ISSN 1671-3710
CN 11-4766/R
主办:中国科学院心理研究所
出版:科学出版社

心理科学进展 ›› 2020, Vol. 28 ›› Issue (9): 1426-1436.doi: 10.3724/SP.J.1042.2020.01426

• 研究构想 • 上一篇    下一篇

隐藏情绪分析与识别方法

王甦菁1,2(), 邹博超3,4, 刘瑞4,5, 李振1,2, 赵国朕1,2, 刘烨2,6, 傅小兰2,6   

  1. 1中国科学院行为科学重点实验室(中国科学院心理研究所), 北京 100101
    2中国科学院大学心理学系, 北京 100039
    3中国电子科学研究院, 社会安全风险感知与防控大数据应用国家工程实验室, 北京 100041
    4首都医科大学,人脑保护高精尖创新中心, 北京 100069
    5首都医科大学附属北京安定医院, 国家精神心理疾病临床医学研究中心, 精神疾病诊断与治疗北京市重点实验室, 北京 100088
    6中国科学院心理研究所脑与认知科学国家重点实验室, 北京 100039
  • 收稿日期:2020-03-02 出版日期:2020-09-15 发布日期:2020-07-24
  • 通讯作者: 王甦菁 E-mail:wangsujing@psych.ac.cn
  • 基金资助:
    * 国家自然科学基金项目(U19B2032);国家自然科学基金项目(61772511);社会安全风险感知与防控大数据应用国家工程实验室主任基金项目(18112403)

Concealed emotion analysis and recognition method

WANG Su-Jing1,2(), ZOU Bochao3,4, LIU Rui4,5, LI Zhen1,2, ZHAO Guozhen1,2, LIU Ye2,6, FU Xiaolan2,6   

  1. 1CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China
    2Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
    3National Engineering Laboratory for Public Safety Risk Perception and Control by Big Data (PSRPC), China Academy of Electronics and Information Technology, Beijing 100041, China
    4Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
    5The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Capital Medical University, Beijing 100088, China
    6State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
  • Received:2020-03-02 Online:2020-09-15 Published:2020-07-24
  • Contact: WANG Su-Jing E-mail:wangsujing@psych.ac.cn

摘要:

隐藏情绪识别对公共安全防范与预警具有重要的意义。微表情是揭示隐藏情绪的一条重要通道。但目前隐藏情绪研究较少且微表情因其细微幅度与快速出现等特性难以识别, 其研究尚未在实际中广泛应用。因为, 隐藏情绪的认知与表达机理亟需系统的研究,采集实际场景中的微表情数据, 并以脑电信号辅助微表情的精确标注是提高微表情标注效率的有效途径。深入研究微表情识别方法, 并辅以人脸颜色、注视估计和非接触生理信号等多通道数据, 以检测与识别隐藏情绪。社会公共安全是隐藏情绪分析和识别的典型场景。面向精神疾病患者两害行为(即危害自身或他人的危险行为)风险评估和服刑人员会见场景隐藏情绪检测, 可以有效地对相应系统和方法进行验证和修正。

关键词: 模式识别, 微表情检测和识别, 隐藏情绪, 深度学习, 颜色空间

Abstract:

It is of great value to recognize concealed emotions for early warning of public security issues. Micro-expression is a vital channel to reveal concealed emotions. However, there are relatively few studies on concealed emotions, and micro-expressions are challenging to recognize because of their subtle magnitude and short duration. Existing Laboratory studies of micro-expression have few practical applications. Therefore, the perception and expression of concealed emotion should be systematically investigated by collecting micro-expression samples in an ecological situation, while synchronically collecting EEG signals for better labeling of micro-expressions. We spot and recognize concealed emotions mainly through micro-expressions, accompanied by face color analysis, gaze estimation, and contactless physiological signals measurement. Then, we verify and modify our system and method in two realistic public security related application scenarios: a Recognition Assistant System for the aggressive and suicidal behaviors of psychiatric patients and a Concealed Emotion Detection System for prisoners interview.

Key words: pattern recognition, micro-expression spotting and recognition, concealed emotion, deep learning, color space

中图分类号: