ISSN 1671-3710
CN 11-4766/R
主办:中国科学院心理研究所
出版:科学出版社

心理科学进展 ›› 2022, Vol. 30 ›› Issue (8): 1715-1733.doi: 10.3724/SP.J.1042.2022.01715

• 国内心理统计方法研究热点回顾 • 上一篇    下一篇

新世纪20年国内结构方程模型方法研究与模型发展

王阳1, 温忠麟2(), 李伟3,4, 方杰5   

  1. 1广东金融学院公共管理学院, 广州 510521
    2华南师范大学心理学院/心理应用研究中心, 广州 510631
    3西北民族大学教育科学与技术学院, 兰州 730124
    4华中师范大学人工智能教育学部, 武汉 430079
    5广东财经大学新发展研究院/应用心理学系, 广州 510320
  • 收稿日期:2021-12-28 出版日期:2022-08-15 发布日期:2022-06-23
  • 通讯作者: 温忠麟 E-mail:wenzl@scnu.edu.cn
  • 基金资助:
    国家自然科学基金项目(32171091);广东省哲学社会科学规划项目(青年项目)(GD21YXL04);国家社会科学基金项目(17BTJ035);国家社会科学基金项目(19BMZ080);甘肃省教育科学规划项目(GS[2021]GHB1777);广东省普通高校创新团队项目(人文社科)(2019WCXTD005);广东省教育科学规划项目(2020GXJK342);中央高校基本科研业务费专项资金项目(31920210120)

Methodological research and model development on structural equation models in China’s mainland from 2001 to 2020

WANG Yang1, WEN Zhonglin2(), LI Wei3,4, FANG Jie5   

  1. 1School of Public Administration, Guangdong University of Finance, Guangzhou 510521, China
    2School of Psychology/Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China
    3School of Education Science and Technology, Northwest Minzu University, Lanzhou 730124, China
    4Faculty of Artificial Intelligence in Education, Central China Normal University, Wuhan 430079, China
    5Institute of New Development & Department of Applied Psychology, Guangdong University of Finance & Economics, Guangzhou, 510320, China
  • Received:2021-12-28 Online:2022-08-15 Published:2022-06-23
  • Contact: WEN Zhonglin E-mail:wenzl@scnu.edu.cn

摘要:

新世纪前20年, 国内结构方程模型(SEM)方法研究主要涉及5个主题:模型发展、参数估计、模型评价、测量不变性及特殊数据处理, 特别是模型发展方面(即SEM的各种变式)有较多成果。对每个主题, 在简述背景知识的基础上, 系统总结了方法学研究发展及成果。最后也讨论了SEM的国外方法学研究进展和未来研究方向。

关键词: 结构方程模型, 模型发展, 参数估计, 模型评价, 测量不变性

Abstract:

Structural equation modeling (SEM) is an important statistical method in social science research. In the first two decades of the 21st century, great progress has been made in methodological research on SEM in China’s mainland. The publications cover five aspects: model development, parameter estimation, model evaluation, measurement invariance and the special data processing in SEM.

SEM development includes the research on measurement models, structural models, and complete models, as well as the SEM in population heterogeneity studies and longitudinal studies. The research on the measurement models involves bi-factor model, exploratory structural equation model, measurement models for special design (e.g., random intercept factor analysis model, fixed-links model, and the Thurston model), and formative measurement models. The research on the structural models involves the actor-partner interdependence model. The research on the complete models focuses on item parceling. The SEM in the study of population heterogeneity involves latent class/profile model, factor mixture model, and multi-level latent class model. The SEM in longitudinal studies includes models describing development trajectories and differences, such as the latent growth model, the piecewise growth model, the latent class growth model, the growth mixture model, the piecewise growth mixture model, the latent transition model and the cross-lagged model.

The publications on parameter estimation methods mainly involve the introduction of methodology (including the partial least square method and the Bayesian method) and the comparison of different parameter estimation methods. Advances in the model evaluation include fit indices and their corresponding critical values, selection of fit indices, model evaluation criteria beyond fit indices, and comparison and selection among alternative models. The development of measurement invariance involves three topics: (1) the introduction of different models with testing process and model evaluation criteria for measurement invariance analysis; (2) measurement invariance analysis in a particular model or data (e.g., second order factor model and ordered categorical data); (3) new methods of measurement invariance analysis (e.g., alignment and projection method). In addition, research into special data processing methods in SEM addresses issues of missing data, non-continuous data, non-normal data, and latent variable scores.

Finally, recent advances in SEM methodological research abroad are introduced to help researchers understand some cutting-edge topics in this field, which offers implications for future directions of SEM methodological research.

Key words: structural equation model, model development, parameter estimation, model evaluation, measurement invariance

中图分类号: