心理科学进展 ›› 2020, Vol. 28 ›› Issue (8): 1232-1245.doi: 10.3724/SP.J.1042.2020.01232
收稿日期:
2020-02-22
出版日期:
2020-08-15
发布日期:
2020-06-28
通讯作者:
雷铭
E-mail:minglei@bisu.edu.cn
基金资助:
Received:
2020-02-22
Online:
2020-08-15
Published:
2020-06-28
Contact:
LEI Ming
E-mail:minglei@bisu.edu.cn
摘要:
前脉冲抑制(prepulse inhibition, PPI)是听感觉门控的测量模型, 反映了听觉系统的早期信息选择功能。尽管PPI的主要神经环路位于脑干, 研究发现PPI可以被注意自上而下调节。然而, 已有研究并未区分不同注意(特征注意和空间注意)对PPI的特异性调节, 并且神经机制方面的研究集中于听皮层区域, 仍缺乏对皮层下机制的探讨。在以往研究的成果基础之上, 借助听觉信息加工的双通路模型, 采用行为测量、脑电和脑成像技术, 揭示特征和空间两种注意调节PPI的神经活动在听觉系统中的层次性神经表达。包括1)建立特征注意和空间注意调节PPI的统一行为模型, 考察两种注意调节PPI的时间动态性异同; 2)两种注意调节PPI的脑干分离机制, 即前脉冲刺激包络和精细结构成分加工在注意调节PPI中的作用差异; 3)两种注意调节PPI的关键脑区和脑网络差异。
中图分类号:
雷铭, 李朋波. (2020). 不同注意形式调节听感觉门控的神经机制. 心理科学进展 , 28(8), 1232-1245.
LEI Ming, LI Pengbo. (2020). Neural mechanism underlying the attentional modulation of auditory sensory gating. Advances in Psychological Science, 28(8), 1232-1245.
[1] | 杜忆, 李量. (2011). 对听感觉运动门控自上而下调节的动物模型和神经机制. 心理科学进展, 19(7), 944-958. |
[2] | 雷铭, 田晴, 王传跃, 李量. (2017). 精神疾病前脉冲抑制研究. 中华行为医学与脑科学杂志, 26(2), 188-192. |
[3] |
Aiken, S. J., & Picton, T. W. (2008). Envelope and spectral frequency-following responses to vowel sounds. Hearing Research, 245(1-2), 35-47.
doi: 10.1016/j.heares.2008.08.004 URL pmid: 18765275 |
[4] |
Akhoun, I., Gallégo, S., Moulin, A., Ménard, M., Veuillet, E., Bergervachon, C., ... Thaivan, H. (2008). The temporal relationship between speech auditory brainstem responses and the acoustic pattern of the phoneme /ba/ in normal-hearing adults. Clinical Neurophysiology, 119(4), 922-933.
doi: 10.1016/j.clinph.2007.12.010 URL pmid: 18291717 |
[5] |
Ananthakrishnan, S., Krishnan, A., & Bartlett, E. (2016). Human frequency following response: Neural representation of envelope and temporal fine structure in listeners with normal hearing and sensorineural hearing Loss. Ear and Hearing, 37(2), e91-e103.
doi: 10.1097/AUD.0000000000000247 URL pmid: 26583482 |
[6] |
Arnott, S. R., Binns, M. A., Grady, C. L., & Alain, C. (2004). Assessing the auditory dual-pathway model in humans. NeuroImage, 22(1), 401-408.
URL pmid: 15110033 |
[7] |
Blumenthal, T. D., Reynolds, J. Z., & Spence, T. E. (2015). Support for the interruption and protection hypotheses of prepulse inhibition of startle: Evidence from a modified attention network test. Psychophysiology, 52(3), 397-406.
doi: 10.1111/psyp.12334 URL pmid: 25234706 |
[8] |
Braff, D., Stone, C., Callaway, E., Geyer, M., Glick, I., & Bali, L. (1978). Prestimulus effects on human startle reflex in normals and schizophrenics. Psychophysiology, 15(4), 339-343.
doi: 10.1111/j.1469-8986.1978.tb01390.x URL pmid: 693742 |
[9] |
Campbell, L. E., Hughes, M., Budd, T. W., Cooper, G., Fulham, W. R., Karayanidis, F., ... Schall, U. (2007). Primary and secondary neural networks of auditory prepulse inhibition: A functional magnetic resonance imaging study of sensorimotor gating of the human acoustic startle response. European Journal of Neuroscience, 26(8), 2327-2333.
doi: 10.1111/j.1460-9568.2007.05858.x URL pmid: 17908169 |
[10] |
Chandrasekaran, B., & Kraus, N. (2010). The scalp-recorded brainstem response to speech: Neural origins and plasticity. Psychophysiology, 47(2), 236-246.
doi: 10.1111/j.1469-8986.2009.00928.x URL pmid: 19824950 |
[11] |
Chen, J., He, Y., Zhu, Z., Zhou, T., Peng, Y., Zhang, X., & Fang, F. (2014). Attention-dependent early cortical suppression contributes to crowding. The Journal of Neuroscience, 34(32), 10465-10474.
doi: 10.1523/JNEUROSCI.1140-14.2014 URL pmid: 25100582 |
[12] | Chimento, T. C., & Schreiner, C. E. (1990). Selectively eliminating cochlear microphonic contamination from the frequency-following response. Electroencephalography and Clinical Neurophysiology, 75(1-2), 88-96. |
[13] |
Coffey, E. B., Musacchia, G., & Zatorre, R. J. (2017). Cortical correlates of the auditory frequency-following and onset responses: EEG and fMRI evidence. Journal of Neuroscience, 37(4), 830-838.
doi: 10.1523/JNEUROSCI.1265-16.2016 URL pmid: 28123019 |
[14] |
Crowley, K. E., & Colrain, I. M. (2004). A review of the evidence for P2 being an independent component process: Age, sleep and modality. Clinical Neurophysiology, 115(4), 732-744.
doi: 10.1016/j.clinph.2003.11.021 URL pmid: 15003751 |
[15] |
Csomor, P. A., Preller, K. H., Geyer, M. A., Studerus, E., Huber, T., & Vollenweider, F. X. (2014). Influence of aripiprazole, risperidone, and amisulpride on sensory and sensorimotor gating in healthy “low and high gating” humans and relation to psychometry. Neuropsychopharmacology, 39(10), 2485-2496.
doi: 10.1038/npp.2014.102 URL pmid: 24801767 |
[16] |
Davis, M. (2006). Neural systems involved in fear and anxiety measured with fear-potentiated startle. American Psychologist, 61(8), 741-752.
doi: 10.1037/0003-066X.61.8.741 URL pmid: 17115806 |
[17] |
Dawson, M. E., Hazlett, E. A., Filion, D. L., Nuechterlein, K. H., & Schell, A. M. (1993). Attention and schizophrenia: Impaired modulation of the startle reflex. Journal of Abnormal Psychology, 102(4), 633-641.
doi: 10.1037//0021-843x.102.4.633 URL pmid: 8282934 |
[18] |
Dawson, M. E., Schell, A. M., Hazlett, E. A., Nuechterlein, K. H., & Filion, D. L. (2000). On the clinical and cognitive meaning of impaired sensorimotor gating in schizophrenia. Psychiatry Research, 96(3), 187-197.
doi: 10.1016/s0165-1781(00)00208-0 URL pmid: 11084215 |
[19] |
de Haan, E. H. F., & Cowey, A. (2011). On the usefulness of “what” and “where” pathways in vision. Trends in Cognitive Sciences, 15(10), 460-466.
doi: 10.1016/j.tics.2011.08.005 URL pmid: 21906989 |
[20] |
Ding, N., Melloni, L., Zhang, H., Tian, X., & Poeppel, D. (2016). Cortical tracking of hierarchical linguistic structures in connected speech. Nature Neuroscience, 19(1), 158-164.
doi: 10.1038/nn.4186 URL pmid: 26642090 |
[21] |
Ding, N., Patel, A.D., Chen, L., Butler, H., Luo, C., & Poeppel, D. (2017). Temporal modulations in speech and music. Neuroscience and Biobehavioral Reviews, 81, 181-197.
doi: 10.1016/j.neubiorev.2017.02.011 URL pmid: 28212857 |
[22] |
Ding, Y., Xu, N., Gao, Y., Wu, Z., & Li, L. (2019). The role of the deeper layers of the superior colliculus in attentional modulations of prepulse inhibition. Behavioural Brain Research, 364, 106-113.
doi: 10.1016/j.bbr.2019.01.052 URL pmid: 30707906 |
[23] |
Du, Y., Kong, L., Wang, Q., Wu, X., & Li, L. (2011a). Auditory frequency-following response: A neurophysiological measure for studying the "cocktail-party problem". Neuroscience and Biobehavioral Reviews, 35(10), 2046-2057.
doi: 10.1016/j.neubiorev.2011.05.008 URL pmid: 21645541 |
[24] | Du, Y., Li, J. Y., Wu, X. H., & Li, L. (2009). Precedence-effect-induced enhancement of prepulse inhibition in socially reared but not isolation-reared rats. Cognitive Affective & Behavioral Neuroscience, 9, 44-58. |
[25] |
Du, Y., Wu, X., & Li, L. (2010). Emotional learning enhances stimulus-specific top-down modulation of sensorimotor gating in socially reared rats but not isolation-reared rats. Behavioural Brain Research, 206(2), 192-201.
doi: 10.1016/j.bbr.2009.09.012 URL pmid: 19761801 |
[26] |
Du, Y., Wu, X., & Li, L. (2011b). Differentially organized top-down modulation of prepulse inhibition of startle. The Journal of Neuroscience, 31(38), 13644-13653.
doi: 10.1523/JNEUROSCI.1292-11.2011 URL pmid: 21940455 |
[27] |
Filion, D. L., Dawson, M. E., & Schell, A. M. (1998). The psychological significance of human startle eyeblink modification: A review. Biological Psychology, 47(1), 1-43.
doi: 10.1016/s0301-0511(97)00020-3 URL pmid: 9505132 |
[28] |
Freyman, R. L., Balakrishnan, U., & Helfer, K. S. (2004). Effect of number of masking talkers and auditory priming on informational masking in speech recognition. The Journal of the Acoustical Society of America, 115(5), 2246-2256.
doi: 10.1121/1.1689343 URL |
[29] |
Freyman, R. L., Balakrishnan, U., & Helfer, K. S. (2008). Spatial release from masking with noise-vocoded speech. The Journal of the Acoustical Society of America, 124(3), 1627-1637.
doi: 10.1121/1.2951964 URL pmid: 19045654 |
[30] |
Fritz, J. B., Elhilali, M., David, S. V., & Shamma, S. A. (2007). Auditory attention—focusing the searchlight on sound. Current Opinion in Neurobiology, 17(4), 437-455.
doi: 10.1016/j.conb.2007.07.011 URL pmid: 17714933 |
[31] |
Galbraith, G. C. (1994). Two-channel brain-stem frequency- following responses to pure tone and missing fundamental stimuli. Electroencephalography and Clinical Neurophysiology, 92(4), 321-330.
URL pmid: 7517854 |
[32] |
Galbraith, G. C., Olfman, D. M., & Huffman, T. M. (2003). Selective attention affects human brain stem frequency- following response. Neuroreport, 14(5), 735-738.
doi: 10.1097/00001756-200304150-00015 URL pmid: 12692473 |
[33] |
Glaser, E. M., Suter, C. M., Dasheiff, R., & Goldberg, A. (1976). The human frequency-following response: Its behavior during continuous tone and tone burst stimulation. Electroencephalography and Clinical Neurophysiology, 40(1), 25-32.
doi: 10.1016/0013-4694(76)90176-0 URL pmid: 55345 |
[34] |
Goodale, M. A., & Milner, A. D. (1992). Separate Visual Pathways for Perception and Action. Trends in Neurosciences, 15(1), 20-25.
doi: 10.1016/0166-2236(92)90344-8 URL pmid: 1374953 |
[35] |
Graham, F. (1975). The more or less startling effects of weak prestimulation. Psychophysiology, 12(3), 238-248.
doi: 10.1111/j.1469-8986.1975.tb01284.x URL pmid: 1153628 |
[36] |
Hairston, W. D., Letowski, T. R., & Mcdowell, K. (2013). Task-related suppression of the brainstem frequency following response. PloS One, 8(2), e55215.
doi: 10.1371/journal.pone.0055215 URL pmid: 23441150 |
[37] |
Hazlett, E. A., Buchsbaum, M. S., Tang, C. Y., Fleischman, M. B., Wei, T. C., Byne, W., & Haznedar, M. M. (2001). Thalamic activation during an attention-to-prepulse startle modification paradigm: A functional MRI study. Biological Psychiatry, 50(4), 281-291.
doi: 10.1016/s0006-3223(01)01094-0 URL pmid: 11522263 |
[38] |
Hazlett, E. A., Levine, J., Buchsbaum, M. S., Silverman, J. M., New, A., Sevin, E. M., ... Siever, L. J. (2003). Deficient attentional modulation of the startle response in patients with schizotypal personality disorder. American Journal of Psychiatry, 160(9), 1621-1626.
doi: 10.1176/appi.ajp.160.9.1621 URL pmid: 12944337 |
[39] |
Hazlett, E. A., Romero, M. J., Haznedar, M. M., New, A. S., Goldstein, K. E., Newmark, R. E., ... Buchsbaum, M. S. (2007). Deficient attentional modulation of startle eyeblink is associated with symptom severity in the schizophrenia spectrum. Schizophrenia Research, 93(1-3), 288-295.
doi: 10.1016/j.schres.2007.03.012 URL pmid: 17478083 |
[40] |
Javitt, D. C., & Sweet, R. A. (2015). Auditory dysfunction in schizophrenia: Integrating clinical and basic features. Nature Reviews Neuroscience, 16(9), 535-550.
doi: 10.1038/nrn4002 URL pmid: 26289573 |
[41] |
Jones, L. A., Hills, P. J., Dick, K. M., Jones, S. P., & Bright, P. (2016). Cognitive mechanisms associated with auditory sensory gating. Brain and Cognition, 102, 33-45.
doi: 10.1016/j.bandc.2015.12.005 URL pmid: 26716891 |
[42] | Kraus, N., Anderson, S., & White-Schwoch, T. (2017). The Frequency-following response: A window into human communication. Boston, MA: Springer International Publishing. |
[43] |
Krishnan, A., Xu, Y., Gandour, J. T., & Cariani, P. A. (2004). Human frequency-following response: Representation of pitch contours in Chinese tones. Hearing Research, 189(1-2), 1-12.
doi: 10.1016/S0378-5955(03)00402-7 URL pmid: 14987747 |
[44] |
Kumari, V., Antonova, E., & Geyer, M. A. (2008). Prepulse inhibition and "psychosis-proneness" in healthy individuals: An fMRI study. European Psychiatry, 23(4), 274-280.
URL pmid: 18222069 |
[45] | Landis, C., & Hunt, W. A. (Eds.). (1939). The startle pattern. New York: Farrar and Rinehart. |
[46] |
Lehmann, A., & Schönwiesner, M. (2014). Selective attention modulates human auditory brainstem responses: Relative contributions of frequency and spatial cues. PloS One, 9(1), e85442.
doi: 10.1371/journal.pone.0085442 URL pmid: 24454869 |
[47] |
Lei, M., Luo, L., Qu, T., Jia, H., & Li, L. (2014). Perceived location specificity in perceptual separation-induced but not fear conditioning-induced enhancement of prepulse inhibition in rats. Behavioural Brain Research, 269, 87-94.
doi: 10.1016/j.bbr.2014.04.030 URL pmid: 24780867 |
[48] |
Lei, M., Zhang, C., & Li, L. (2018). Neural correlates of perceptual separation-induced enhancement of prepulse inhibition of startle in humans. Scientific Reports, 8(1), 1-10.
doi: 10.1038/s41598-017-17765-5 URL pmid: 29311619 |
[49] |
Li, L., Du, Y., Li, N., Wu, X., & Wu, Y. (2009). Top-down modulation of prepulse inhibition of the startle reflex in humans and rats. Neuroscience & Biobehavioral Reviews, 33(8), 1157-1167.
doi: 10.1016/j.neubiorev.2009.02.001 URL pmid: 19747594 |
[50] |
Li, L., Qi, J. G., He, Y., Alain, C., & Schneider, B. A. (2005). Attribute capture in the precedence effect for long-duration noise sounds. Hearing Research, 202(1-2), 235-247.
doi: 10.1016/j.heares.2004.10.007 URL pmid: 15811715 |
[51] |
Luo, L., Wang, Q., & Li, L. (2017). Neural representations of concurrent sounds with overlapping spectra in rat inferior colliculus: Comparisons between temporal-fine structure and envelope. Hearing Research, 353, 87-96.
doi: 10.1016/j.heares.2017.06.005 URL pmid: 28655419 |
[52] |
Marsh, J. T., Worden, F. G., & Smith, J. C. (1970). Auditory frequency-following response: Neural or artifact? Science, 169(3951), 1222-1223.
doi: 10.1126/science.169.3951.1222 URL pmid: 5450700 |
[53] |
Meng, Q., Ding, Y., Chen, L., & Li, L. (2020). The medial agranular cortex mediates attentional enhancement of prepulse inhibition of the startle reflex. Behavioural Brain Research, 383, 112511.
doi: 10.1016/j.bbr.2020.112511 URL pmid: 31987934 |
[54] |
Musacchia, G., Sams, M., Skoe, E., & Kraus, N. (2007). Musicians have enhanced subcortical auditory and audiovisual processing of speech and music. Proceedings of the National Academy of Sciences of the United States of America, 104(40), 15894-15898.
doi: 10.1073/pnas.0701498104 URL pmid: 17898180 |
[55] |
Näätänen, R., & Picton, T. (1987). The N1 wave of the human electric and magnetic response to sound: A review and an analysis of the component structure. Psychophysiology, 24(4), 375-425.
doi: 10.1111/j.1469-8986.1987.tb00311.x URL pmid: 3615753 |
[56] |
Ping, J., Li, N., Galbraith, G. C., Wu, X., & Li, L. (2008). Auditory frequency-following responses in rat ipsilateral inferior colliculus. Neuroreport, 19(14), 1377-1380.
URL pmid: 18766015 |
[57] |
Poje, A. B., & Filion, D. L. (2017). Erratum to: The effects of multiphasic prepulses on automatic and attention- modulated prepulse inhibition. Cognitive Processing, 18, 271.
doi: 10.1007/s10339-017-0823-8 URL pmid: 28616664 |
[58] |
Romanski, L. M., Tian, B., Fritz, J., Mishkin, M., Goldman-Rakic, P. S., & Rauschecker, J. P. (1999). Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex. Nature Neuroscience, 2(12), 1131-1136.
doi: 10.1038/16056 URL |
[59] |
Röskam, S., & Koch, M. (2006). Enhanced prepulse inhibition of startle using salient prepulses in rats. International Journal of Psychophysiology, 60(1), 10-14.
doi: 10.1016/j.ijpsycho.2005.04.004 URL |
[60] |
Rajji, T. K., & Mulsant, B. H. (2008). Nature and course of cognitive function in late-life schizophrenia: A systematic review. Schizophrenia Research, 102(1-3), 122-140.
URL pmid: 18468868 |
[61] |
Russo, N., Nicol, T., Musacchia, G., & Kraus, N. (2004). Brainstem responses to speech syllables. Clinical Neurophysiology, 115(9), 2021-2033.
doi: 10.1016/j.clinph.2004.04.003 URL pmid: 15294204 |
[62] |
Skoe, E., & Kraus, N. (2012). A little goes a long way: How the adult brain is shaped by musical training in childhood. Journal of Neuroscience, 32(34), 11507-11510.
URL pmid: 22915097 |
[63] | Smith, C. W., & Cornblatt, B. (2005). Attention deficits in the development of schizophrenia: Recent evidence from genetic high-risk and prodromal studies. Current Psychosis & Therapeutics Reports, 3(4), 152-156. |
[64] |
Smith, Z. M., Delgutte, B., & Oxenham, A. J. (2002). Chimaeric sounds reveal dichotomies in auditory perception. Nature, 416(6876), 87-90.
doi: 10.1038/416087a URL pmid: 11882898 |
[65] |
Song, J., Skoe, E., Wong, P., & Kraus, N. (2008). Plasticity in the adult human auditory brainstem following short-term linguistic training. Journal of Cognitive Neuroscience, 20(10), 1892-1902.
URL pmid: 18370594 |
[66] | Song, J. H., Skoe, E., Banai, K., & Kraus, N. (2012). Training to improve hearing speech in noise: Biological mechanisms. Cerebral Cortex, 22(5), 1180-1190. |
[67] | Song, K., Meng, M., Chen, L., Zhou, K., & Luo, H. (2014). Behavioral oscillations in attention: Rhythmic α pulses mediated through θ band. Journal of Neuroscience, 34(14), 4837-4840. |
[68] | Swerdlow, N. R., Karban, B., Ploum, Y., Sharp, R., Geyer, M. A., & Eastvold, A. (2001). Tactile prepuff inhibition of startle in children with Tourette’s syndrome: In search of an “fMRI-friendly” startle paradigm. Biological Psychiatry, 50(8), 578-585. |
[69] |
Swerdlow, N. R., Weber, M., Qu, Y., Light, G. A., & Braff, D. L. (2008). Realistic expectations of prepulse inhibition in translational models for schizophrenia research. Psychopharmacology, 199(3), 331-388.
doi: 10.1007/s00213-008-1072-4 URL pmid: 18568339 |
[70] |
Wang, Q., & Li, L. (2017). Differences between auditory frequency-following responses and onset responses: Intracranial evidence from rat inferior colliculus. Hearing Research, 357, 25-32.
URL pmid: 29156225 |
[71] | Wang, Y., & Luo, H. (2017). Behavioral oscillation in face priming: Prediction about face identity is updated at a theta-band rhythm. Progress in Brain Research, 36(1), 84-90. |
[72] |
Wilson, J. R., & Krishnan, A. (2005). Human frequency- following responses to binaural masking level. Journal of the American Academy of Audiology, 16(3), 184-192.
URL pmid: 15844743 |
[73] | Woods, D. L., Knight, R. T., & Scabini, D. (1993). Anatomical substrates of auditory selective attention: Behavioral and electrophysiological effects of posterior association cortex lesions. Brain Research Cognitive Brain Research, 1(4), 227-232. |
[74] |
Wu, C., Zheng, Y., Li, J., Wu, H., She, S., Liu, S., ... Li, L. (2016). Brain substrates underlying auditory speech priming in healthy listeners and listeners with schizophrenia. Psychological Medicine, 1-11.
doi: 10.1017/S0033291720002366 URL pmid: 32684185 |
[75] | Wu, M., Li, H., Gao, Y., Lei, M., Teng, X., Wu, X., & Li, L. (2012). Adding irrelevant information to the content prime reduces the prime-induced unmasking effect on speech recognition. Hearing Research, 283(1), 136-143. |
[76] |
Wu, X., Wang, C., Chen, J., Qu, H., Li, W., Wu, Y., ... Li, L. (2005). The effect of perceived spatial separation on informational masking of Chinese speech. Hearing Research, 199(1-2), 1-10.
URL pmid: 15574295 |
[77] | Wu, Z. M., Ding, Y., Jia, H. X., & Li, L. (2016). Different effects of isolation-rearing and neonatal MK-801 treatment on attentional modulations of prepulse inhibition of startle in rats. Psychopharmacology, 233(17), 1-14. |
[78] |
Yang, N. B., Tian, Q., Fan, Y., Bo, Q. J., Zhang, L., Li, L., & Wang, C. Y. (2017). Deficits of perceived spatial separation induced prepulse inhibition in patients with schizophrenia: Relationships to symptoms and neurocognition. BMC Psychiatry, 17(1), 135-142.
doi: 10.1186/s12888-017-1276-4 URL pmid: 28399842 |
[79] |
Yeomans, J. S., Li, L., Scott, B. W., & Frankland, P. W. (2002). Tactile, acoustic and vestibular systems sum to elicit the startle reflex. Neuroscience and Biobehavioral Reviews, 26(1), 1-11.
URL pmid: 11835980 |
[80] | Zhang, C., Lu, L., Wu, X., & Li, L. (2014). Attentional modulation of the early cortical representation of speech signals in informational or energetic masking. Brain and Language, 135, 85-95. |
[81] |
Zheng, Y., Wu, C., Li, J., Wu, H., She, S., Liu, S., ... Li, L. (2016). Brain substrates of perceived spatial separation between speech sources under simulated reverberant listening conditions in schizophrenia. Psychological Medicine, 46(3), 477-483.
doi: 10.1017/S0033291715001828 URL pmid: 26423774 |
[82] |
Zündorf, I. C., Lewald, J., & Karnath, H.-O. (2016). Testing the dual-pathway model for auditory processing in human cortex. NeuroImage, 124, 672-681.
URL pmid: 26388552 |
[1] | 崔楠, 王久菊, 赵婧. 注意缺陷多动障碍-发展性阅读障碍共患儿童的干预效果及其内在机理[J]. 心理科学进展, 2023, 31(4): 622-630. |
[2] | 蒋涵. 注意缺陷多动障碍儿童教育康复线上模式的构建[J]. 心理科学进展, 2022, 30(8): 1747-1758. |
[3] | 周国梅, 郑若颖, 林佳, 刘心阁. 面孔吸引力的整体表征及其动态性增强[J]. 心理科学进展, 2022, 30(7): 1429-1438. |
[4] | 刘彦秀, 谢桐, 傅世敏. 物体表征强度对基于动态物体的注意的影响[J]. 心理科学进展, 2022, 30(3): 591-600. |
[5] | 叶丽群, 谭欣, 姚堃, 丁玉珑. 正常老化对视觉早期注意的影响——来自ERP的证据[J]. 心理科学进展, 2022, 30(12): 2746-2763. |
[6] | 张雯, 董亓易如, 龚丽娟, 尚琪, 程琛, 丁雪辰. 运算动量效应的理论解释及其发展性预测因素[J]. 心理科学进展, 2022, 30(12): 2777-2788. |
[7] | 殷融. 读心的比较研究:非人灵长类与人类在心理理论上的异同点及其解释[J]. 心理科学进展, 2022, 30(11): 2540-2557. |
[8] | 侯文文, 苏怡. 注意和记忆对孤独症儿童词汇发展滞后的影响[J]. 心理科学进展, 2022, 30(11): 2558-2569. |
[9] | 李婧婷, 东子朝, 刘烨, 王甦菁, 庄东哲. 基于人类注意机制的微表情检测方法[J]. 心理科学进展, 2022, 30(10): 2143-2153. |
[10] | 王紫乐, 张琪. 视觉搜索中注意模板促进搜索的内在机制[J]. 心理科学进展, 2022, 30(10): 2206-2218. |
[11] | 吴瑕, 王浚哲, 王赟, 陈瀛, 杨海波. 类别注意控制定势在注意捕获中的加工机制[J]. 心理科学进展, 2022, 30(10): 2219-2227. |
[12] | 干加裙, 王恩国. 自闭症谱系障碍个体的注意解离[J]. 心理科学进展, 2022, 30(1): 129-140. |
[13] | 李爱梅, 车敬上, 刘楠, 孙海龙, 周玮. 海量信息如何影响跨期决策?基于注意资源的理论视角[J]. 心理科学进展, 2021, 29(9): 1521-1533. |
[14] | 何嘉梅, 金磊. 目标概念的辨析及其对决策的影响[J]. 心理科学进展, 2021, 29(8): 1410-1419. |
[15] | 荆伟, 张婕, 付锦霞, 田琳, 赵微. 婴幼儿面孔注意偏向:先天倾向与发展轨迹——来自正常和孤独症婴幼儿的证据[J]. 心理科学进展, 2021, 29(7): 1216-1230. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||