakers of English. Audiology, 17(4), 339-345.
pmid: 687239 |
[37] |
Good, A., Russo, F. A., & Sullivan, J. (2015). The efficacy of singing in foreign-language learning. Psychology of Music, 43, 627-640.
doi: 10.1177/0305735614528833 URL |
[38] | Gottfried, T. L., & Ouyang, G. Y. (2005). Production of Mandarin tone contrasts by musicians and non‐musicians. Journal of the Acoustical Society of America, 118, 2025. https://doi.org/10.1121/1.4785767 |
[39] | Harley, T. A. (2001). The psychology of language: From data to theory (2nd ed.). Psychology Press. |
[40] |
Herrera, L., Lorenzo, O., Defior, S., Fernandez-Smith, G., & Costa-Giomi, E. (2011). Effects of phonological and musical training on the reading readiness of native- and foreign-Spanish-speaking children. Psychology of Music, 39(1), 68-81.
doi: 10.1177/0305735610361995 URL |
[41] | Intartaglia, B., White-Schwoch, T., Kraus, N., & Schön, D. (2017). Music training enhances the automatic neural processing of foreign speech sounds. Scientific Reports, 7, 12631. https://doi.org/10.1038/s41598-017-12575-1 |
[42] |
Jekiel, M., & Malarski, K. (2021). Musical hearing and musical experience in second language English vowel acquisition. Journal of Speech Language and Hearing Research, 64(5), 1666-1682.
doi: 10.1044/2021_JSLHR-19-00253 URL |
[43] |
Kolinsky, R., Cuvelier, H., Goetry, V., Peretz, I., & Morais, J. (2009). Music training facilitates lexical stress processing. Music Perception, 26(3), 235-246.
doi: 10.1525/mp.2009.26.3.235 URL |
[44] |
Li, M., & Dekeyser, R. (2017). Perception practice, production practice, and musical ability in L2 mandarin tone-word language. Studies in Second Language Acquisition, 39(4), 593-620.
doi: 10.1017/S0272263116000358 URL |
[45] |
Ludke, K. (2018). Singing and arts activities in support of foreign language learning: An exploratory study. Innovation in Language Learning and Teaching, 12, 371-386.
doi: 10.1080/17501229.2016.1253700 URL |
[46] |
Lukács, B., Asztalos, K., & Honbolygó, F. (2021). Longitudinal associations between melodic auditory- visual integration and reading precursor skills in beginning readers. Cognitive Development, 60, 101095. https://doi.org/10.1016/j.cogdev.2021.101095
doi: 10.1016/j.cogdev.2021.101095 URL |
[47] |
Mankel, K., & Bidelman, G. (2018). Inherent auditory skills rather than formal music training shape the neural encoding of speech. Proceedings of the National Academy of Sciences, 115(51), 13129-13134.
doi: 10.1073/pnas.1811793115 URL |
[48] |
Marie, C., Magne, C., & Besson, M. (2011). Musicians and the metric structure of words. Journal of Cognitive Neuroscience, 23(2), 294-305.
doi: 10.1162/jocn.2010.21413 pmid: 20044890 |
[49] | Mehr, S. A., Schachner, A., Katz, R. C., & Spelke, E. (2013). Two randomized trials provide no consistent evidence for nonmusical cognitive benefits of brief preschool music enrichment. PloS ONE, 8(12), e82007. https://doi.org/10.1371/journal.pone.0082007 |
[50] |
Milovanov, R., Huotilainen, M., Välimäki, V., Esquef, P. A., & Tervaniemi, M. (2008). Musical aptitude and second language pronunciation skills in school-aged children: Neural and behavioral evidence. Brain Research, 1194, 81-89.
doi: 10.1016/j.brainres.2007.11.042 pmid: 18182165 |
[51] | Nan, Y., Liu, L., Geiser, E., Shu, H., Gong, C. C., Dong, Q., Gabrieli, J., & Desimone, R. (2018). Piano training enhances the neural processing of pitch and improves speech perception in Mandarin-speaking children. Proceedings of the National Academy of Sciences of the United States of America, 115(28), E6630-E6639. |
[52] | Nisha, K. V., Neelamegarajan, D., Nayagam, N. N., Winston, J. S., & Anil, S. P. (2021). Musical aptitude as a variable in the assessment of working memory and selective attention tasks. Journal of Audiology & Otology, 25(4), 178-188. |
[53] |
Parbery-Clark, A., Tierney, A., Strait, D. L., & Kraus, N. (2012). Musicians have fine-tuned neural distinction of speech syllables. Neuroscience, 219, 111-119.
doi: 10.1016/j.neuroscience.2012.05.042 URL |
[54] |
Patel, A. D. (2003). Language, music, syntax and the brain. Nature Neuroscience, 6(7), 674-681.
doi: 10.1038/nn1082 pmid: 12830158 |
[55] |
Patel, A. D. (2011). Why would musical training benefit the neural encoding of speech? The OPERA hypothesis. Frontiers in Psychology, 2, 142. https://doi.org/10.3389/fpsyg.2011.00142
doi: 10.3389/fpsyg.2011.00142 URL pmid: 21747773 |
[56] | Patel, A. D. (2012). The OPERA hypothesis:Assumptions and clarifications. Annals of the New York Academy of Sciences, 1252(1), 124-128. |
[57] |
Patel, A. D. (2014). Can nonlinguistic musical training change the way the brain processes speech? The expanded OPERA hypothesis. Hearing Research, 308, 98-108.
doi: 10.1016/j.heares.2013.08.011 pmid: 24055761 |
[58] |
Patscheke, H., Degé, F., & Schwarzer, G. (2019). The effects of training in rhythm and pitch on phonological awareness in four- to six-year-old children. Psychology of Music, 47, 376-391.
doi: 10.1177/0305735618756763 |
[59] |
Pickering, M. J., & Garrod, S. (2007). Do people use language production to make predictions during comprehension. Trends in Cognitive Sciences, 11(3), 105-110.
pmid: 17254833 |
[60] |
Posedel, J., Emery, L., Souza, B., & Fountain, C. (2012). Pitch perception, working memory, and second-language phonological production. Psychology of Music, 40(4), 508-517.
doi: 10.1177/0305735611415145 URL |
[61] | Salcedo, C. S. (2010). The effects of songs in the foreign language classroom on text recall, delayed text recall and involuntary mental rehearsal. Journal of College Teaching & Learning, 7, 19-30. |
[62] | Segal, O., & Kishon-Rabin, L. (2019). Influence of the native language on sensitivity to lexical stress: Evidence from native Arabic and Hebrew speakers. Studies in Second Language Acquisition, 41(1), 151-178. |
[63] | Skubic, D., Gaberc, B., & Jerman, J. (2021). Supportive Development of Phonological Awareness Through Musical Activities According to Edgar Willems. SAGE Open, 11(2), https://doi.org/10.1177/21582440211021832 |
[64] |
Slevc, L., & Miyake, A. (2006). Individual differences in second-language proficiency: Does musical ability matter. Psychological Science, 17(8), 675-681.
doi: 10.1111/j.1467-9280.2006.01765.x URL |
[65] |
Sparks, R. L., Patton, J. M., & Luebbers, J. (2019). Individual differences in L2 achievement mirror individual differences in L1 skills and L2 aptitude: Crosslinguistic transfer of L1 to L2 skills. Foreign Language Annals, 52(2), 255-283.
doi: 10.1111/flan.v52.2 URL |
[66] |
Strait, D. L., Hornickel, J., & Kraus, N. (2011). Subcortical processing of speech regularities underlies reading and music aptitude in children. Behavioral and Brain Functions, 7(44), 1-11.
doi: 10.1186/1744-9081-7-1 URL |
[67] |
Swaminathan, S., & Gopinath, J. K. (2013). Music training and second-language English comprehension and vocabulary skills in Indian children. Psychological Studies, 58, 164-170.
doi: 10.1007/s12646-013-0180-3 URL |
[68] |
Swaminathan, S., & Schellenberg, E. G. (2017). Musical competence and phoneme perception in a foreign language. Psychonomic Bulletin & Review, 24(6), 1929-1934.
doi: 10.3758/s13423-017-1244-5 URL |
[69] |
Tang, W., Xiong, W., Zhang, Y. X., Dong, Q., & Nan, Y. (2016). Musical experience facilitates lexical tone processing among mandarin speakers: Behavioral and neural evidence. Neuropsychologia, 91, 247-253.
doi: S0028-3932(16)30285-8 pmid: 27503769 |
[70] |
Vibell, J., Lim, A., & Sinnett, S. (2021). Temporal perception and attention in trained musicians. Music Perception, 38 (3), 293-312.
doi: 10.1525/mp.2021.38.3.293 URL |
[71] |
Vidal, M., Lousada, M., & Vigário, M. (2020). Music effects on phonological awareness development in 3-year-old children. Applied Psycholinguistics, 41(2), 299-318.
doi: 10.1017/S0142716419000535 URL |
[72] | Vuust, P., Heggli, O. A., Friston, K. J., & Kringelbach, M. L. (2022). Music in the brain. Nature Reviews Neroscience, 23(5), 287-305. |
[73] |
Wang, C., Tao, S., Tao, Q., Tervaniemi, M., Li, F., & Xu, P. (2020). Musical experience may help the brain respond to second language reading. Neuropsychologia, 148, 107655. https://doi.org/10.1016/j.neuropsychologia.2020.107655
doi: 10.1016/j.neuropsychologia.2020.107655 URL |
[74] |
Wang, C., Yang, Z., Cao, F., Liu, L., & Tao, S. (2019). Letter-sound integration in native Chinese speakers learning English: Brain fails in automatic responses but succeeds with more attention. Cognitive Neuroscience, 10(2), 100-116.
doi: 10.1080/17588928.2018.1529665 pmid: 30270811 |
[75] |
Wesseldijk, L. W., Mosing, M., & Ullén, F. (2019). Gene-environment interaction in expertise: The importance of childhood environment for musical achievement. Developmental Psychology, 55(7), 1473-1479.
doi: 10.1037/dev0000726 pmid: 30883154 |
[76] |
Wong, P. C. M., & Perrachione, T. K. (2007). Learning pitch patterns in lexical identification by native English- speaking adults. Applied Psycholinguistics, 28(4), 565-585.
doi: 10.1017/S0142716407070312 URL |
[77] |
Wong, P. C. M., Skoe, E., Russo, N. M., Dees, T., & Kraus, N. (2007). Musical experience shapes human brainstem encoding of linguistic pitch patterns. Nature Neuroscience, 10(4), 420-422.
pmid: 17351633 |
[78] |
Yang, H., Ma, W., Gong, D., Hu, J., & Yao, D. (2014). A longitudinal study on children’s music training experience and academic development. Scientific Reports, 4, 5854. https://doi.org/10.1038/srep05854
doi: 10.1038/srep05854 URL pmid: 25068398 |
[79] |
Zeromskaite, I. (2014). The potential role of music in second language learning: A review article. Journal of European Psychology Students, 5(3), 78-88.
doi: 10.5334/jeps.ci URL |
[80] |
Zhang, J. J., Che, X. C., & Yang, Y. F. (2019). Event-related brain potentials suggest a late interaction of pitch and time in music perception. Neuropsychologia, 132, 107118. https://doi.org/10.1016/j.neuropsychologia.2019.107118
doi: 10.1016/j.neuropsychologia.2019.107118 URL |
[81] |
Zhu, J., Chen, X., & Yang, Y. (2021). Effects of amateur musical experience on categorical perception of lexical tones by native chinese adults: An ERP study. Frontiers in Psychology, 12, 611189. https://doi.org/10.3389/fpsyg.2021.611189
doi: 10.3389/fpsyg.2021.611189 URL |
[82] |
Zioga, I., Di Bernardi Luft, C., & Bhattacharya, J. (2016). Musical training shapes neural responses to melodic and prosodic expectation. Brain Research, 1650, 267-282.
doi: S0006-8993(16)30634-5 pmid: 27622645 |
[1] | 章丽娜, 宣宾. 语言产生中词频效应老化的神经基础与时间进程[J]. 心理科学进展, 2022, 30(2): 333-342. |
[2] | 程凯文, 邓颜蕙, 颜红梅. 第二语言学习与脑可塑性[J]. 心理科学进展, 2019, 27(2): 209-220. |
[3] | 张晶晶, 杨玉芳. 音乐句法加工的影响因素[J]. 心理科学进展, 2017, 25(11): 1823-1830. |
[4] | 伍珍, 郭睿. 婴儿指示性手势与其语言学习的关系[J]. 心理科学进展, 2017, 25(10): 1705-1712. |
[5] | 曲方炳;殷融;钟元;叶浩生. 语言理解中的动作知觉:基于具身认知的视角[J]. 心理科学进展, 2012, 20(6): 834-842. |
[6] | 陈庆荣. 句法启动研究的范式及其在语言理解中的争论[J]. 心理科学进展, 2012, 20(2): 208-218. |
[7] | 方小萍;刘友谊. 语言理解中句法加工的脑机制[J]. 心理科学进展, 2012, 20(12): 1940-1951. |
[8] | 王瑞明;范梦. 双语者语言转换中非目标语言的加工机制[J]. 心理科学进展, 2010, 18(9): 1386-1393. |
[9] | 王琳;张清芳;杨玉芳. EEG相干分析在语言理解研究中的应用[J]. 心理科学进展, 2007, 15(6): 865-871. |
[10] | 伍丽梅;莫雷;王瑞明. 有关运动的语言理解的知觉模拟[J]. 心理科学进展, 2007, 15(4): 605-612. |
[11] | 张清芳. 音节在语言产生中的作用 [J]. 心理科学进展, 2005, 13(6): 752-759. |
[12] | 王敬欣;张阔. 第二语言阅读中的元认知[J]. 心理科学进展, 2005, 13(6): 760-766. |
[13] | 孙燕青. 第二语言学习中的反馈[J]. 心理科学进展, 2005, 13(2): 156-161. |
[14] | 孙燕青,董奇. 多媒体语境条件下的第二语言词汇学习[J]. 心理科学进展, 2003, 11(2): 147-152. |
[15] | 周治金;陈永明;杨丽霞. 语言理解中抑制机制的研究概况[J]. 心理科学进展, 2002, 10(4): 375-381. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||