心理科学进展 ›› 2021, Vol. 29 ›› Issue (1): 70-78.doi: 10.3724/SP.J.1042.2021.00070
收稿日期:
2020-04-03
出版日期:
2021-01-15
发布日期:
2020-11-23
通讯作者:
杨玉芳
E-mail:yangyf@psych.ac.cn
基金资助:
SUN Lijun1,2, MA Xiaolong2,3, YANG Yufang2()
Received:
2020-04-03
Online:
2021-01-15
Published:
2020-11-23
Contact:
YANG Yufang
E-mail:yangyf@psych.ac.cn
摘要:
音乐无他, 张弛而已。音乐紧张感架起了客观音响与主观体验之间的桥梁, 是音乐情绪产生的前提和基础。音乐紧张感加工的影响因素主要来自客体与主体两方面。研究发现, 声学要素与调性结构是影响音乐紧张感诱发的声音线索, 而文化背景与音乐能力是影响听者对紧张感加工的个体因素。未来需要对时间结构与长时程调性结构诱发的紧张感及其机制进行深入探究, 这将有助于深化我们对音乐紧张感与情绪加工的认识。
中图分类号:
孙丽君, 马小龙, 杨玉芳. (2021). 听觉线索与个体差异对音乐紧张感加工的影响. 心理科学进展 , 29(1), 70-78.
SUN Lijun, MA Xiaolong, YANG Yufang. (2021). The influences of auditory cues and individual differences on the processing of musical tension. Advances in Psychological Science, 29(1), 70-78.
[1] |
白学军, 马谐, 陶云. (2016). 中-西方音乐对情绪的诱发效应. 心理学报, 48(7), 757-769.
doi: 10.3724/SP.J.1041.2016.00757 URL |
[2] | 蒋存梅. (2016). 音乐心理学. 上海: 华东师范大学出版社. |
[3] | 江俊, 王梓梦, 万璇, 蒋存梅. (2014). 音乐时间加工的影响因素. 心理科学进展, 22(4), 650-658. |
[4] | 吕雪靖, 侯欣. (2019). 听觉预测编码:对声音重复和变化的神经反应. 心理科学进展, 27(12), 1996-2006. |
[5] | 张前. (2002). 音乐美学教程. 上海: 上海音乐出版社. |
[6] | Berry, W. (1976). Structural functions in music. Englewood Cliffs, NJ: Prentice-Hall. (Reprinted New York: Dover, 1987). |
[7] |
Bigand, E., Delbé, C., Poulin-Charronnat, B., Leman, M., & Tillmann, B. (2014). Empirical evidence for musical syntax processing? Computer simulations reveal the contribution of auditory short-term memory. Frontiers in Systems Neuroscience, 8, 94.
URL pmid: 24936174 |
[8] |
Bigand, E., & Parncutt, R. (1999). Perceiving musical tension in long chord sequences. Psychological Research, 62(4), 237-254.
URL pmid: 10652864 |
[9] | Bigand, E., Parncutt, R., & Lerdahl, F. (1996). Perception of musical tension in short chord sequences: The influence of harmonic function, sensory dissonance, horizontal motion, and musical training. Perception & Psychophysics, 58(1), 125-141. |
[10] |
Collins, T., Tillmann, B., Barrett, F. S., Delbé, C., & Janata, P. (2014). A combined model of sensory and cognitive representations underlying tonal expectations in music: From audio signals to behavior. Psychological Review, 121(1), 33-65.
doi: 10.1037/a0034695 URL pmid: 24490788 |
[11] | Costa, M., & Nese, M. (2020). Percevied tension, movement, and pleasantness in harmonic musical intervals and noises. Music Perception: An Interdisciplinary Journal, 37(4), 298-322. |
[12] | Deutsch, D. (2013). The psychology of music. Poland: Academic Press, Elsevier. |
[13] | Farbood, M. M. (2012). A parametric, temporal model of musical tension. Music Perception: An Interdisciplinary Journal, 29(4), 387-428. |
[14] |
Farbood, M. M., & Finn, U. (2013). Interpreting expressive performance through listener judgments of musical tension. Frontiers in Psychology, 4, 993.
URL pmid: 24421778 |
[15] |
Farbood, M. M., & Price, K. C. (2017). The contribution of timbre attributes to musical tension. Journal of Acoustical Society of America, 141(1), 419-427.
doi: 10.1121/1.4973568 URL |
[16] |
Fitch, W. T. (2013). Rhythmic cognition in humans and animals: Distinguishing meter and pulse perception. Frontiers in Systems Neuroscience, 7, 68.
URL pmid: 24198765 |
[17] |
Friston, K. (2010). The free-energy principle: A unified brain theory? Nature Neuroscience, 21(8), 1019-1021.
URL pmid: 30038278 |
[18] | Granot, R. Y., & Eitan, Z. (2011). Musical tension and the interaction of dynamic auditory parameters. Music Perception: An Interdisciplinary Journal, 28(3), 219-246. |
[19] |
Hansen, N. C., & Pearce, M. T. (2014). Predictive uncertainty in auditory sequence processing. Frontiers in Psychology, 5, 1052.
URL pmid: 25295018 |
[20] | Helmholtz, H. L. F. von (1913). Die Lehre von den Tonempfindungen als physiologische Grundlage für die Theorie der Musik. Braunschweig: Friedrich Vieweg & Sohn. |
[21] | Hindemith, P. (1937). The craft of musical composition (Vol. 1). New York: Belwin-Mills. |
[22] | Hutchinson, W., & Knopoff, L. (1978). The acoustical component of Western consonance. Journal of New Music Research, 7(1), 1-29. |
[23] | Ilie, G., & Thompson, W. (2006). A comparison of the acoustic cues in music and speech for three dimensions of affect. Music Perception: An Interdisciplinary Journal, 23(4), 319-330. |
[24] |
Jiang, C., Liu, F., & Thompson, W. F. (2016). Impaired explicit processing of musical syntax and tonality in a group of Mandarin-speaking congenital amusics. Music Perception, 33(4), 401-413.
doi: 10.1525/mp.2016.33.4.401 URL |
[25] |
Jiang, C., Liu, F., & Wong, P. C. (2017). Sensitivity to musical emotion is influenced by tonal structure in congenital amusia. Scientific Reports, 7, 7624.
URL pmid: 28790442 |
[26] |
Jiang, J., Liu, F., Zhou, L. S., & Jiang, C. (2019). The neural basis for understanding imitation-induced musical meaning: The role of the human mirror system. Behavioural Brain Research, 359, 362-369.
URL pmid: 30458161 |
[27] | Juslin, P. N., & Sloboda, J. A. (2010). Handbook of music and emotion: Theory, research, applications (2 ed) London, UK: Oxford University Press Theory, research, applications (2 ed.). London, UK: Oxford University Press. |
[28] | Koelsch, S. (2013). Brain and music. Oxford, UK: John Wiley & Sons. |
[29] |
Koelsch, S. (2014). Brain correlates of music-evoked emotions. Nature Reviews Neuroscience, 15(3), 170-180.
doi: 10.1038/nrn3666 URL pmid: 24552785 |
[30] |
Koelsch, S. (2018). Investigating the neural encoding of emotion with music. Neuron, 98(6), 1075-1079.
URL pmid: 29953870 |
[31] |
Koelsch, S., Jentschke, S., Sammler, D., & Mietchen, D. (2007). Untangling syntactic and sensory processing: An ERP study of music perception. Psychophysiology, 44(3), 476-490.
URL pmid: 17433099 |
[32] |
Koelsch, S., Rohrmeier, M., Torrecuso, R., & Jentschke, S. (2013). Processing of hierarchical syntactic structure in music. Proceedings of the National Academy of Sciences of the United States of America, 110(38), 15443-15448.
URL pmid: 24003154 |
[33] |
Koelsch, S., Schmidt, B. H., & Kansok, J. (2002). Effects of musical expertise on the early right anterior negativity: An event-related brain potential study. Psychophysiology, 39(5), 657-663.
URL pmid: 12236333 |
[34] |
Koelsch, S., Vuust, P., & Friston, K. (2019). Predictive processes and the peculiar case of music. Trends in Cognitive Sciences, 23(1), 63-77.
URL pmid: 30471869 |
[35] | Krumhansl, C. L. (1996). A perceptual analysis of Mozart' s piano sonata K. 282: Segmentation, tension, and musical ideas. Music Perception: An Interdisciplinary Journal, 13(3), 401-432. |
[36] | Lehne, M., & Koelsch, S. (2015a). Tension-resolution patterns as a key element of aesthetic experience: Psychological principles and underlying brain mechanisms. In J. P. Huston, M. Nadal, F. Mora, L. F. Agnati, & C. J. C. Conde (Eds.), Art, aesthetics, and the brain. Oxford: Oxford University Press. |
[37] |
Lehne, M., & Koelsch, S. (2015b). Toward a general psychological model of tension and suspense. Frontiers in Psychology, 6, 79.
URL pmid: 25717309 |
[38] | Lehne, M., Rohrmeier, M., Gollmann, D., & Koelsch, S. (2013). The influence of different structural features on felt musical tension in two piano pieces by Mozart and Mendelssohn. Music Perception: An Interdisciplinary Journal, 31(2), 171-185. |
[39] |
Lehne, M., Rohrmeier, M., & Koelsch, S. (2014). Tension-related activity in the orbitofrontal cortex and amygdala: An fmri study with music. Social Cognitive and Affective Neuroscience, 9(10), 1515-1523.
URL pmid: 23974947 |
[40] | Leman, M. (2000). An auditory model of the role of short-term memory in probe-tone ratings. Music Perception: An Interdisciplinary Journal, 17(4), 481-509. |
[41] | Lerdahl, F. (2001). Tonal pitch space. New York: Oxford University Press. |
[42] | Lerdahl, F., & Jackendoff, R. (1983). A generative theory of tonal music. Cambridge, Massachusetts: MIT Press. |
[43] | Lerdahl, F., & Krumhansl, C. L. (2007). Modeling tonal tension. Music Perception: An Interdisciplinary Journal, 24(4), 329-366. |
[44] |
Ma, X., Ding, N., Tao, Y., & Yang, Y. F. (2018a). Differences in processing mechanisms underlying the processing of center-embedded and non-embedded musical structures. Frontiers in Human Neuroscience, 12, 425.
URL pmid: 30405379 |
[45] |
Ma, X., Ding, N., Tao, Y., & Yang, Y. F. (2018b). Syntactic complexity and musical proficiency modulate neural processing of non-native music. Neuropsychologia, 121, 164-174.
doi: 10.1016/j.neuropsychologia.2018.10.005 URL pmid: 30359654 |
[46] | Madsen, C. K., Geringer, J. M., & Fredrickson, W. E. (1997). Focus of attention to musical elements in Haydn's Symphony #104. Bulletin of the Council for Research in Music Education, 133, 57-63. |
[47] | Margulis, E. H. (2005). A model of melodic expectation. Music Perception: An Interdisciplinary Journal, 22(4), 663-714. |
[48] |
McDermott, J. H., Achultz, A. F., Undurraga, E. A., & Godoy, R. A. (2016). Indifference to dissonance in native Amazonians reveals cultural variation in music perception. Nature, 535, 547-550.
URL pmid: 27409816 |
[49] | Misenhelter, D. (2001). An investigation of music and nonmusic majors' responses to musical tension and dynamics in Beethoven’s Symphony No. 7. Missouri Journal of Research in Music Education, 38, 56-67. |
[50] | Pearce, M. T. (2018). Statistical learning and probabilistic prediction in music cognition: Mechanisms of stylistic enculturation. Annals of the New York Academy of Sciences, 1423, 378-395. |
[51] |
Poulin-Charronnat, B., Bigand, E., & Koelsch, S. (2006). Processing of musical syntax tonic versus subdominant: An event-related potential study. Journal of Cognitive Neuroscience, 18(9), 1545-1554.
doi: 10.1162/jocn.2006.18.9.1545 URL pmid: 16989554 |
[52] |
Pressnitzer, D., Mcadams, S., Winsberg, S., & Fineberg, J. (2000). Perception of music tension for nontonal orchestral timbres and its relation to psychoacoustic roughness. Perception & Psychophysics, 62(1), 66-80.
URL pmid: 10703256 |
[53] |
Prince, J. B. (2014a). Pitch structure, but not selective attention, affects accent weightings in metrical grouping. Journal of Experimental Psychology: Human Perception and Performance, 40(5), 2073-2090.
URL pmid: 25111665 |
[54] |
Prince, J. B. (2014b). Pitch structure, but not selective attention, affects accent weightings in metrical grouping. Journal of Experimental Psychology: Human Perception and Performance, 40(5), 2073-2092.
URL pmid: 25111665 |
[55] | Rohrmeier, M. (2011). Towards a generative syntax of tonal harmony. Journal of Mathematics and Music, 5(1), 35-53. |
[56] | Schubert, E. (2010). Continuous self-report methods. In P. Juslin & J. A. Sloboda (Eds.), Handbook of music and emotion: Theory, research, applications. Oxford: Oxford University Press. |
[57] |
Shen, C. C., Wang, M. F., Ding, T. J., Yang, Y., Cabanyes-Truffino, J., Sun, L. J., ... Wang, W. (2018). Basic emotions expressed in music: Factor analyses on intensity ratings by non-musical professional Chinese university students. Psychology Research and Behavior Management, 11, 617-629.
URL pmid: 30588136 |
[58] |
Steinbeis, N., & Koelsch, S. (2008). Shared neural resources between music and language indicate semantic processing of musical tension-resolution patterns. Cerebral Cortex, 18(5), 1169-1178.
URL pmid: 17720685 |
[59] |
Steinbeis, N., Koelsch, S., & Sloboda, J. A. (2006). The role of harmonic expectancy violations in musical emotions: Evidence from subjective, physiological, and neural responses. Journal of Cognitive Neuroscience, 18(8), 1380-1393.
doi: 10.1162/jocn.2006.18.8.1380 URL pmid: 16859422 |
[60] |
Sun, L. J., Liu, F., Zhou, L. S., & Jiang, C. M. (2018). Musical training modulates the early but not the late stage of rhythmic syntactic processing. Psychophysiology, 55(2), e12983.
doi: 10.1111/psyp.2018.55.issue-2 URL |
[61] | Sun, L. J., Thompson, W. F., Liu, F., Zhou, L. S., & Jiang, C. M. (2020). The human brain processes hierarchical structures of meter and harmony differently: Evidence from musicians and nonmusicians. Psychophysiology, e13598. |
[62] |
Toiviainen, P., & Krumhansl, C. L. (2003). Measuring and modeling real-time responses to music: The dynamics of tonality induction. Perception, 32(6), 741-766.
doi: 10.1068/p3312 URL pmid: 12892434 |
[63] |
Trainor, L. J., & Hannon, E. E. (2013). Musical development. In D. Deutsch (Ed.), The psychology of music (3 ed., pp. 423-498). London: Elsevier.
URL pmid: 24277976 |
[64] |
Vuvan, D. T., & Schmuckler, M. A. (2011). Tonal hierarchy representations in auditory imagery. Memory and Cognition, 39, 477-490.
URL pmid: 21264607 |
[65] |
Witek, M. A. G., Clarke, E. F., Wallentin, M., Kringelbach, M. L., & Vuust, P. (2014). Syncopation, body-movement and pleasure in groove music. Plos One, 9(4), e94446.
URL pmid: 24740381 |
[66] | Wong, P. C. M., Roy, A. K., & Margulis, E. H. (2009). Bimusicalism: The implicit dual enculturation of cognitive and affective systems. Music Perception: An Interdisciplinary Journal, 27(2), 81-88. |
[67] |
Zentner, M., Grandjean, D., & Scherer, K. R. (2008). Emotions evoked by the sound of music: Characterization, classification, and measurement. Emotion, 8(4), 494-521.
URL pmid: 18729581 |
[68] |
Zhang, J. J., Zhou, X. F., Chang, R. H., & Yang, Y. F. (2018). Effects of global and local contexts on chord processing: An ERP study. Neuropsychologia, 109, 149-154.
URL pmid: 29246486 |
[69] |
Zhou, L. S., Liu, F., Jiang, J., Jiang, H. Y., & Jiang, C. M. (2019). Abnormal neural responses to harmonic syntactic structures in congenital amusia. Psychophysiology, 56(9), e13394.
URL pmid: 31111968 |
[70] |
Zhou, L. S., Liu, F., Jing, X. Y., & Jiang, C. M. (2017). Neural differences between the processing of musical meaning conveyed by direction of pitch change and natural music in congenital amusia. Neuropsychologia, 96, 29-38.
URL pmid: 28039057 |
[1] | 王旭东, 何雅吉, 范会勇, 罗扬眉, 陈煦海. 人际愤怒的利与弊:来自元分析的证据[J]. 心理科学进展, 2023, 31(3): 386-401. |
[2] | 孟祥寒, 李强, 周彦榜, 王进. 恐惧管理理论的争议及其对死亡心理研究的启示[J]. 心理科学进展, 2021, 29(3): 492-504. |
[3] | 车新春, 孙丽君, 马小龙, 杨玉芳. 奏鸣曲式中调性结构对紧张感的影响——以莫扎特与贝多芬钢琴奏鸣曲为例[J]. 心理科学进展, 2021, 29(2): 218-224. |
[4] | 张建平, 秦传燕, 刘善仕. 寻求反馈能改善绩效吗?——反馈寻求行为与个体绩效关系的元分析[J]. 心理科学进展, 2020, 28(4): 549-565. |
[5] | 胥彦, 李超平. 人口统计学特征对公共服务动机有什么影响?来自元分析的证据[J]. 心理科学进展, 2020, 28(10): 1631-1649. |
[6] | 刘源;刘红云. 音乐能力测验:结构拓展与分析方式的转换[J]. 心理科学进展, 2012, 20(8): 1322-1328. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||