心理科学进展 ›› 2020, Vol. 28 ›› Issue (9): 1525-1538.doi: 10.3724/SP.J.1042.2020.01525
收稿日期:
2019-09-05
出版日期:
2020-09-15
发布日期:
2020-07-24
通讯作者:
金花
E-mail:jennyjin2@163.com
基金资助:
XU Guiping1,2, FAN Ruolin3, JIN Hua4,5,6()
Received:
2019-09-05
Online:
2020-09-15
Published:
2020-07-24
Contact:
JIN Hua
E-mail:jennyjin2@163.com
摘要:
统计学习是指个体在连续刺激流中发现转移概率等统计规律的过程, 在
中图分类号:
徐贵平, 范若琳, 金花. (2020). 统计学习的认知神经机制及其与语言的关系. 心理科学进展 , 28(9), 1525-1538.
XU Guiping, FAN Ruolin, JIN Hua. (2020). The cognitive and neural mechanisms of statistical learning and its relationship with language. Advances in Psychological Science, 28(9), 1525-1538.
[1] | 宋新燕, 孟祥芝. (2012). 婴儿语音感知发展及其机制. 心理科学进展, 20(6), 843-852. |
[2] | 唐溢, 张智君, 曾玫媚, 黄可, 刘炜, 赵亚军. (2015). 基于名人面孔视觉特征和语义信息的视觉统计学习. 心理学报, 47(7), 837-850. |
[3] | 武秋艳, 邓园. (2012). 统计学习的认知机制及其神经基础. 生物化学与生物物理进展, 39(12), 1167-1173. |
[4] |
Altvater-Mackensen, N., Jessen, S., & Grossmann, T. (2017). Brain responses reveal that infants' face discrimination is guided by statistical learning from distributional information. Developmental Science, 20(2), e12393. doi: 10.1111/desc. 12393
doi: 10.1111/desc.2017.20.issue-2 URL |
[5] | Antovich, D. M., & Estes, K. G. (2018). Learning across languages: Bilingual experience supports dual language statistical word segmentation. Developmental Science, 21(2), e12548. doi: 10.1111/desc.12548 |
[6] |
Arciuli, J., & Simpson, I. C. (2011). Statistical learning in typically developing children: The role of age and speed of stimulus presentation. Developmental Science, 14(3), 464-473. doi: 10.1111/j.1467-7687.2009.00937.x
doi: 10.1111/j.1467-7687.2009.00937.x URL pmid: 21477186 |
[7] |
Arciuli, J., & Simpson, I. C. (2012). Statistical learning is related to reading ability in children and adults. Cognitive Science, 36(2), 286-304. doi: 10.1111/j.1551-6709.2011. 01200.x
URL pmid: 21974775 |
[8] |
Arnon, I. (2019). Statistical learning, implicit learning, and first language acquisition: A critical evaluation of two developmental predictions. Topics in Cognitive Science. 11(3), 504-519. doi: 10.1111/tops.12428
URL pmid: 31056836 |
[9] | Aslin, R. N., Saffran, J. R., & Newport, E. L. (1998). Computation of conditional probability statistics by 8- month-old infants. Psychological Science, 9(4), 321-324. |
[10] |
Batterink, L. J. (2017). Rapid statistical learning supporting word extraction from continuous speech. Psychological Science, 28(7), 921-928. doi: 10.1177/0956797617698226
URL pmid: 28493810 |
[11] |
Batterink, L. J., & Paller, K. A. (2017). Online neural monitoring of statistical learning. Cortex, 90, 31-45. doi: 10.1016/j.cortex.2017.02.004
doi: 10.1016/j.cortex.2017.02.004 URL pmid: 28324696 |
[12] |
Batterink, L. J., & Paller, K. A. (2019). Statistical learning of speech regularities can occur outside the focus of attention. Cortex, 115, 56-71. doi: 10.1016/j.cortex.2019.01.013
doi: 10.1016/j.cortex.2019.01.013 URL pmid: 30771622 |
[13] |
Batterink, L. J., Paller, K. A., & Reber, P. J. (2019). Understanding the neural bases of implicit and statistical learning. Topics in Cognitive Science. 11(3), 482-503 doi: 10.1111/tops.12420
doi: 10.1111/tops.12420 URL pmid: 30942536 |
[14] |
Batterink, L. J., Reber, P. J., Neville, H. J., & Paller, K. A. (2015). Implicit and explicit contributions to statistical learning. Journal of Memory and Language, 83, 62-78. doi: 10.1016/j.jml.2015.04.004
doi: 10.1016/j.jml.2015.04.004 URL pmid: 26034344 |
[15] |
Bertels, J., Franco, A., & Destrebecqz, A. (2012). How implicit is visual statistical learning? Journal of Experimental Psychology: Learning, Memory, and Cognition, 38(5), 1425-1431. doi: 10.1037/a0027210
URL pmid: 22329789 |
[16] |
Bulgarelli, F., Bosch, L., & Weiss, D. J. (2019). Multi-pattern visual statistical learning in monolinguals and bilinguals. Frontiers in Psychology, 10, 204. doi: 10.3389/fpsyg.2019. 00204
URL pmid: 30792682 |
[17] |
Carreiras, M., Seghier, M. L., Baquero, S., Estevez, A., Lozano, A., Devlin, J. T., & Price, C. J. (2009). An anatomical signature for literacy. Nature, 461(7266), 983-986. doi: 10.1038/nature08461
URL pmid: 19829380 |
[18] |
Christiansen, M. H., Conway, C. M., & Onnis, L. (2012). Similar neural correlates for language and sequential learning: Evidence from event-related brain potentials. Language and Cognitive Processes, 27(2), 231-256. doi: 10.1080/01690965.2011.606666
URL pmid: 23678205 |
[19] |
Conway, C. M., Pisoni, D. B., Anaya, E. M., Karpicke, J., & Henning, S. C. (2011). Implicit sequence learning in deaf children with cochlear implants. Developmental Science, 14(1), 69-82. doi: 10.1111/j.1467-7687.2010.00960.x
doi: 10.1111/j.1467-7687.2010.00960.x URL pmid: 21159089 |
[20] |
Cores-Bilbao, E., Fernandez-Corbacho, A., Machancoses, F. H., & Fonseca-Mora, M. C. (2019). A music-mediated language learning experience: Students' awareness of their socio-emotional skills. Frontiers in Psychology, 10, 2238. doi: 10.3389/fpsyg.2019.02238
doi: 10.3389/fpsyg.2019.02238 URL pmid: 31636585 |
[21] |
Cunillera, T., Camara, E., Toro, J. M., Marco-Pallares, J., Sebastian-Galles, N., Ortiz, H., ... Rodriguez-Fornells, A. (2009). Time course and functional neuroanatomy of speech segmentation in adults. Neuroimage, 48(3), 541-553. doi: 10.1016/j.neuroimage.2009.06.069
doi: 10.1016/j.neuroimage.2009.06.069 URL pmid: 19580874 |
[22] |
Cunillera, T., Toro, J. M., Sebastian-Galles, N., & Rodriguez- Fornells, A. (2006). The effects of stress and statistical cues on continuous speech segmentation: An event-related brain potential study. Brain Research, 1123(1), 168-178. doi: 10.1016/j.brainres.2006.09.046
URL pmid: 17064672 |
[23] |
D'Mello, A. M., & Gabrieli, J. D. E. (2018). Cognitive neuroscience of dyslexia. Language, Speech, and Hearing Services in Schools, 49(4), 798-809. doi: 10.1044/2018_ LSHSS-DYSLC-18-0020
doi: 10.1044/2018_LSHSS-DYSLC-18-0020 URL pmid: 30458541 |
[24] |
Daikoku, T., Yatomi, Y., & Yumoto, M. (2017). Statistical learning of an auditory sequence and reorganization of acquired knowledge: A time course of word segmentation and ordering. Neuropsychologia, 95, 1-10. doi: 10.1016/ j.neuropsychologia.2016.12.006
URL pmid: 27939187 |
[25] |
Daltrozzo, J., Emerson, S. N., Deocampo, J., Singh, S., Freggens, M., Branum-Martin, L., & Conway, C. M. (2017). Visual statistical learning is related to natural language ability in adults: An ERP study. Brain and Language, 166, 40-51. doi: 10.1016/j.bandl.2016.12.005
doi: 10.1016/j.bandl.2016.12.005 URL pmid: 28086142 |
[26] |
Das, T., Padakannaya, P., Pugh, K. R., & Singh, N. C. (2011). Neuroimaging reveals dual routes to reading in simultaneous proficient readers of two orthographies. Neuroimage, 54(2), 1476-1487. doi: 10.1016/j.neuroimage.2010.09.022
doi: 10.1016/j.neuroimage.2010.09.022 URL pmid: 20854914 |
[27] | de Bruin, A. (2019). Not all bilinguals are the same: A call for more detailed assessments and descriptions of bilingual experiences. Behavioral Sciences, 9(3), 33. doi: 10.3390/ bs9030033 |
[28] |
Dehaene, S., Cohen, L., Morais, J., & Kolinsky, R. (2015). Illiterate to literate: Behavioural and cerebral changes induced by reading acquisition. Nature Reviews Neuroscience, 16(4), 234-244. doi: 10.1038/nrn3924
doi: 10.1038/nrn3924 URL pmid: 25783611 |
[29] |
Deocampo, J. A., Smith, G. N. L., Kronenberger, W. G., Pisoni, D. B., & Conway, C. M. (2018). The role of statistical learning in understanding and treating spoken language outcomes in deaf children with cochlear implants. Language, Speech, and Hearing Services in Schools, 49(3S), 723-739. doi: 10.1044/2018_LSHSS-STLT1-17-0138
doi: 10.1044/2018_LSHSS-STLT1-17-0138 URL pmid: 30120449 |
[30] |
Durrant, S. J., Cairney, S. A., & Lewis, P. A. (2013). Overnight consolidation aids the transfer of statistical knowledge from the medial temporal lobe to the striatum. Cerebral Cortex, 23(10), 2467-2478. doi: 10.1093/cercor/bhs244
doi: 10.1093/cercor/bhs244 URL pmid: 22879350 |
[31] |
Elleman, A. M., Steacy, L. M., & Compton, D. L. (2019). The role of statistical learning in word reading and spelling development: More questions than answers. Scientific Studies of Reading, 23(1), 1-7. doi: 10.1080/10888438.2018. 1549045
doi: 10.1080/10888438.2018.1549045 URL pmid: 30718941 |
[32] |
Erickson, L. C., & Thiessen, E. D. (2015). Statistical learning of language: Theory, validity, and predictions of a statistical learning account of language acquisition. Developmental Review, 37, 66-108.
doi: 10.1016/j.dr.2015.05.002 URL |
[33] |
Finn, A. S., Kharitonova, M., Holtby, N., & Sheridan, M. A. (2019). Prefrontal and hippocampal structure predict statistical learning ability in early childhood. Journal of Cognitive Neuroscience, 31(1), 126-137. doi: 10.1162/ jocn_a_01342
URL pmid: 30240309 |
[34] |
Fitzgerald, K., & Todd, J. (2018). Hierarchical timescales of statistical learning revealed by mismatch negativity to auditory pattern deviations. Neuropsychologia, 120, 25-34. doi: 10.1016/j.neuropsychologia.2018.09.015
URL pmid: 30268879 |
[35] |
Forest, T. A., Lichtenfeld, A., Alvarez, B., & Finn, A. S. (2019). Superior learning in synesthetes: Consistent grapheme- color associations facilitate statistical learning. Cognition, 186, 72-81. doi: 10.1016/j.cognition.2019.02.003
doi: 10.1016/j.cognition.2019.02.003 URL |
[36] |
Francois, C., Chobert, J., Besson, M., & Schon, D. (2013). Music training for the development of speech segmentation. Cerebral Cortex, 23(9), 2038-2043. doi: 10.1093/cercor/ bhs180
doi: 10.1093/cercor/bhs180 URL |
[37] |
Francois, C., & Schon, D. (2011). Musical expertise boosts implicit learning of both musical and linguistic structures. Cerebral Cortex, 21(10), 2357-2365. doi: 10.1093/cercor/ bhr022
doi: 10.1093/cercor/bhr022 URL |
[38] |
Frost, R., Armstrong, B. C., Siegelman, N., & Christiansen, M. H. (2015). Domain generality versus modality specificity: The paradox of statistical learning. Trends in Cognitive Sciences, 19(3), 117-125. doi: 10.1016/j.tics.2014.12.010
doi: 10.1016/j.tics.2014.12.010 URL pmid: 25631249 |
[39] |
Frost, R., Siegelman, N., Narkiss, A., & Afek, L. (2013). What predicts successful literacy acquisition in a second language? Psychological Science, 24(7), 1243-1252. doi: 10.1177/0956797612472207
doi: 10.1177/0956797612472207 URL pmid: 23698615 |
[40] |
Gabay, Y., Thiessen, E. D., & Holt, L. L. (2015). Impaired statistical learning in developmental dyslexia. Journal of Speech, Language, and Hearing Research, 58(3), 934-945. doi: 10.1044/2015_JSLHR-L-14-0324
doi: 10.1044/2015_JSLHR-L-14-0324 URL pmid: 25860795 |
[41] |
Goujon, A., Didierjean, A., & Thorpe, S. (2015). Investigating implicit statistical learning mechanisms through contextual cueing. Trends in Cognitive Sciences, 19(9), 524-533. doi: 10.1016/j.tics.2015.07.009
doi: 10.1016/j.tics.2015.07.009 URL pmid: 26255970 |
[42] |
Hay, J. F., Pelucchi, B., Estes, K. G., & Saffran, J. R. (2011). Linking sounds to meanings: Infant statistical learning in a natural language. Cognitive Psychology, 63(2), 93-106. doi: 10.1016/j.cogpsych.2011.06.002
doi: 10.1016/j.cogpsych.2011.06.002 URL pmid: 21762650 |
[43] | Hu, W., Lee, H. L., Zhang, Q., Liu, T., Geng, L. B., Seghier, M. L., ... Price, C. J. (2010). Developmental dyslexia in Chinese and English populations: Dissociating the effect of dyslexia from language differences. Brain, 133(6), 1694-1706. doi: 10.1093/brain/awq106 |
[44] |
Hung, Y. H., Frost, S. J., Molfese, P., Malins, J. G., Landi, N., Mencl, W. E., ... Pugh, K. R. (2019). Common neural basis of motor sequence learning and word recognition and its relation with individual differences in reading skill. Scientific Studies of Reading, 23(1), 89-100. doi: 10.1080/ 10888438.2018.1451533
doi: 10.1080/10888438.2018.1451533 URL pmid: 31105422 |
[45] |
Jeste, S. S., Kirkham, N., Senturk, D., Hasenstab, K., Sugar, C., Kupelian, C., ... Johnson, S. P. (2015). Electrophysiological evidence of heterogeneity in visual statistical learning in young children with ASD. Developmental Science, 18(1), 90-105. doi: 10.1111/desc.12188
doi: 10.1111/desc.12188 URL pmid: 24824992 |
[46] |
Jost, E., Conway, C. M., Purdy, J. D., Walk, A. M., & Hendricks, M. A. (2015). Exploring the neurodevelopment of visual statistical learning using event-related brain potentials. Brain Research, 1597, 95-107. doi: 10.1016/ j.brainres.2014.10.017
URL pmid: 25475992 |
[47] |
Karuza, E. A., Newport, E. L., Aslin, R. N., Starling, S. J., Tivarus, M. E., & Bavelier, D. (2013). The neural correlates of statistical learning in a word segmentation task: An fMRI study. Brain and Language, 127(1), 46-54. doi: 10.1016/j.bandl.2012.11.007
doi: 10.1016/j.bandl.2012.11.007 URL pmid: 23312790 |
[48] |
Kidd, E., & Arciuli, J. (2016). Individual differences in statistical learning predict children's comprehension of syntax. Child Development, 87(1), 184-193. doi: 10.1111/ cdev.12461
doi: 10.1111/cdev.12461 URL pmid: 26510168 |
[49] |
Kirkham, N. Z., Slemmer, J. A., & Johnson, S. P. (2002). Visual statistical learning in infancy: Evidence for a domain general learning mechanism. Cognition, 83(2), B35-B42.
doi: 10.1016/s0010-0277(02)00004-5 URL pmid: 11869728 |
[50] |
Knowlton, B. J., Mangels, J. A., & Squire, L. R. (1996). A neostriatal habit learning system in humans. Science, 273(5280), 1399-1402.
doi: 10.1126/science.273.5280.1399 URL pmid: 8703077 |
[51] |
Koelsch, S., Busch, T., Jentschke, S., & Rohrmeier, M. (2016). Under the hood of statistical learning: A statistical MMN reflects the magnitude of transitional probabilities in auditory sequences. Scientific Reports, 6, 19741. doi: 10.1038/srep19741
doi: 10.1038/srep19741 URL pmid: 26830652 |
[52] |
Kramsch, C. (2014). Teaching foreign languages in an era of globalization: Introduction. The Modern Language Journal, 98(1), 296-311. doi: 10.1111/j.1540-4781.2014.12057.x
doi: 10.1111/j.1540-4781.2014.12057.x URL |
[53] |
Krogh, L., Vlach, H. A., & Johnson, S. P. (2012). Statistical learning across development: Flexible yet constrained. Frontiers in Psychology, 3, 598. doi: 10.3389/fpsyg.2012. 00598
doi: 10.3389/fpsyg.2012.00598 URL pmid: 23430452 |
[54] |
Kuhl, P. K. (2004). Early language acquisition: Cracking the speech code. Nature Reviews Neuroscience, 5(11), 831-843. doi: 10.1038/nrn1533
URL pmid: 15496861 |
[55] |
Kuhl, P. K., Stevenson, J., Corrigan, N. M., van den Bosch, J. J. F., Can, D. D., & Richards, T. (2016). Neuroimaging of the bilingual brain: Structural brain correlates of listening and speaking in a second language. Brain and Language, 162, 1-9. doi: 10.1016/j.bandl.2016.07.004
doi: 10.1016/j.bandl.2016.07.004 URL pmid: 27490686 |
[56] | Kuhl, P. K., Tsao, F. M., & Liu, H. M. (2003). Foreign- language experience in infancy: Effects of short-term exposure and social interaction on phonetic learning. Proceedings of the National Academy of Sciences of the United States of America, 100(15), 9096-9101. doi: 10.1073/ pnas.1532872100 |
[57] |
Kuo, L. J., Kim, T. J., Yang, X., Li, H., Liu, Y., Wang, H., ... Li, Y. (2015). Acquisition of Chinese characters: The effects of character properties and individual differences among second language learners. Frontiers in Psychology, 6, 986. doi: 10.3389/fpsyg.2015.00986
URL pmid: 26379562 |
[58] |
Lammertink, I., Boersma, P., Wijnen, F., & Rispens, J. (2017). Statistical learning in specific language impairment: A meta-analysis. Journal of Speech, Language, and Hearing Research, 60(12), 3474-3486. doi: 10.1044/2017_JSLHR- L-16-0439
doi: 10.1044/2017_JSLHR-L-16-0439 URL pmid: 29149241 |
[59] | Lim, S. J., Fiez, J. A., & Holt, L. L. (2019). Role of the striatum in incidental learning of sound categories. Proceedings of the National Academy of Sciences of the United States of America, 116(10), 4671-4680. doi: 10.1073/ pnas.1811992116 |
[60] |
Liu, L., & Kager, R. (2017). Statistical learning of speech sounds is most robust during the period of perceptual attunement. Journal of Experimental Child Psychology, 164, 192-208. doi: 10.1016/j.jecp.2017.05.013
doi: 10.1016/j.jecp.2017.05.013 URL pmid: 28687119 |
[61] |
Lopez-Barroso, D., Ripolles, P., Marco-Pallares, J., Mohammadi, B., Munte, T. F., Bachoud-Levi, A. C., ... de Diego-Balaguer, R. (2015). Multiple brain networks underpinning word learning from fluent speech revealed by independent component analysis. Neuroimage, 110, 182-193. doi: 10.1016/j.neuroimage.2014.12.085
URL pmid: 25620492 |
[62] | Mamiya, P. C., Richards, T. L., Coe, B. P., Eichler, E. E., & Kuhl, P. K. (2016). Brain white matter structure and COMT gene are linked to second-language learning in adults. Proceedings of the National Academy of Sciences of the United States of America, 113(26), 7249-7254. doi: 10.1073/ pnas.1606602113 |
[63] |
Milne, A. E., Petkov, C. I., & Wilson, B. (2018). Auditory and visual sequence learning in humans and monkeys using an artificial grammar learning paradigm. Neuroscience, 389, 104-117. doi: 10.1016/j.neuroscience.2017.06.059
doi: 10.1016/j.neuroscience.2017.06.059 URL pmid: 28687306 |
[64] |
Misyak, J. B., Christiansen, M. H., & Tomblin, J. B. (2010). On-line individual differences in statistical learning predict language processing. Frontiers in Psychology, 1, 31. doi: 10.3389/fpsyg.2010.00031
doi: 10.3389/fpsyg.2010.00031 URL pmid: 21833201 |
[65] |
Monroy, C. D., Gerson, S. A., Dominguez-Martinez, E., Kaduk, K., Hunnius, S., & Reid, V. (2019). Sensitivity to structure in action sequences: An infant event-related potential study. Neuropsychologia, 126, 92-101. doi: 10.1016/j.neuropsychologia.2017.05.007
doi: 10.1016/j.neuropsychologia.2017.05.007 URL pmid: 28487250 |
[66] |
Monroy, C. D., Gerson, S. A., & Hunnius, S. (2017). Toddlers' action prediction: Statistical learning of continuous action sequences. Journal of Experimental Child Psychology, 157, 14-28. doi: 10.1016/j.jecp.2016.12.004
doi: 10.1016/j.jecp.2016.12.004 URL pmid: 28103496 |
[67] |
Monroy, C. D., Meyer, M., Schroer, L., Gerson, S. A., & Hunnius, S. (2019). The infant motor system predicts actions based on visual statistical learning. Neuroimage, 185, 947-954. doi: 10.1016/j.neuroimage.2017.12.016
doi: 10.1016/j.neuroimage.2017.12.016 URL pmid: 29225063 |
[68] |
Newport, E. L. (2016). Statistical language learning: Computational, maturational, and linguistic constraints. Language and Cognition, 8(3), 447-461. doi: 10.1017/ langcog.2016.20
doi: 10.1017/langcog.2016.20 URL pmid: 28680505 |
[69] |
Onnis, L., & Thiessen, E. (2013). Language experience changes subsequent learning. Cognition, 126(2), 268-284. doi: 10.1016/j.cognition.2012.10.008
doi: 10.1016/j.cognition.2012.10.008 URL pmid: 23200510 |
[70] |
Palmer, S. D., Hutson, J., & Mattys, S. L. (2018). Statistical learning for speech segmentation: Age-related changes and underlying mechanisms. Psychology and Aging, 33(7), 1035-1044. doi: 10.1037/pag0000292
doi: 10.1037/pag0000292 URL pmid: 30247045 |
[71] |
Perkovic, S., & Orquin, J. L. (2018). Implicit statistical learning in real-world environments leads to ecologically rational decision making. Psychological Science, 29(1), 34-44. doi: 10.1177/0956797617733831
doi: 10.1177/0956797617733831 URL pmid: 29068761 |
[72] |
Petersson, K. M., Folia, V., & Hagoort, P. (2012). What artificial grammar learning reveals about the neurobiology of syntax. Brain and Language, 120(2), 83-95. doi: 10.1016/ j.bandl.2010.08.003
URL pmid: 20943261 |
[73] | Potter, C. E., Wang, T., & Saffran, J. R. (2017). Second language experience facilitates statistical learning of novel linguistic materials. Cognitive Science, 41(S4), 913-927. doi: 10.1111/cogs.12473 |
[74] | Qi, Z., Sanchez Araujo, Y., Georgan, W. C., Gabrieli, J. D. E., & Arciuli, J. (2018). Hearing matters more than seeing: A cross-modality study of statistical learning and reading ability. Scientific Studies of Reading, 23(1), 101-115. doi: 10.1080/10888438.2018.1485680 |
[75] |
Raviv, L., & Arnon, I. (2018). The developmental trajectory of children's auditory and visual statistical learning abilities: Modality-based differences in the effect of age. Developmental Science, 21(4), e12593. doi: 10.1111/desc. 12593
URL pmid: 28901038 |
[76] |
Reeder, P. A., Newport, E. L., & Aslin, R. N. (2013). From shared contexts to syntactic categories: The role of distributional information in learning linguistic form- classes. Cognitive Psychology, 66(1), 30-54. doi: 10.1016/ j.cogpsych.2012.09.001
doi: 10.1016/j.cogpsych.2012.09.001 URL pmid: 23089290 |
[77] |
Roser, M. E., Aslin, R. N., McKenzie, R., Zahra, D., & Fiser, J. (2015). Enhanced visual statistical learning in adults with autism. Neuropsychology, 29(2), 163-172. doi: 10.1037/ neu0000137
doi: 10.1037/neu0000137 URL pmid: 25151115 |
[78] |
Roser, M. E., Fiser, J., Aslin, R. N., & Gazzaniga, M. S. (2011). Right hemisphere dominance in visual statistical learning. Journal of Cognitive Neuroscience, 23(5), 1088-1099. doi: 10.1162/jocn.2010.21508
doi: 10.1162/jocn.2010.21508 URL pmid: 20433243 |
[79] |
Saffran, J. R. (2018). Statistical learning as a window into developmental disabilities. Journal of Neurodevelopmental Disorders, 10(1), 35. doi: 10.1186/s11689-018-9252-y
doi: 10.1186/s11689-018-9252-y URL pmid: 30541453 |
[80] |
Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996). Statistical learning by 8-month-old infants. Science, 274(5294), 1926-1928. doi: 10.1126/science.274.5294.1926
doi: 10.1126/science.274.5294.1926 URL pmid: 8943209 |
[81] |
Saffran, J. R., & Kirkham, N. Z. (2018). Infant statistical learning. Annual Review of Psychology, 69, 181-203. doi: 10.1146/annurev-psych-122216-011805
doi: 10.1146/annurev-psych-122216-011805 URL pmid: 28793812 |
[82] | Saffran, J. R., Newport, E. L., Aslin, R. N., Tunick, R. A., & Barrueco, S. (1997). Incidental language learning: Listening (and learning) out of the corner of your ear. Psychological Science, 8(2), 101-105. |
[83] |
Santolin, C., & Saffran, J. R. (2018). Constraints on statistical learning across species. Trends in Cognitive Sciences, 22(1), 52-63. doi: 10.1016/j.tics.2017.10.003
doi: 10.1016/j.tics.2017.10.003 URL pmid: 29150414 |
[84] |
Sawi, O. M., & Rueckl, J. (2018). Reading and the neurocognitive bases of statistical learning. Scientific Studies of Reading, 23(1), 8-23. doi: 10.1080/10888438. 2018.1457681
URL pmid: 31105421 |
[85] |
Schapiro, A. C., Gregory, E., Landau, B., McCloskey, M., & Turk-Browne, N. B. (2014). The necessity of the medial temporal lobe for statistical learning. Journal of Cognitive Neuroscience, 26(8), 1736-1747. doi: 10.1162/jocn_a_00578
doi: 10.1162/jocn_a_00578 URL pmid: 24456393 |
[86] |
Schwab, J. F., Schuler, K. D., Stillman, C. M., Newport, E. L., Howard, J. H., & Howard, D. V. (2016). Aging and the statistical learning of grammatical form classes. Psychology and Aging, 31(5), 481-487. doi: 10.1037/pag0000110
doi: 10.1037/pag0000110 URL pmid: 27294711 |
[87] |
Shufaniya, A., & Arnon, I. (2018). Statistical learning is not age-invariant during childhood: Performance improves with age across modality. Cognitive Science, 42(8), 3100-3115. doi: 10.1111/cogs.12692
doi: 10.1111/cogs.12692 URL pmid: 30276848 |
[88] |
Siegelman, N., Bogaerts, L., & Frost, R. (2017). Measuring individual differences in statistical learning: Current pitfalls and possible solutions. Behavior Research Methods, 49(2), 418-432. doi: 10.3758/s13428-016-0719-z
doi: 10.3758/s13428-016-0719-z URL pmid: 26944577 |
[89] |
Siegelman, N., & Frost, R. (2015). Statistical learning as an individual ability: Theoretical perspectives and empirical evidence. Journal of Memory and Language, 81, 105-120. doi: 10.1016/j.jml.2015.02.001
doi: 10.1016/j.jml.2015.02.001 URL pmid: 25821343 |
[90] |
Siok, W. T., Perfetti, C. A., Jin, Z., & Tan, L. H. (2004). Biological abnormality of impaired reading is constrained by culture. Nature, 431, 71-76.
doi: 10.1038/nature02865 URL pmid: 15343334 |
[91] |
Slone, L. K., & Johnson, S. P. (2018). When learning goes beyond statistics: Infants represent visual sequences in terms of chunks. Cognition, 178, 92-102. doi: 10.1016/ j.cognition.2018.05.016
doi: 10.1016/j.cognition.2018.05.016 URL pmid: 29842989 |
[92] |
Spencer, M., Kaschak, M. P., Jones, J. L., & Lonigan, C. J. (2015). Statistical learning is related to early literacy- related skills. Reading and Writing, 28(4), 467-490. doi: 10.1007/s11145-014-9533-0
doi: 10.1007/s11145-014-9533-0 URL pmid: 26478658 |
[93] | Squire, L. R., Stark, C. E., & Clark, R. E. (2004). The medial temporal lobe. Annual Review Neuroscience, 27, 279-306. |
[94] |
Thiessen, E. D., Kronstein, A. T., & Hufnagle, D. G. (2013). The extraction and integration framework: A two-process account of statistical learning. Psychological Bulletin, 139(4), 792-814.
doi: 10.1037/a0030801 URL pmid: 23231530 |
[95] |
Thiessen, E. D., Onnis, L., Hong, S. J., & Lee, K. S. (2019). Early developing syntactic knowledge influences sequential statistical learning in infancy. Journal of Experimental Child Psychology, 177, 211-221. doi: 10.1016/j.jecp.2018. 04.009
doi: 10.1016/j.jecp.2018.04.009 URL pmid: 30227354 |
[96] |
Treiman, R., Kessler, B., Boland, K., Clocksin, H., & Chen, Z. (2018). Statistical learning and spelling: Older prephonological spellers produce more wordlike spellings than younger prephonological spellers. Child Development, 89(4), e431-e443. doi: 10.1111/cdev.12893
doi: 10.1111/cdev.12893 URL pmid: 28686300 |
[97] |
Wang, T., & Saffran, J. R. (2014). Statistical learning of a tonal language: The influence of bilingualism and previous linguistic experience. Frontiers in Psychology, 5, 953. doi: 10.3389/fpsyg.2014.00953
doi: 10.3389/fpsyg.2014.00953 URL pmid: 25232344 |
[98] | Yu, A., Chen, M. S. Y., Cherodath, S., Hung, D. L., Tzeng, O. J. L., & Wu, D. H. (2019). Neuroimaging evidence for sensitivity to orthography-to-phonology conversion in native readers and foreign learners of Chinese. Journal of Neurolinguistics, 50, 53-70. doi: 10.1016/j.jneuroling.2018. 07.002 |
[99] | Zhao, T. C., & Kuhl, P. K. (2016). Musical intervention enhances infants' neural processing of temporal structure in music and speech. Proceedings of the National Academy of Sciences of the United States of America, 113(19), 5212-5217. doi: 10.1073/pnas.1603984113 |
[1] | 李希, 李同茂, 胡际豪. 旅游商品多语言包装策略的作用机制和影响效果——基于选择通达模型的视角[J]. 心理科学进展, 2022, 30(6): 1216-1229. |
[2] | 康丹, 李佳佳, 蔡术. 学前儿童睡眠问题与语言障碍的关系[J]. 心理科学进展, 2022, 30(6): 1270-1281. |
[3] | 陈光华, 陶冠澎, 翟璐煜, 白学军. 自闭症谱系障碍的早期筛查工具[J]. 心理科学进展, 2022, 30(4): 738-760. |
[4] | 章丽娜, 宣宾. 语言产生中词频效应老化的神经基础与时间进程[J]. 心理科学进展, 2022, 30(2): 333-342. |
[5] | 马亚男, 黄艳利, 石宇婧, 谢久书. 语音象征的产生机制:基于敏感期的先天后天作用模型[J]. 心理科学进展, 2022, 30(11): 2487-2496. |
[6] | 金雨薇, 孙潇, 宋耀武. 具身记忆及其内在机制[J]. 心理科学进展, 2022, 30(11): 2497-2506. |
[7] | 袁玉琢, 骆方. 人工智能辅助的自闭症早期患者的筛查与诊断[J]. 心理科学进展, 2022, 30(10): 2303-2320. |
[8] | 隋雪, 史汉文, 李雨桐. 语言加工过程中的观点采择及其认知机制[J]. 心理科学进展, 2021, 29(6): 990-999. |
[9] | 于文勃, 王璐, 程幸悦, 王天琳, 张晶晶, 梁丹丹. 语言经验对概率词切分的影响[J]. 心理科学进展, 2021, 29(5): 787-795. |
[10] | 肖承丽, 隋雨檠, 肖苏衡, 周仁来. 空间交互研究新视角:多重社会因素的影响[J]. 心理科学进展, 2021, 29(5): 796-805. |
[11] | 黄观澜, 周晓璐. 抑郁症患者的语言使用模式[J]. 心理科学进展, 2021, 29(5): 838-848. |
[12] | 马敏璇, 李文婕, 秦梦玲, 韦耀鸿, 谭倩宝, 沈路, 陈骐, 韩彪. 大脑电刺激在听觉语言加工研究中的应用[J]. 心理科学进展, 2021, 29(10): 1740-1754. |
[13] | 殷融. “动手不动口”:手部动作与语言进化的关系[J]. 心理科学进展, 2020, 28(7): 1141-1155. |
[14] | 赵英, 伍新春, 谢瑞波, 冯杰, 孙鹏, 陈红君. 视觉语言对听觉障碍人群阅读能力的影响及作用机制[J]. 心理科学进展, 2020, 28(6): 969-977. |
[15] | 柳武妹, 马增光, 叶富荣. 营销领域中包装元素对消费者的影响及其内在作用机制[J]. 心理科学进展, 2020, 28(6): 1015-1028. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||