心理科学进展 ›› 2020, Vol. 28 ›› Issue (7): 1042-1055.doi: 10.3724/SP.J.1042.2020.01042
收稿日期:
2019-04-22
出版日期:
2020-07-15
发布日期:
2020-05-21
通讯作者:
吴寅
E-mail:yinwu0407@gmail.com
基金资助:
ZHANG Yinhua, LI Hong, WU Yin()
Received:
2019-04-22
Online:
2020-07-15
Published:
2020-05-21
Contact:
WU Yin
E-mail:yinwu0407@gmail.com
摘要:
道德认知关注道德心理背后的信息加工。近年来, 研究者开始将计算模型应用于道德认知研究, 以探索道德认知如何在大脑中实现。但目前研究者对道德认知进行计算建模的研究处于起步阶段。计算模型(漂移扩散模型、效用模型、强化学习模型和分层高斯过筛器模型)在道德认知行为和生理研究上的运用量化了道德决策、道德判断和道德推理背后的认知过程和神经机制。此外, 这一新进展对理解反社会行为和精神障碍等有所助益。最后, 计算建模有待完善, 未来研究需要关注其潜在的问题。
中图分类号:
张银花, 李红, 吴寅. (2020). 计算模型在道德认知研究中的应用. 心理科学进展 , 28(7), 1042-1055.
ZHANG Yinhua, LI Hong, WU Yin. (2020). The application of computational modelling in the studies of moral cognition. Advances in Psychological Science, 28(7), 1042-1055.
模型 | 道德决策 | 道德判断 | 道德推理 |
---|---|---|---|
漂移扩散模型 | Chen & Krajbich, 2018 Hutcherson et al., 2015 Krajbich et al., 2015 | ||
效用模型 | Crockett et al., 2014, 2015, 2017 Gao et al., 2018 Hu et al., 2018 Sáez et al., 2015 Strombach et al., 2015 Yu et al., 2019 Zhu et al., 2014 | Yu et al., 2019 | Yu et al., 2019 |
强化学习模型 | Yu et al., 2019 | Hackel, et al., 2015 Hackel & Zaki, 2018 Shenhav & Greene, 2010, 2014 Yu et al., 2019 | Hackel et al., 2015 Joiner et al., 2017 Suzuki et al., 2012 Yu et al., 2019 |
分层高斯过筛器模型 | Siegel et al., 2018, 2019 |
表1 计算模型在道德认知研究中的应用总结
模型 | 道德决策 | 道德判断 | 道德推理 |
---|---|---|---|
漂移扩散模型 | Chen & Krajbich, 2018 Hutcherson et al., 2015 Krajbich et al., 2015 | ||
效用模型 | Crockett et al., 2014, 2015, 2017 Gao et al., 2018 Hu et al., 2018 Sáez et al., 2015 Strombach et al., 2015 Yu et al., 2019 Zhu et al., 2014 | Yu et al., 2019 | Yu et al., 2019 |
强化学习模型 | Yu et al., 2019 | Hackel, et al., 2015 Hackel & Zaki, 2018 Shenhav & Greene, 2010, 2014 Yu et al., 2019 | Hackel et al., 2015 Joiner et al., 2017 Suzuki et al., 2012 Yu et al., 2019 |
分层高斯过筛器模型 | Siegel et al., 2018, 2019 |
[1] | 参考消息. 中国“基因编辑婴儿”震惊世界!等待贺建奎的将是——. 2019-01-23取自https://cn.bing.com/search?q=参考消息. |
[2] | 刘媛媛, 丁一, 彭凯平, 胡传鹏. (2019). 多项式加工树模型在社会心理学中的应用. 心理科学, 42(2), 422-429. |
[3] |
Ai, S. Z., Yin, Y. L., Chen, Y., Wang, C., Sun, Y., Tang, X. D., ... Shi, J. (2018). Promoting subjective preferences in simple economic choices during nap. eLife, 7, e40583.
doi: 10.7554/eLife.40583 URL pmid: 30520732 |
[4] |
Andrews-Hanna, J. R., Reidler, J. S., Sepulcre, J., Poulin, R., & Buckner, R. L. (2010). Functional-anatomic fractionation of the brain’s default network. Neuron, 65(4), 550-562.
URL pmid: 20188659 |
[5] |
Behrens, T. E. J., Hunt, L. T., & Rushworth, M. F. S . (2019). The computation of social behavior. Science, 324(5931), 1160-1164.
doi: 10.1126/science.1169694 URL pmid: 19478175 |
[6] |
Behrens, T. E. J., Woolrich, M. W., Walton, M. E., & Rushworth, M. F. S . (2007). Learning the value of information in an uncertain world. Nature Neuroscience, 10(9), 1214-1221.
doi: 10.1038/nn1954 URL pmid: 17676057 |
[7] | Beyens, U., Yu, H. B., Han, T., Zhang, L., & Zhou, X. L. (2015). The strength of a remorseful heart: Psychological and neural basis of how apology emolliates reactive aggression and promotes forgiveness. Frontiers in Psychology, 6(1611), 1-16. |
[8] | Bohnet, I., & Zeckhauser, R. (2004). Trust, risk and betrayal. Journal of Economic Behavior & Organization, 55(4), 467-484. |
[9] | Brown, J. W. (2014). The tale of the neuroscientists and the computer: Why mechanistic theory matters. Frontiers in neuroscience, 8(349), 1-3. |
[10] |
Brown, V. M., Zhu, L. S., Wang, J. M., Frueh, B. C., King- Casas, B., & Chiu, P. H. (2018). Associability-modulated loss learning is increased in posttraumatic stress disorder. eLife, 7, e30150.
doi: 10.7554/eLife.30150 URL pmid: 29313489 |
[11] |
Cameron, C. D., Payne, B. K., Sinnott-Armstrong, W., Scheffer, J. A., & Inzlicht, M. (2017). Implicit moral evaluations: A multinomial modeling approach. Cognition, 158, 224-241.
URL pmid: 27865113 |
[12] |
Charpentier, C. J., & O’Doherty, J. P. (2018). The application of computational models to social neuroscience: Promises and pitfalls. Social Neuroscience, 13(6), 637-647.
URL pmid: 30173633 |
[13] | Chen, C., Takahashi, T., Nakagawa, S., Inoue, T., & Kusumi, I. (2015). Reinforcement learning in depression: A review of computational research. Neuroscience & Biobehavioral Reviews, 55, 247-267. |
[14] |
Chen, F., & Krajbich, I. (2018). Biased sequential sampling underlies the effects of time pressure and delay in social decision making. Nature Communications, 9(1), 3557.
URL pmid: 30177719 |
[15] | Cohn, A., Fehr, E., & Maréchal, M. A. (2014). Business culture and dishonesty in the banking industry. Nature, 516(7529), 86-89. |
[16] | Crockett, M. J., Clark, L., Hauser, M. D., & Robbins, T. W. (2010). Serotonin selectively influences moral judgment and behavior through effects on harm aversion. Proceedings of the National Academy of Sciences, 107(40), 17433-17438. |
[17] | Crockett, M. J., Kurth-Nelson, Z., Siegel, J. Z., Dayan, P., & Dolan, R. J. (2014). Harm to others outweighs harm to self in moral decision making. Proceedings of the National Academy of Sciences, 111(48), 17320-17325. |
[18] | Crockett, M. J., Siegel, J. Z., Kurth-Nelson, Z., Dayan, P., & Dolan, R. J. (2017). Moral transgressions corrupt neural representations of value. Nature neuroscience, 20(6), 879-885. |
[19] |
Crockett, M. J., Siegel, J. Z., Kurth-Nelson, Z., Ousdal, O. T., Story, G., Frieband, C., ... Dolan, R. J. (2015). Dissociable effects of serotonin and dopamine on the valuation of harm in moral decision making. Current Biology, 25(14), 1852-1859.
URL pmid: 26144968 |
[20] | Debreu, G. (1954). Representation of a preference ordering by a numerical function. Decision Processes, 3, 159-165. |
[21] |
Eikemo, M., Biele, G., Willoch, F., Thomsen, L., & Leknes, S. (2017). Opioid modulation of value-based decision- making in healthy humans. Neuropsychopharmacology, 42(9), 1833-1840.
URL pmid: 28294136 |
[22] | Eisenegger, C., Naef, M., Snozzi, R., Heinrichs, M., & Fehr, E. (2010). Prejudice and truth about the effect of testosterone on human bargaining behaviour. Nature, 463(7279), 356-359. |
[23] | Elqayam, S., Wilkinson, M. R., Thompson, V. A., Over, D. E., & Evans, J. S. B . (2017). Utilitarian moral judgment exclusively coheres with inference from is to ought. Frontiers in Psychology, 8, 1042. |
[24] |
Engelmann, J. B., & Fehr, E. (2016). The slippery slope of dishonesty. Nature Neuroscience, 19(12), 1543-1544.
doi: 10.1038/nn.4441 URL pmid: 27898084 |
[25] | Feldmanhall, O., Dunsmoor, J. E., Tompary, A., Hunter, L. E., Todorov, A., & Phelps, E. A. (2018). Stimulus generalization as a mechanism for learning to trust. Proceedings of the National Academy of Sciences of the United States of America, 115(7), E1690-E1697. |
[26] | Feldmanhall, O., Otto, A. R., & Phelps, E. A. (2018). Learning moral values: Another's desire to punish enhances one's own punitive behavior. Journal of Experimental Psychology: General, 147(8), 1211-1224. |
[27] | Gächter, S., & Schulz, J. F. (2016). Intrinsic honesty and the prevalence of rule violations across societies. Nature, 531(7595), 496-499. |
[28] |
Gamer, M., Rill, H. G., Vossel, G., & Gödert, H. W. (2006). Psychophysiological and vocal measures in the detection of guilty knowledge. International Journal of Psychophysiology, 60(1), 76-87.
URL pmid: 16005091 |
[29] | Gao, X. X., Yu, H. B., Sáez, I., Blue, P. R., Zhu, L. S., Hsu, M., & Zhou, X. L. (2018). Distinguishing neural correlates of context-dependent advantageous-and disadvantageous- inequity aversion. Proceedings of the National Academy of Sciences, 115(33), E7680-7689. |
[30] | Garon, M., Lavallée, M. M., Estay, E. V., & Beauchamp, M. H. (2018). Visual encoding of social cues predicts sociomoral reasoning. PloS One, 13(7), e0201099. |
[31] | Garrett, N., Lazzaro, S. C., Ariely, D., & Sharot, T. (2016). The brain adapts to dishonesty. Nature Neuroscience, 19(12), 1727-1732. |
[32] |
Gawronski, B., Conway, P., Armstrong, J., Friesdorf, R., & Hütter, M. (2018). Effects of Incidental emotions on moral dilemma judgments: An analysis using the CNI model. Emotion, 18(7), 989-1008.
URL pmid: 29389208 |
[33] |
Gershman, S. J., & Niv, Y. (2010). Learning latent structure: Carving nature at its joints. Current Opinion in Neurobiology, 20(2), 251-256.
URL pmid: 20227271 |
[34] |
Gold, J. I., & Shadlen, M. N. (2007). The neural basis of decision making. Annual Review of Neuroscience, 30, 535-574.
URL pmid: 17600525 |
[35] | Gray, J. (1987). The economic approach to human behavior: Its prospects and limitations. In Radnitzky, G., Bernholz, P.(Eds.), The economic method applied outside the field of economics |
[36] | Greene, J. D. (2007). Why are vmPFC patients more utilitarian? A dual-process theory of moral judgment explains. Trends in Cognitive Sciences, 11(8), 322-323. |
[37] | Greene, J. (2014). Moral tribes: Emotion, reason, and the gap between us and them. Penguin. |
[38] | Greene, J. D., & Paxton, J. M. (2009). Patterns of neural activity associated with honest and dishonest moral decisions. Proceedings of the National Academy of Sciences, 106(30), 12506-12511. |
[39] |
Hackel, L. M., Doll, B. B., & Amodio, D. M. (2015). Instrumental learning of traits versus rewards: Dissociable neural correlates and effects on choice. Nature Neuroscience, 18(9), 1233-1235.
URL pmid: 25064850 |
[40] |
Hackel, L. M., & Zaki, J. (2018). Propagation of economic inequality through reciprocity and reputation. Psychological science, 29(4), 604-613.
URL pmid: 29474134 |
[41] |
Hill, C. A., Suzuki, S., Polania, R., Moisa, M., O’Doherty, J. P., & Ruff, C. C. (2017). A causal account of the brain network computations underlying strategic social behavior. Nature Neuroscience, 20(8), 1142-1149.
URL pmid: 28692061 |
[42] | Hu, Y., He, L. S., Zhang, L., Wölk, T., Dreher, J.-C., & Weber, B. (2018). Spreading inequality: Neural computations underlying paying-it-forward reciprocity. Social Cognitive and Affective Neuroscience, 13(6), 578-589. |
[43] |
Hutcherson, C. A., Bushong, B., & Rangel, A. (2015). A neurocomputational model of altruistic choice and its implications. Neuron, 87(2), 451-462.
URL pmid: 26182424 |
[44] |
Jiang, J. F., Summerfield, C., & Egner, T. (2016). Visual prediction error spreads across object features in human visual cortex. The Journal of Neuroscience, 36(50), 12746-12763.
doi: 10.1523/JNEUROSCI.1546-16.2016 URL pmid: 27810936 |
[45] | Joiner, J., Piva, M., Turrin, C., & Chang, S. W. C . (2017). Social learning through prediction error in the brain. npj Science of Learning, 2(1), 8, 1-9. |
[46] | Johnson, D. D. P., Blumstein, D. T., Fowler, J. H., & Haselton, M. G. (2013). The evolution of error: Error management, cognitive constraints, and adaptive decision-making biases. Trends in Ecology & Evolution, 28(8), 474-481. |
[47] |
Jordan, J. J., Sommers, R., Bloom, P., & Rand, D. G. (2017). Why do we hate hypocrites? Evidence for a theory of false signaling. Psychological Science, 28(3), 356-368.
doi: 10.1177/0956797616685771 URL pmid: 28107103 |
[48] | Kamm, F. M.(2015). The trolley problem mysteries. Oxford University Press. |
[49] |
Khalvati, K., Park, S. A., Mirbagheri, S., Philippe, R., Sestito, M., Dreher, J. C., & Rao, R. P. (2019). Modeling other minds: Bayesian inference explains human choices in group decision-making. Science Advances, 5(11), eaax8783
URL pmid: 31807706 |
[50] |
Koenigs, M., Young, L., Adolphs, R., Tranel, D., Cushman, F., Hauser, M., & Damasio, A. (2007). Damage to the prefrontal cortex increases utilitarian moral judgements. Nature, 446(7138), 908-911.
URL pmid: 17377536 |
[51] |
Konovalov, A., Hu, J., & Ruff, C. C. (2018). Neurocomputational approaches to social behavior. Current Opinion in Psychology, 24, 41-47.
doi: 10.1016/j.copsyc.2018.04.009 URL pmid: 29738891 |
[52] | Konovalov, A., & Krajbich, I. (2019). Revealed indifference: Using response times to infer preferences. Judgment and Decision Making, 14(4), 381-394. |
[53] | Krajbich, I., Armel, C., & Rangel, A. (2010). Visual fixations and the computation and comparison of value in simple choice. Nature Neuroscience, 13(10), 1292-1298. |
[54] |
Krajbich, I., Hare, T., Bartling, B., Morishima, Y., & Fehr, E. (2015). A common mechanism underlying food choice and social decisions. PLoS Computational Biology, 11(10), e1004371.
doi: 10.1371/journal.pcbi.1004371 URL pmid: 26460812 |
[55] | Lee, M. D., Criss, A. H., Devezer, B., Donkin, C., Etz, A., Leite, F. P., ... Vandekerckhove, J. (2019). Robust modeling in cognitive science. Computational Brain & Behavior, 2, 141-153. |
[56] |
Lerche, V., & Voss, A. (2019). Experimental validation of the diffusion model based on a slow response time paradigm. Psychological Research, 83(6), 1194-1209.
doi: 10.1007/s00426-017-0945-8 URL pmid: 29224184 |
[57] | Levine, E. E., Barasch, A., Rand, D. G., Berman, J. Z., & Small, D. A. (2018). Signaling emotion and reason in cooperation. Journal of Experiment Psychology: General, 147(5), 702-719. |
[58] |
Liu, Y., Li, S., Lin, W., Li, W., Yan, X., Wang, X., ... Ma, Y. (2019). Oxytocin modulates social value representations in the amygdala. Nature Neuroscience, 22(4), 633-644.
doi: 10.1038/s41593-019-0351-1 URL pmid: 30911182 |
[59] |
Lopez-Persem, A., Rigoux, L., Bourgeois-Gironde, S., Daunizeau, J., & Pessiglione, M. (2017). Choose, rate or squeeze: comparison of economic value functions elicited by different behavioral tasks. PLoS Computational Biology, 13(11), e1005848.
doi: 10.1371/journal.pcbi.1005848 URL pmid: 29161252 |
[60] | Mars, R. B., Shea, N. J., Kolling, N., & Rushworth, M. F. S . (2012). Model-based analyses: Promises, pitfalls, and example applications to the study of cognitive control. Quarterly Journal of Experimental Psychology, 65(2), 252-267. |
[61] | Mathys, C. D., Daunizeau, J., Friston, K. J., & Stephan, K. E. (2011). A bayesian foundation for individual learning under uncertainty. Frontiers in Human Neuroscience, 5(39), 1-20. |
[62] |
Mathys, C. D., Lomakina, E. I., Daunizeau, J., Iglesias, S., Brodersen, K. H., Friston, K. J., & Stephan, K.E. (2014). Uncertainty in perception and the hierarchical gaussian filter. Frontiers in Human Neuroscience, 8, 825.
URL pmid: 25477800 |
[63] | Meder, D., Kolling, N., Verhagen, L., Wittmann, M. K., Scholl, J., Madsen K. H, … Rushworth, M. F. S. (2017). Simultaneous representation of a spectrum of dynamically changing value estimates during decision making. Nature Communications, 8(1942), 1-11. |
[64] | Mormann, M. M., Malmaud, J., Huth, A., Koch, C., & Rangel, A. (2010). The drift diffusion model can account for the accuracy and reaction time of value-based choices under high and low time pressure. Judgment and Decision Making, 5(6), 437-449. |
[65] |
Nave, G., Camerer, C., & McCullough, M. (2015). Does oxytocin increase trust in humans? A critical review of research. Perspectives on Psychological Science, 10(6), 772-789.
doi: 10.1177/1745691615600138 URL pmid: 26581735 |
[66] |
Nowak, M. A., & Sigmund, K. (2005). Evolution of indirect reciprocity. Nature, 437(7063), 1291-1298.
doi: 10.1038/nature04131 URL pmid: 16251955 |
[67] |
Palminteri, S., Wyart, V., & Koechlin, E. (2017). The importance of falsification in computational cognitive modeling. Trends in Cognitive Sciences, 21(6), 425-433.
doi: 10.1016/j.tics.2017.03.011 URL pmid: 28476348 |
[68] |
Qu, C., Météreau, E., Butera, L., Villeval, M. C., & Dreher, J. C. (2019). Neurocomputational mechanisms at play when weighing concerns for extrinsic rewards, moral values, and social image. PLoS Biology, 17(6), e3000283.
doi: 10.1371/journal.pbio.3000283 URL pmid: 31170138 |
[69] | Randløv, J. & Alstrøm, P,(1998). Learning to drive a bicycle using reinforcement learning and shaping. Paper presented at the Proceedings of the Fifteenth International Conference on Machine Learning (USA), Madison, Wisconsin (pp. 463-471). The International Machine Learning Society. |
[70] | Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85(2), 59-108. |
[71] |
Ratcliff, R., & McKoon, G. (2008). The diffusion decision model: Theory and data for two-choice decision tasks. Neural Computation, 20(4), 873-922.
doi: 10.1162/neco.2008.12-06-420 URL pmid: 18085991 |
[72] |
Ratcliff, R., Smith, P. L., Brown, S. D., & Mckoon, G. (2016). Diffusion decision model: Current issues and history. Trends in Cognitive Sciences, 20(4), 260-281.
doi: 10.1016/j.tics.2016.01.007 URL pmid: 26952739 |
[73] |
Ratcliff, R., Thapar, A., & Mckoon, G. (2003). A diffusion model analysis of the effects of aging on brightness discrimination. Perception & Psychophysics, 65(4), 523-535.
doi: 10.3758/bf03194580 URL pmid: 12812276 |
[74] | Ratcliff, R., Thapar, A., & McKoon, G. (2004). A diffusion model analysis of the effects of aging on recognition memory. Journal of Memory and Language, 50(4), 408-424. |
[75] | Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In Black, A. H., Prokasy, W. F.(Eds.), Current research and theory (pp. 64-99). New York: Appleton-Century-Crofts. |
[76] | Riedmiller, M., Gabel, T., Hafner, R., & Lange, S. (2009). Reinforcement learning for robot soccer. Autonomous Robots, 27(1), 55-73. |
[77] |
Rothkirch, M., Tonn, J., Köhler, S., & Sterzer, P. (2017). Neural mechanisms of reinforcement learning in unmedicated patients with major depressive disorder. Brain, 140(4), 1147-1157.
URL pmid: 28334960 |
[78] |
Sáez, I., Zhu, L. S., Set, E., Kayser, A., & Hsu, M. (2015). Dopamine modulates egalitarian behavior in humans. Current Biology, 25(7), 912-919.
doi: 10.1016/j.cub.2015.01.071 URL pmid: 25802148 |
[79] |
Schein, C., & Gray, K. (2015). The unifying moral dyad: Liberals and conservatives share the same harm-based moral template. Personality and Social Psychology Bulletin, 41(8), 1147-1163.
doi: 10.1177/0146167215591501 URL pmid: 26091912 |
[80] |
Schein, C., & Gray, K. (2018). The theory of dyadic morality: Reinventing moral judgment by redefining harm. Personality and Social Psychology Review, 22(1), 32-70.
doi: 10.1177/1088868317698288 URL pmid: 28504021 |
[81] |
Shenhav, A., & Greene, J. D. (2010). Moral judgments recruit domain-general valuation mechanisms to integrate representations of probability and magnitude. Neuron, 67(4), 667-677.
doi: 10.1016/j.neuron.2010.07.020 URL pmid: 20797542 |
[82] |
Shenhav, A., & Greene, J. D. (2014). Integrative moral judgment: Dissociating the roles of the amygdala and the ventromedial prefrontal cortex. Journal of Neuroscience, 34(13), 4741-4749.
doi: 10.1523/JNEUROSCI.3390-13.2014 URL pmid: 24672018 |
[83] |
Siegel, J. Z., Estrada, S., Crockett, M. J., & Baskin-Sommers, A. (2019). Exposure to violence affects the development of moral impressions and trust behavior in incarcerated males. Nature Communications, 10(1), 1942.
doi: 10.1038/s41467-019-09962-9 URL pmid: 31028269 |
[84] |
Siegel, J. Z., Mathys, C., Rutledge, R. B., & Crockett, M. J. (2018). Beliefs about bad people are volatile. Nature Human Behaviour, 2(10), 750-256.
doi: 10.1038/s41562-018-0425-1 URL pmid: 31406285 |
[85] |
Smith, P. L., Ratcliff, R., & Wolfgang, B. J. (2004). Attention orienting and the time course of perceptual decisions: Response time distributions with masked and unmasked displays. Vision Research, 44(12), 1297-1320.
doi: 10.1016/j.visres.2004.01.002 URL pmid: 15066392 |
[86] | Strombach, T., Weber, B., Hangebrauk, Z., Kenning, P., Karipidis, I. I., Tobler, P. N., & Kalenscher, T. (2015). Social discounting involves modulation of neural value signals by temporoparietal junction. Proceedings of the National Academy of Sciences, 112(5), 1619-1624. |
[87] | Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction. MIT press. |
[88] |
Suzuki, S., Harasawa, N., Ueno, K., Gardner, J. L., Ichinohe, N., Haruno, M., ... Nakahara, H. (2012). Learning to simulate others' decisions. Neuron, 74(6), 1125-1137.
doi: 10.1016/j.neuron.2012.04.030 URL pmid: 22726841 |
[89] |
Sven, C., Wolfgang, M. P., Peter, B., & John, O. (2017). Neural computations underlying inverse reinforcement learning in the human brain. eLife, 6, e29718.
doi: 10.7554/eLife.29718 URL pmid: 29083301 |
[90] | Szepesvari, C. (2010). Algorithms for reinforcement learning. In Synthesis Lectures on Artificial Intelligence and Machine Learning, 4.1, 1-103. |
[91] | Tesauro, G. (1995). Temporal difference learning and TD-Gammon. Communications of the ACM, 38(3), 58-68. |
[92] |
Thapar, A., Ratcliff, R., & Mckoon, G. (2003). A diffusion model analysis of the effects of aging on letter discrimination. Psychology & Aging, 18(3), 415-429.
doi: 10.1037/0882-7974.18.3.415 URL pmid: 14518805 |
[93] | Tyrer, P. P., Reed, G. M., & Crawford, M. J. (2015). Classification, assessment, prevalence, and effect of personality disorder. The Lancet, 385(9969), 717-726. |
[94] |
Uhlmann, E. L., Pizarro, D. A., & Diermeier, D. (2015). A person-centered approach to moral judgment. Perspectives on Psychological Science, 10(1), 72-81.
doi: 10.1177/1745691614556679 URL pmid: 25910382 |
[95] | Uhlmann, E. L., & Zhu, L. (2014). Acts, persons, and intuitions: Person-centered cues and gut reactions to harmless transgressions. Social Psychological and Personality Science, 5(3), 279-285. |
[96] |
Valton, V., Romaniuk, L., Steele, J. D., Lawrie, S., & Seriès, P. (2017). Comprehensive review: Computational modelling of schizophrenia. Neuroscience & Biobehavioral Reviews, 83, 631-646.
doi: 10.1016/j.neubiorev.2017.08.022 URL pmid: 28867653 |
[97] |
Voss, A., Rothermund, K., & Voss, J. (2004). Interpreting the parameters of the diffusion model: An empirical validation. Memory & Cognition, 32(7), 1206-1220.
doi: 10.3758/bf03196893 URL pmid: 15813501 |
[98] |
Wallis, J. D. (2007). Orbitofrontal cortex and its contribution to decision-making. Annual Review of Neuroscience, 30, 31-56.
doi: 10.1146/annurev.neuro.30.051606.094334 URL pmid: 17417936 |
[99] |
Xie, W. W., Yu, B. Y., Zhou, X. Y., Sedikides, C., & Vohs, K. D. (2014). Money, moral transgressions, and blame. Journal of Consumer Psychology, 24(3), 299-306.
doi: 10.1016/j.jcps.2013.12.002 URL |
[100] |
Yu, H. B., Siegel, J. Z., Crockett, M. J. (2019). Modeling morality in 3-D: Decision-making, judgment, and inference. Topics in Cognitive Science, 11(2), 409-432.
doi: 10.1111/tops.12382 URL pmid: 31042018 |
[101] |
Zhong, S. F., Chark, R. B., Hsu, M., & Chew, S. H. (2016). Computational substrates of social norm enforcement by unaffected third parties. NeuroImage, 129, 95-104.
doi: 10.1016/j.neuroimage.2016.01.040 URL pmid: 26825438 |
[102] |
Zhu, L. S., Jenkins, A. C., Set, E., Scabini, D., Knight, R. T., Chiu, P. H., ... Hsu, M. (2014). Damage to dorsolateral prefrontal cortex affects tradeoffs between honesty and self-interest. Nature Neuroscience, 17(10), 1319-1321.
doi: 10.1038/nn.3798 URL |
[103] |
Zhu, L. S., Jiang, Y. M., Scabini, D., Knight, R. T., & Hsu, M. (2019). Patients with basal ganglia damage show preserved learning in an economic game. Nature Communications, 10(802), 1-10.
doi: 10.1038/s41467-018-07882-8 URL |
[104] |
Zsuga, J., Biro, K., Papp, C., Tajti, G., & Gesztelyi, R. (2016). The “proactive” model of learning: Integrative framework for model-free and model-based reinforcement learning utilizing the associative learning-based proactive brain concept. Behavioral Neuroscience, 130(1), 6-18.
doi: 10.1037/bne0000116 URL pmid: 26795580 |
[1] | 朱麟, 刘瑾茹, 李静, 刘聪慧. 道德外语效应及其调节变量:来自元分析的证据[J]. 心理科学进展, 2022, 30(1): 32-50. |
[2] | 刘传军, 廖江群. 道德困境研究的范式沿革及其理论价值[J]. 心理科学进展, 2021, 29(8): 1508-1520. |
[3] | 黎穗卿, 陈新玲, 翟瑜竹, 张怡洁, 章植鑫, 封春亮. 人际互动中社会学习的计算神经机制[J]. 心理科学进展, 2021, 29(4): 677-696. |
[4] | 高青林, 周媛. 计算模型视角下信任形成的心理和神经机制——基于信任博弈中投资者的角度[J]. 心理科学进展, 2021, 29(1): 178-189. |
[5] | 李精精, 张剑, 田慧荣, Jeffrey B.Vancouver. 动态计算模型在组织行为学研究中的应用[J]. 心理科学进展, 2020, 28(2): 368-380. |
[6] | 徐科朋, 杨凌倩, 吴家虹, 薛宏, 张姝玥. CNI模型在道德决策研究中的应用[J]. 心理科学进展, 2020, 28(12): 2102-2113. |
[7] | 区健新, 吴寅, 刘金婷, 李红. 计算精神病学:抑郁症研究和临床应用的新视角[J]. 心理科学进展, 2020, 28(1): 111-127. |
[8] | 谢家全, 谢昌颐, 杨文登. 饥饿对认知与社会行为的影响及其机制[J]. 心理科学进展, 2020, 28(1): 141-149. |
[9] | 高绍兵, 李永杰. 结合视觉自底向上和自顶向下机制的多光源颜色恒常性算法研究[J]. 心理科学进展, 2019, 27(suppl.): 96-96. |
[10] | 詹泽, 吴宝沛. 无处不在的伤害:二元论视角下的道德判断[J]. 心理科学进展, 2019, 27(1): 128-140. |
[11] | 严瑜, 李彤. 工作场所不文明行为受害者向实施者反转的机制[J]. 心理科学进展, 2018, 26(7): 1307-1318. |
[12] | 胡晓檬, 喻丰, 彭凯平. 文化如何影响道德?文化间变异、文化内变异与多元文化的视角[J]. 心理科学进展, 2018, 26(11): 2081-2090. |
[13] | 李明晖, 饶俪琳. 解释水平视角下的道德判断[J]. 心理科学进展, 2017, 25(8): 1423-1430. |
[14] | 钟毅平, 占友龙, 李琎, 范伟. 道德决策的机制及干预研究: 自我相关性与风险水平的作用[J]. 心理科学进展, 2017, 25(7): 1093-1102. |
[15] | 叶红燕;张凤华. 从具身视角看道德判断[J]. 心理科学进展, 2015, 23(8): 1480-1488. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||