心理科学进展 ›› 2024, Vol. 32 ›› Issue (4): 700-714.doi: 10.3724/SP.J.1042.2024.00700
• 研究方法 • 上一篇
收稿日期:
2023-08-29
出版日期:
2024-04-15
发布日期:
2024-02-29
通讯作者:
刘红云
E-mail:hyliu@bnu.edu.cn
基金资助:
Received:
2023-08-29
Online:
2024-04-15
Published:
2024-02-29
Contact:
LIU Hongyun
E-mail:hyliu@bnu.edu.cn
摘要:
随着密集追踪研究在心理学等社会科学领域的广泛运用, 密集追踪情境中测验信度的估计也受到越来越多研究者的关注。早期沿用横断研究中信度估计思想或基于概化理论的信度估计方法存在诸多局限, 并不适用于密集追踪的情境。针对密集追踪数据的多层结构和动态特性这两大特点, 可基于多层验证性因子分析、动态因子分析和动态结构方程模型估计密集追踪研究中测验的信度。通过实证数据的演示与比较, 讨论三种估计方法的特点和适用情境。未来研究可基于其它密集追踪模型探讨测验信度的估计, 也应重视测验信度的检验与报告。
中图分类号:
罗晓慧, 刘红云. (2024). 密集追踪研究中测验信度的估计:多层结构和动态特性的视角. 心理科学进展 , 32(4), 700-714.
LUO Xiaohui, LIU Hongyun. (2024). Estimating test reliability of intensive longitudinal studies: Perspectives on multilevel structure and dynamic nature. Advances in Psychological Science, 32(4), 700-714.
题目 | 基于多层验证性因子分析 | 基于动态因子分析a | 基于动态结构方程模型 | ||
---|---|---|---|---|---|
个体间信度 | 个体内信度 | 个体内信度 | 个体间信度 | 个体内信度 | |
题目1 | 0.954 [0.929, 0.979] | 0.511 [0.047, 0.550] | 0.649 [0.566, 0.704] | 0.973 [0.961, 0.985] | 0.514 [0.500, 0.528] |
题目2 | 0.731 [0.631, 0.831] | 0.305 [0.266, 0.344] | 0.472 [0.365, 0.556] | 0.851 [0.802, 0.900] | 0.329 [0.311, 0.343] |
题目3 | 0.905 [0.864, 0.946] | 0.689 [0.654, 0.724] | 0.753 [0.677, 0.796] | 0.930 [0.908, 0.952] | 0.677 [0.658, 0.687] |
题目4 | 0.903 [0.854, 0.952] | 0.689 [0.644, 0.734] | 0.733 [0.657, 0.783] | 0.948 [0.930, 0.966] | 0.682 [0.667, 0.694] |
题目5 | 0.946 [0.922, 0.970] | 0.623 [0.586, 0.660] | 0.747 [0.657, 0.788] | 0.966 [0.952, 0.980] | 0.599 [0.585, 0.609] |
题目6 | 0.963 [0.939, 0.987] | 0.652 [0.615, 0.689] | 0.747 [0.670, 0.792] | 0.990 [0.982, 0.998] | 0.618 [0.603, 0.629] |
测验 | 0.982 [0.976, 0.988] | 0.892 [0.882, 0.902] | 0.919 [0.890, 0.937] | 0.990 [0.988, 0.992] | 0.847 [0.840, 0.852] |
表1 三种方法的个体间信度和个体内信度
题目 | 基于多层验证性因子分析 | 基于动态因子分析a | 基于动态结构方程模型 | ||
---|---|---|---|---|---|
个体间信度 | 个体内信度 | 个体内信度 | 个体间信度 | 个体内信度 | |
题目1 | 0.954 [0.929, 0.979] | 0.511 [0.047, 0.550] | 0.649 [0.566, 0.704] | 0.973 [0.961, 0.985] | 0.514 [0.500, 0.528] |
题目2 | 0.731 [0.631, 0.831] | 0.305 [0.266, 0.344] | 0.472 [0.365, 0.556] | 0.851 [0.802, 0.900] | 0.329 [0.311, 0.343] |
题目3 | 0.905 [0.864, 0.946] | 0.689 [0.654, 0.724] | 0.753 [0.677, 0.796] | 0.930 [0.908, 0.952] | 0.677 [0.658, 0.687] |
题目4 | 0.903 [0.854, 0.952] | 0.689 [0.644, 0.734] | 0.733 [0.657, 0.783] | 0.948 [0.930, 0.966] | 0.682 [0.667, 0.694] |
题目5 | 0.946 [0.922, 0.970] | 0.623 [0.586, 0.660] | 0.747 [0.657, 0.788] | 0.966 [0.952, 0.980] | 0.599 [0.585, 0.609] |
题目6 | 0.963 [0.939, 0.987] | 0.652 [0.615, 0.689] | 0.747 [0.670, 0.792] | 0.990 [0.982, 0.998] | 0.618 [0.603, 0.629] |
测验 | 0.982 [0.976, 0.988] | 0.892 [0.882, 0.902] | 0.919 [0.890, 0.937] | 0.990 [0.988, 0.992] | 0.847 [0.840, 0.852] |
题目 | 基于动态因子分析a | 基于动态结构方程模型 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
最小值 | 最大值 | 中位数 | 均值 | 标准差 | 最小值 | 最大值 | 中位数 | 均值 | 标准差 | |
题目1 | 0.027 | 0.978 | 0.655 | 0.648 | 0.172 | 0.041 | 0.994 | 0.534 | 0.515 | 0.204 |
题目2 | 0.047 | 1.000 | 0.474 | 0.471 | 0.262 | 0.034 | 0.984 | 0.290 | 0.329 | 0.204 |
题目3 | 0.014 | 1.000 | 0.782 | 0.753 | 0.178 | 0.032 | 0.999 | 0.724 | 0.676 | 0.236 |
题目4 | 0.110 | 1.000 | 0.795 | 0.737 | 0.205 | 0.030 | 0.999 | 0.745 | 0.683 | 0.238 |
题目5 | 0.219 | 1.000 | 0.760 | 0.746 | 0.148 | 0.055 | 0.999 | 0.641 | 0.599 | 0.238 |
题目6 | 0.144 | 1.000 | 0.770 | 0.745 | 0.157 | 0.056 | 0.999 | 0.638 | 0.619 | 0.214 |
测验 | 0.651 | 1.000 | 0.931 | 0.919 | 0.055 | 0.296 | 0.976 | 0.891 | 0.847 | 0.123 |
表2 基于动态因子分析和动态结构方程模型的个体特定信度的分布
题目 | 基于动态因子分析a | 基于动态结构方程模型 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
最小值 | 最大值 | 中位数 | 均值 | 标准差 | 最小值 | 最大值 | 中位数 | 均值 | 标准差 | |
题目1 | 0.027 | 0.978 | 0.655 | 0.648 | 0.172 | 0.041 | 0.994 | 0.534 | 0.515 | 0.204 |
题目2 | 0.047 | 1.000 | 0.474 | 0.471 | 0.262 | 0.034 | 0.984 | 0.290 | 0.329 | 0.204 |
题目3 | 0.014 | 1.000 | 0.782 | 0.753 | 0.178 | 0.032 | 0.999 | 0.724 | 0.676 | 0.236 |
题目4 | 0.110 | 1.000 | 0.795 | 0.737 | 0.205 | 0.030 | 0.999 | 0.745 | 0.683 | 0.238 |
题目5 | 0.219 | 1.000 | 0.760 | 0.746 | 0.148 | 0.055 | 0.999 | 0.641 | 0.599 | 0.238 |
题目6 | 0.144 | 1.000 | 0.770 | 0.745 | 0.157 | 0.056 | 0.999 | 0.638 | 0.619 | 0.214 |
测验 | 0.651 | 1.000 | 0.931 | 0.919 | 0.055 | 0.296 | 0.976 | 0.891 | 0.847 | 0.123 |
比较维度 | 基于多层验证性因子分析 | 基于动态因子分析 | 基于动态结构方程模型 |
---|---|---|---|
数据适配度 | 体现密集追踪数据的多层结构 | 体现密集追踪数据的动态特性 | 体现密集追踪数据的多层结构和动态特性 |
可估的信度 | 个体内信度和个体间信度 | 个体特定信度和个体内信度 | 个体特定信度、个体内信度和个体间信度 |
估计方法 | 极大似然估计 | 贝叶斯估计 | 贝叶斯估计 |
软件需求 | 只需Mplus即可完成 | 需在R中调用Mplus | 需要Mplus和其它统计软件(如, R) |
运行耗时a | 可忽略不计(本例中, 小于1 s) | 较短(本例中, 约10 min) | 较长(本例中, 约2 h) |
主要局限 | ①对数据有较强的假设 ②无法考察信度的个体差异 ③没有考虑数据的动态特性 | ①混淆特质和状态成分, 信度估计不准 ②忽视多层结构, 无法估计个体间信度 ③某些个体模型可能无法拟合 | 操作相对复杂, 耗时较长, 不够简便 |
表3 三种信度估计方法的比较
比较维度 | 基于多层验证性因子分析 | 基于动态因子分析 | 基于动态结构方程模型 |
---|---|---|---|
数据适配度 | 体现密集追踪数据的多层结构 | 体现密集追踪数据的动态特性 | 体现密集追踪数据的多层结构和动态特性 |
可估的信度 | 个体内信度和个体间信度 | 个体特定信度和个体内信度 | 个体特定信度、个体内信度和个体间信度 |
估计方法 | 极大似然估计 | 贝叶斯估计 | 贝叶斯估计 |
软件需求 | 只需Mplus即可完成 | 需在R中调用Mplus | 需要Mplus和其它统计软件(如, R) |
运行耗时a | 可忽略不计(本例中, 小于1 s) | 较短(本例中, 约10 min) | 较长(本例中, 约2 h) |
主要局限 | ①对数据有较强的假设 ②无法考察信度的个体差异 ③没有考虑数据的动态特性 | ①混淆特质和状态成分, 信度估计不准 ②忽视多层结构, 无法估计个体间信度 ③某些个体模型可能无法拟合 | 操作相对复杂, 耗时较长, 不够简便 |
[1] | 叶宝娟, 温忠麟, 陈启山. (2012). 追踪研究中测验信度的估计. 心理科学进展, 20(3), 467-474. |
[2] |
郑舒方, 张沥今, 乔欣宇, 潘俊豪. (2021). 密集追踪数据分析:模型及其应用. 心理科学进展, 29(11), 1948-1972.
doi: 10.3724/SP.J.1042.2021.01948 |
[3] |
Asparouhov, T., Hamaker, E. L., & Muthén, B. (2018). Dynamic structural equation models. Structural Equation Modeling: A Multidisciplinary Journal, 25(3), 359-388.
doi: 10.1080/10705511.2017.1406803 URL |
[4] |
Blanke, E. S., & Brose, A. (2017). Mindfulness in daily life: A multidimensional approach. Mindfulness, 8, 737-750.
doi: 10.1007/s12671-016-0651-4 URL |
[5] |
Bolger, N., Davis, A., & Rafaeli, E. (2003). Diary methods: Capturing life as it is lived. Annual Review of Psychology, 54(1), 579-616.
doi: 10.1146/psych.2003.54.issue-1 URL |
[6] | Bolger, N., & Laurenceau, J. P. (2013). Intensive longitudinal methods: An introduction to diary and experience sampling research. Guilford press. |
[7] |
Brose, A., Schmiedek, F., Gerstorf, D., & Voelkle, M. C. (2020). The measurement of within-person affect variation. Emotion, 20(4), 677-699.
doi: 10.1037/emo0000583 pmid: 31008618 |
[8] |
Castro-Alvarez, S., Tendeiro, J. N., de Jonge, P., Meijer, R. R., & Bringmann, L. F. (2022). Mixed-effects trait-state- occasion model: Studying the psychometric properties and the person-situation interactions of psychological dynamics. Structural Equation Modeling: A Multidisciplinary Journal, 29(3), 438-451.
doi: 10.1080/10705511.2021.1961587 URL |
[9] |
Castro-Alvarez, S., Tendeiro, J. N., Meijer, R. R., & Bringmann, L. F. (2022). Using structural equation modeling to study traits and states in intensive longitudinal data. Psychological Methods, 27(1), 17-43.
doi: 10.1037/met0000393 URL |
[10] |
Cattell, R. B., Cattell, A. K. S., & Rhymer, R. M. (1947). P-technique demonstrated in determining psychophysiological source traits in a normal individual. Psychometrika, 12(4), 267-288.
doi: 10.1007/BF02288941 URL |
[11] |
Collins, L. M. (2006). Analysis of longitudinal data: The integration of theoretical model, temporal design, and statistical model. Annual Review of Psychology, 57, 505-528.
pmid: 16318605 |
[12] |
Cranford, J. A., Shrout, P. E., Iida, M., Rafaeli, E., Yip, T., & Bolger, N. (2006). A procedure for evaluating sensitivity to within-person change: Can mood measures in diary studies detect change reliably? Personality and Social Psychology Bulletin, 32(7), 917-929.
pmid: 16738025 |
[13] |
Cronbach, L. J., Rajaratnam, N., & Gleser, G. C. (1963). Theory of generalizability: A liberalization of reliability theory. British Journal of Statistical Psychology, 16(2), 137-163.
doi: 10.1111/bmsp.1963.16.issue-2 URL |
[14] |
Dejonckheere, E., Demeyer, F., Geusens, B., Piot, M., Tuerlinckx, F., Verdonck, S., & Mestdagh, M. (2022). Assessing the reliability of single-item momentary affective measurements in experience sampling. Psychological Assessment, 34(12), 1138-1154.
doi: 10.1037/pas0001178 pmid: 36074609 |
[15] |
Dietrich, J., Schmiedek, F., & Moeller, J. (2022). Academic motivation and emotions are experienced in learning situations, so let's study them [Special issue]. Learning and Instruction, 81, 101623.
doi: 10.1016/j.learninstruc.2022.101623 URL |
[16] |
Di Sarno, M., Zimmermann, J., Madeddu, F., Casini, E., & Di Pierro, R. (2020). Shame behind the corner? A daily diary investigation of pathological narcissism. Journal of Research in Personality, 85, 103924.
doi: 10.1016/j.jrp.2020.103924 URL |
[17] | Driver, C. C., Oud, J. H., & Voelkle, M. C. (2017). Continuous time structural equation modeling with R package ctsem. Journal of Statistical Software, 77(5), 1-35. |
[18] |
Eid, M., Holtmann, J., Santangelo, P., & Ebner-Priemer, U. (2017). On the definition of latent-state-trait models with autoregressive effects. European Journal of Psychological Assessment, 33(4), 285-295.
doi: 10.1027/1015-5759/a000435 URL |
[19] |
Eltanamly, H., Leijten, P., van Roekel, E., Mouton, B., Pluess, M., & Overbeek, G. (2023). Strengthening parental self-efficacy and resilience: A within-subject experimental study with refugee parents of adolescents. Child Development, 94(1), 187-201.
doi: 10.1111/cdev.v94.1 URL |
[20] |
Engyel, M., de Ruiter, N. M., & Urbán, R. (2022). Momentarily narcissistic? Development of a short, state version of the Pathological Narcissism Inventory applicable in momentary assessment. Frontiers in Psychology, 13, 992271.
doi: 10.3389/fpsyg.2022.992271 URL |
[21] | Fisher, A. J., Medaglia, J. D., & Jeronimus, B. F. (2018). Lack of group-to-individual generalizability is a threat to human subjects research. Proceedings of the National Academy of Sciences, 115(27), E6106-E6115. |
[22] |
Fuller-Tyszkiewicz, M., Hartley-Clark, L., Cummins, R. A., Tomyn, A. J., Weinberg, M. K., & Richardson, B. (2017). Using dynamic factor analysis to provide insights into data reliability in experience sampling studies. Psychological Assessment, 29(9), 1120-1128.
doi: 10.1037/pas0000411 pmid: 27819437 |
[23] |
Geldhof, G. J., Preacher, K. J., & Zyphur, M. J. (2014). Reliability estimation in a multilevel confirmatory factor analysis framework. Psychological Methods, 19(1), 72-91.
doi: 10.1037/a0032138 pmid: 23646988 |
[24] |
Gerstberger, L., Blanke, E. S., Keller, J., & Brose, A. (2023). Stress buffering after physical activity engagement: An experience sampling study. British Journal of Health Psychology, 28(3), 876-892.
doi: 10.1111/bjhp.12659 pmid: 37037566 |
[25] | Hallquist, M. N., & Wiley, J. F. (2018). MplusAutomation: An R package for facilitating large-scale latent variable analyses in Mplus. Structural Equation Modeling: A Multidisciplinary Journal, 25(4), 621-638. |
[26] |
Hamaker, E. L., Asparouhov, T., Brose, A., Schmiedek, F., & Muthén, B. (2018). At the frontiers of modeling intensive longitudinal data: Dynamic structural equation models for the affective measurements from the COGITO study. Multivariate Behavioral Research, 53(6), 820-841.
doi: 10.1080/00273171.2018.1446819 pmid: 29624092 |
[27] |
Hamaker, E. L., Schuurman, N. K., & Zijlmans, E. A. O. (2017). Using a few snapshots to distinguish mountains from waves: Weak factorial invariance in the context of trait-state research. Multivariate Behavioral Research, 52(1), 47-60.
doi: 10.1080/00273171.2016.1251299 pmid: 27880048 |
[28] |
Hamaker, E. L., & Wichers, M. (2017). No time like the present: Discovering the hidden dynamics in intensive longitudinal data. Current Directions in Psychological Science, 26(1), 10-15.
doi: 10.1177/0963721416666518 URL |
[29] |
Hausen, J. E., Möller, J., Greiff, S., & Niepel, C. (2023). Morningness and state academic self-concept in students: Do early birds experience themselves as more competent in daily school life? Contemporary Educational Psychology, 74, 102199.
doi: 10.1016/j.cedpsych.2023.102199 URL |
[30] |
Horstmann, K. T., & Ziegler, M. (2020). Assessing personality states: What to consider when constructing personality state measures. European Journal of Personality, 34(6), 1037-1059.
doi: 10.1002/per.2266 URL |
[31] |
Hu, Y., Nesselroade, J. R., Erbacher, M. K., Boker, S. M., Burt, S. A., Keel, P. K.,... Klump, K. (2016). Test reliability at the individual level. Structural Equation Modeling: A Multidisciplinary Journal, 23(4), 532-543.
doi: 10.1080/10705511.2016.1148605 URL |
[32] |
Koval, P., Holland, E., Zyphur, M. J., Stratemeyer, M., Knight, J. M., Bailen, N. H.,... Haslam, N. (2019). How does it feel to be treated like an object? Direct and indirect effects of exposure to sexual objectification on women’s emotions in daily life. Journal of Personality and Social Psychology, 116(6), 885-898.
doi: 10.1037/pspa0000161 URL |
[33] |
Kühnel, J., Bledow, R., & Feuerhahn, N. (2016). When do you procrastinate? Sleep quality and social sleep lag jointly predict self-regulatory failure at work. Journal of Organizational Behavior, 37(7), 983-1002.
doi: 10.1002/job.v37.7 URL |
[34] |
Kühnel, J., Bledow, R., & Kuonath, A. (2022). Overcoming procrastination: Time pressure and positive affect as compensatory routes to action. Journal of Business and Psychology, 38(4), 803-819.
doi: 10.1007/s10869-022-09817-z |
[35] | Laenen, A., Alonso, A., Molenberghs, G., & Vangeneugden, T. (2009). A family of measures to evaluate scale reliability in a longitudinal setting. Journal of the Royal Statistical Society Series A: Statistics in Society, 172(1), 237-253. |
[36] | Lafit, G., Adolf, J. K., Dejonckheere, E., Myin-Germeys, I., Viechtbauer, W., & Ceulemans, E. (2021). Selection of the number of participants in intensive longitudinal studies: A user-friendly shiny app and tutorial for performing power analysis in multilevel regression models that account for temporal dependencies. Advances in Methods and Practices in Psychological Science, 4(1), 1-24. |
[37] |
Lane, S. P., & Shrout, P. E. (2010). Assessing the reliability of within-person change over time: A dynamic factor analysis approach. Multivariate Behavioral Research, 45(6), 1027.
doi: 10.1080/00273171.2010.534380 URL |
[38] |
Maier, T., Kühnel, J., & Zimmermann, B. (2021). How did you sleep tonight? The relevance of sleep quality and sleep-wake rhythm for procrastination at work. Frontiers in Psychology, 12, 785154.
doi: 10.3389/fpsyg.2021.785154 URL |
[39] |
McNeish, D., & Hamaker, E. L. (2020). A primer on two-level dynamic structural equation models for intensive longitudinal data in Mplus. Psychological Methods, 25(5), 610-635.
doi: 10.1037/met0000250 URL |
[40] |
McNeish, D., Mackinnon, D. P., Marsch, L. A., & Poldrack, R. A. (2021). Measurement in intensive longitudinal data. Structural Equation Modeling: A Multidisciplinary Journal, 28(5), 807-822.
doi: 10.1080/10705511.2021.1915788 URL |
[41] |
Mellenbergh, G. J. (1996). Measurement precision in test score and item response models. Psychological Methods, 1(3), 293-299.
doi: 10.1037/1082-989X.1.3.293 URL |
[42] |
Mielniczuk, E. (2023). Call for new measures suitable for intensive longitudinal studies: Ideas and suggestions. New Ideas in Psychology, 68, 100983.
doi: 10.1016/j.newideapsych.2022.100983 URL |
[43] |
Molenaar, P. C. (1985). A dynamic factor model for the analysis of multivariate time series. Psychometrika, 50(2), 181-202.
doi: 10.1007/BF02294246 URL |
[44] |
Muthén, B., & Asparouhov, T. (2012). Bayesian structural equation modeling: A more flexible representation of substantive theory. Psychological Methods, 17(3), 313-335.
doi: 10.1037/a0026802 pmid: 22962886 |
[45] |
Neubauer, A. B., Schmidt, A., Schmiedek, F., & Dirk, J. (2022). Dynamic reciprocal relations of achievement goals with daily experiences of academic success and failure: An ambulatory assessment study. Learning and Instruction, 81, 101617.
doi: 10.1016/j.learninstruc.2022.101617 URL |
[46] |
Nezlek, J. B. (2017). A practical guide to understanding reliability in studies of within-person variability. Journal of Research in Personality, 69, 149-155.
doi: 10.1016/j.jrp.2016.06.020 URL |
[47] |
Reis, D., Arndt, C., Lischetzke, T., & Hoppe, A. (2016). State work engagement and state affect: Similar yet distinct concepts. Journal of Vocational Behavior, 93, 1-10.
doi: 10.1016/j.jvb.2015.12.004 URL |
[48] |
Ringwald, W. R., Manuck, S. B., Marsland, A. L., & Wright, A. G. (2022). Psychometric evaluation of a Big Five personality state scale for intensive longitudinal studies. Assessment, 29(6), 1301-1319.
doi: 10.1177/10731911211008254 URL |
[49] |
Roesch, S. C., Aldridge, A. A., Stocking, S. N., Villodas, F., Leung, Q., Bartley, C. E., & Black, L. J. (2010). Multilevel factor analysis and structural equation modeling of daily diary coping data: Modeling trait and state variation. Multivariate Behavioral Research, 45(5), 767-789.
pmid: 21399732 |
[50] |
Scherer, R., & Teo, T. (2020). A tutorial on the meta-analytic structural equation modeling of reliability coefficients. Psychological Methods, 25(6), 747-775.
doi: 10.1037/met0000261 URL |
[51] |
Schmitt, A., Belschak, F. D., & Den Hartog, D. N. (2017). Feeling vital after a good night’s sleep: The interplay of energetic resources and self-efficacy for daily proactivity. Journal of Occupational Health Psychology, 22(4), 443-454.
doi: 10.1037/ocp0000041 pmid: 27123889 |
[52] |
Schönbrodt, F. D., Zygar-Hoffmann, C., Nestler, S., Pusch, S., & Hagemeyer, B. (2021). Measuring motivational relationship processes in experience sampling: A reliability model for moments, days, and persons nested in couples. Behavior Research Methods, 54(4), 1869-1888.
doi: 10.3758/s13428-021-01701-7 pmid: 34725801 |
[53] |
Schuurman, N. K., & Hamaker, E. L. (2019). Measurement error and person-specific reliability in multilevel autoregressive modeling. Psychological Methods, 24(1), 70-91.
doi: 10.1037/met0000188 pmid: 30188157 |
[54] |
Shiffman, S., Stone, A. A., & Hufford, M. R. (2008). Ecological momentary assessment. Annual Review of Clinical Psychology, 4, 1-32.
pmid: 18509902 |
[55] |
Steyer, R., Mayer, A., Geiser, C., & Cole, D. A. (2015). A theory of states and traits-Revised. Annual Review of Clinical Psychology, 11, 71-98.
doi: 10.1146/annurev-clinpsy-032813-153719 pmid: 25062476 |
[56] |
Steyer, R., Schmitt, M., & Eid, M. (1999). Latent state-trait theory and research in personality and individual differences. European Journal of Personality, 13(5), 389-408.
doi: 10.1002/(ISSN)1099-0984 URL |
[57] |
Stone, A. A., Schneider, S., & Smyth, J. M. (2023). Evaluation of pressing issues in ecological momentary assessment. Annual Review of Clinical Psychology, 19, 107-131.
doi: 10.1146/clinpsy.2023.19.issue-1 URL |
[58] |
Trull, T. J., & Ebner-Priemer, U. (2013). Ambulatory assessment. Annual Review of Clinical Psychology, 9, 151-176.
doi: 10.1146/annurev-clinpsy-050212-185510 pmid: 23157450 |
[59] |
Trull, T. J., & Ebner-Priemer, U. W. (2020). Ambulatory assessment in psychopathology research: A review of recommended reporting guidelines and current practices. Journal of Abnormal Psychology, 129(1), 56-63.
doi: 10.1037/abn0000473 pmid: 31868388 |
[60] |
Tuckman, B. W. (1991). The development and concurrent validity of the procrastination scale. Educational and Psychological Measurement, 51(2), 473-480.
doi: 10.1177/0013164491512022 URL |
[61] | van der Tuin, S., Booij, S. H., Oldehinkel, A. J., van den Berg, D., Wigman, J. T. W., Lång, U., & Kelleher, I. (2023). The dynamic relationship between sleep and psychotic experiences across the early stages of the psychosis continuum. Psychological Medicine. Advance online publication. https://doi.org/10.1017/S0033291723001459 |
[62] |
van Eerde, W., & Venus, M. (2018). A daily diary study on sleep quality and procrastination at work: The moderating role of trait self-control. Frontiers in Psychology, 9, 2029.
doi: 10.3389/fpsyg.2018.02029 pmid: 30450062 |
[63] |
Wilkinson, L. (1999). Statistical methods in psychology journals: Guidelines and explanations. American Psychologist, 54(8), 594-604.
doi: 10.1037/0003-066X.54.8.594 URL |
[64] |
Wright, A. G., Stepp, S. D., Scott, L. N., Hallquist, M. N., Beeney, J. E., Lazarus, S. A., & Pilkonis, P. A. (2017). The effect of pathological narcissism on interpersonal and affective processes in social interactions. Journal of Abnormal Psychology, 126(7), 898-910.
doi: 10.1037/abn0000286 pmid: 29106275 |
[65] | Xiao, Y., Wang, P., & Liu, H. (2023). Assessing intra-and inter-individual reliabilities in intensive longitudinal studies: A two-level random dynamic model-based approach. Psychological Methods. Advance online publication. https://doi.org/10.1037/met0000608 |
[66] |
Xu, J., & Zheng, Y. (2022). Links between shared and unique perspectives of parental psychological control and adolescent emotional problems: A dyadic daily diary study. Child Development, 93(6), 1649-1662.
doi: 10.1111/cdev.13789 pmid: 35583795 |
[67] |
Zhou, L., Wang, M., & Zhang, Z. (2021). Intensive longitudinal data analyses with dynamic structural equation modeling. Organizational Research Methods, 24(2), 219-250.
doi: 10.1177/1094428119833164 URL |
[1] | 郑远霞, 刘国雄, 辛聪, 程黎. 以貌取人:儿童基于面孔的信任判断[J]. 心理科学进展, 2024, 32(2): 300-317. |
[2] | 陆晓伟, 郭治斌, 程雨, 沈洁, 贵文君, 张林. 老年人面孔信任评价的积极效应及其发生机制[J]. 心理科学进展, 2023, 31(8): 1496-1503. |
[3] | 温忠麟, 陈虹熹, 方杰, 叶宝娟, 蔡保贞. 新世纪20年国内测验信度研究[J]. 心理科学进展, 2022, 30(8): 1682-1691. |
[4] | 朱宁奕, 江宁, 刘艳. 员工被上司信任感的形成机制[J]. 心理科学进展, 2022, 30(7): 1448-1462. |
[5] | 齐玥, 秦邵天, 王可昕, 陈文锋. 面孔可信度评价调节:经验迁移假说的提出与验证[J]. 心理科学进展, 2022, 30(4): 715-722. |
[6] | 方杰, 温忠麟. 纵向数据的调节效应分析[J]. 心理科学进展, 2022, 30(11): 2461-2472. |
[7] | 郑舒方, 张沥今, 乔欣宇, 潘俊豪. 密集追踪数据分析:模型及其应用[J]. 心理科学进展, 2021, 29(11): 1948-1969. |
[8] | 朱海腾. 多层次研究的数据聚合适当性检验:文献评价与关键问题试解[J]. 心理科学进展, 2020, 28(8): 1392-1408. |
[9] | 张坤坤, 张珂烨, 张火垠, 罗文波. 面孔可信度加工的时间进程和影响因素[J]. 心理科学进展, 2019, 27(8): 1394-1403. |
[10] | 卫旭华, 张亮花. 单题项测量:质疑、回应及建议[J]. 心理科学进展, 2019, 27(7): 1194-1204. |
[11] | 张倩, 陈林林, 杨群. 审判决策过程中的面孔特征效应[J]. 心理科学进展, 2018, 26(4): 698-709. |
[12] | 王乾东;李庆功;陈凯凯;傅根跃. 不可信面孔在视知觉加工中的注意偏向:来自眼动的证据[J]. 心理科学进展, 2015, 23(9): 1508-1513. |
[13] | 吕遥迪;吴恺君;张雨青. 中国创伤后应激反应量表在大学生群体中的应用[J]. 心理科学进展, 2015, 23(8): 1324-1330. |
[14] | 黎红艳;徐建平;陈基越;范业鑫. 大五人格问卷(BFI-44)信度元分析 ——基于信度概化方法[J]. 心理科学进展, 2015, 23(5): 755-765. |
[15] | 叶宝娟;温忠麟;陈启山. 追踪研究中测验信度的估计[J]. 心理科学进展, 2012, 20(3): 467-474. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||