心理科学进展 ›› 2022, Vol. 30 ›› Issue (1): 157-167.doi: 10.3724/SP.J.1042.2022.00157
收稿日期:
2021-02-22
出版日期:
2022-01-15
发布日期:
2021-11-25
基金资助:
JIANG Liming1, TIAN Xuetao2, REN Ping3, LUO Fang1()
Received:
2021-02-22
Online:
2022-01-15
Published:
2021-11-25
摘要:
近年来, 人工智能技术的飞速发展及应用催生了“智能化心理健康测评”这一领域。智能化心理健康测评能够弥补传统方法的不足, 降低漏诊率并提高诊断效率, 这对于心理健康问题的普查及预警具有重大意义。目前, 智能化心理健康测评处于初步发展阶段, 研究者基于在线行为数据、便携式设备数据等开展主要以数据驱动为导向的探索研究, 旨在实现更高的预测准确率, 但是测评结果的可解释性等指标尚不够理想。未来的智能化心理健康测评需要强调心理学领域知识和经验的深度介入, 提高测评的针对性和精细化程度, 加强信效度检验, 这对于智能化心理健康测评工具的进一步发展和应用至关重要。
中图分类号:
姜力铭, 田雪涛, 任萍, 骆方. (2022). 人工智能辅助下的心理健康新型测评. 心理科学进展 , 30(1), 157-167.
JIANG Liming, TIAN Xuetao, REN Ping, LUO Fang. (2022). A new type of mental health assessment using artificial intelligence technique. Advances in Psychological Science, 30(1), 157-167.
数据来源 | 数据获取方式 | 数据类型 | 数据量 | 数据与心理健康研究的相关性 | 数据在心理健康问题预测中的应用情况 |
---|---|---|---|---|---|
社交媒体 | 直接爬取公开的社交媒体平台 | 文本、图像、行为(如点赞、浏览)及元数据(如性别、年龄、位置)等 | 巨大 | 不直接相关 | 有一定的应用, 如预测焦虑、抑郁等, 预测准确性较低 |
在社交媒体上发布相关写作任务, 招募被试完成并获取数据 | 有限 | 高相关性 | |||
智能设备 | 招募被试提供数据 | 通话、短信、听音乐、拍照、位置移动、蓝牙连接、应用软件的使用、音频及视频等 | 有限 | 不直接相关 | 有一定的应用, 如预测焦虑、抑郁、自杀倾向等, 预测准确性较高 |
电子游戏 | 从商业游戏后台直接导出数据 | 游戏中的行为、发言内容、与其他玩家的互动等 | 巨大 | 不直接相关 | 直接应用非常少, 如预测社交焦虑等, 但有一些对心理健康相关的心理特质的预测, 预测准确性较高 |
基于特定研究问题开发或改编游戏, 招募被试完成并获取数据 | 有限 | 高相关性 | |||
可穿戴设备 | 招募被试佩戴可穿戴设备, 在实验室中完成相关任务, 获取数据 | 脑电、眼动、心率、皮肤温度等生理数据以及精细运动数据 | 有限 | 高相关性 | 应用广泛, 如预测焦虑、抑郁、创伤后应激障碍、注意缺陷等, 预测准确性高 |
招募被试在日常生活中佩戴便携式可穿戴设备, 采集日常数据 | 不直接相关 |
表1 智能化心理健康测评的四类数据的比较
数据来源 | 数据获取方式 | 数据类型 | 数据量 | 数据与心理健康研究的相关性 | 数据在心理健康问题预测中的应用情况 |
---|---|---|---|---|---|
社交媒体 | 直接爬取公开的社交媒体平台 | 文本、图像、行为(如点赞、浏览)及元数据(如性别、年龄、位置)等 | 巨大 | 不直接相关 | 有一定的应用, 如预测焦虑、抑郁等, 预测准确性较低 |
在社交媒体上发布相关写作任务, 招募被试完成并获取数据 | 有限 | 高相关性 | |||
智能设备 | 招募被试提供数据 | 通话、短信、听音乐、拍照、位置移动、蓝牙连接、应用软件的使用、音频及视频等 | 有限 | 不直接相关 | 有一定的应用, 如预测焦虑、抑郁、自杀倾向等, 预测准确性较高 |
电子游戏 | 从商业游戏后台直接导出数据 | 游戏中的行为、发言内容、与其他玩家的互动等 | 巨大 | 不直接相关 | 直接应用非常少, 如预测社交焦虑等, 但有一些对心理健康相关的心理特质的预测, 预测准确性较高 |
基于特定研究问题开发或改编游戏, 招募被试完成并获取数据 | 有限 | 高相关性 | |||
可穿戴设备 | 招募被试佩戴可穿戴设备, 在实验室中完成相关任务, 获取数据 | 脑电、眼动、心率、皮肤温度等生理数据以及精细运动数据 | 有限 | 高相关性 | 应用广泛, 如预测焦虑、抑郁、创伤后应激障碍、注意缺陷等, 预测准确性高 |
招募被试在日常生活中佩戴便携式可穿戴设备, 采集日常数据 | 不直接相关 |
[1] | 骆方, 姜力铭, 田雪涛, 肖梦格, 马彦珍, 张生. (2021). 小学生羞怯特质预测及语言风格模型构建. 心理学报, 53(2), 155-169. |
[2] | 孙鑫, 黎坚, 符植煜. (2018). 利用游戏log-file预测学生推理能力和数学成绩--机器学习的应用. 心理学报, 50(7), 761-770. |
[3] | 汪静莹, 朱廷劭, 郝碧波, 刘天俐. (2016). 微博用户生活满意度微博语言及行为特征分析. 中国公共卫生, 32(2), 225-229. |
[4] | 徐俊怡, 李中权. (2021). 基于游戏的心理测评. 心理科学进展, 29(3), 394-403. |
[5] | 张晗, 贾甜远, 骆方, 张生, 邬霞. (2020). 面向网络文本的 BERT 心理特质预测研究. 计算机科学与探索, 15(8), 1459-1468. |
[6] | Afshan, A., Guo, J. X., Park, S. J., Ravi, V., Flint, A., & Alwan, A. (2018). Effectiveness of voice quality features in detecting depression. Interspeech, 1676-1680. |
[7] | Alhagry, S., Fahmy, A. A., & El-Khoribi, R. A. (2017). Emotion recognition based on EEG using LSTM recurrent neural network. Emotion, 8(10), 355-358. |
[8] | Aung, Z. M. M., & Myint, P. H. (2019 July). Personality prediction based on content of facebook users: A literature review. 2019 20th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD) (pp. 34-38) IEEE. |
[9] |
Ay, B., Yildirim, O., Talo, M., Baloglu, U. B., Aydin, G., Puthankattil, S. D., & Acharya, U. R. (2019). Automated depression detection using deep representation and sequence learning with EEG signals. Journal of Medical Systems, 43(7), 1-12.
doi: 10.1007/s10916-018-1115-2 URL |
[10] | Berman, J. J. (2013). Principles of big data: Preparing, sharing, and analyzing complex information. Waltham, MA: Elsevier. |
[11] | Bosl, W. J., Tager-Flusberg, H., & Nelson, C. A. (2018). EEG analytics for early detection of autism spectrum disorder: A data-driven approach. Scientific Reports, 8(1), 1-20. |
[12] |
Brihadiswaran, G., Haputhanthri, D., Gunathilaka, S., Meedeniya, D., & Jayarathna, S. (2019). EEG-based processing and classification methodologies for autism spectrum disorder: A review. Journal of Computer Science, 15(8), 1161-1183.
doi: 10.3844/jcssp.2019.1161.1183 URL |
[13] |
Bzdok, D., & Meyer-Lindenberg, A. (2018). Machine learning for precision psychiatry: Opportunities and challenges. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 3(3), 223-230.
doi: 10.1016/j.bpsc.2017.11.007 URL |
[14] |
Cannizzaro, M., Harel, B., Reilly, N., Chappell, P., & Snyder, P. J. (2004). Voice acoustical measurement of the severity of major depression. Brain and Cognition, 56(1), 30-35.
pmid: 15380873 |
[15] |
Cardone, D., & Merla, A. (2017). New frontiers for applications of thermal infrared imaging devices: Computational psychopshysiology in the neurosciences. Sensors, 17(5), 1042.
doi: 10.3390/s17051042 URL |
[16] |
Castaldo, R., Montesinos, L., Melillo, P., James, C., & Pecchia, L. (2019). Ultra-short term HRV features as surrogates of short term HRV: A case study on mental stress detection in real life. BMC Medical Informatics and Decision Making, 19(1), 12.
doi: 10.1186/s12911-019-0742-y pmid: 30654799 |
[17] |
Chen, E. E., & Wojcik, S. P. (2016). A practical guide to big data research in psychology. Psychological Methods, 21(4), 458-474.
doi: 10.1037/met0000111 URL |
[18] |
Chen, M., Cao, Y., Wang, R., Li, Y., Wu, D., & Liu, Z. C. (2019). DeepFocus: Deep encoding brainwaves and emotions with multi-scenario behavior analytics for human attention enhancement. IEEE Network, 33(6), 70-77.
doi: 10.1109/MNET.001.1900054 |
[19] |
Cheng, Q. J., Li, T. M., Kwok, C. L., Zhu, T. S., & Yip, P. S. (2017). Assessing suicide risk and emotional distress in Chinese social media: A text mining and machine learning study. Journal of Medical Internet Research, 19(7), e243.
doi: 10.2196/jmir.7276 URL |
[20] |
Cipresso, P., Colombo, D., & Riva, G. (2019). Computational psychometrics using psychophysiological measures for the assessment of acute mental stress. Sensors, 19(4), 781.
doi: 10.3390/s19040781 URL |
[21] | de Melo, W. C., Granger, E., & Lopez, M. B. (2020, May). Encoding temporal information for automatic depression recognition from facial analysis. ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp.1080-1084). IEEE. |
[22] | Deng, Y. L., Wu, F., Du, L., Zhou, R. L., & Cao, L. H. (2019, March). EEG-based identification of latent emotional disorder using the machine learning approach. 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC) (pp.2642-2648). IEEE. |
[23] |
DeRosier, M. E., & Thomas, J. M. (2018). Establishing the criterion validity of Zoo U’s game-based social emotional skills assessment for school-based outcomes. Journal of Applied Developmental Psychology, 55, 52-61.
doi: 10.1016/j.appdev.2017.03.001 URL |
[24] | de Silva, S., Dayarathna, S., Ariyarathne, G., Meedeniya, D., Jayarathna, S., Michalek, A. M. P., & Jayawardena, G. (2019, July). A rule-based system for ADHD identification using eye movement data. 2019 Moratuwa Engineering Research Conference (MERCon) (pp.538-543). IEEE. |
[25] | DiCerbo, K. E. (2014). Game-based assessment of persistence. Educational Technology and Society, 17(1), 17-28. |
[26] |
Dubreuil-Vall, L., Ruffini, G., & Camprodon, J. A. (2020). Deep learning convolutional neural networks discriminate adult ADHD from healthy individuals on the basis of event-related spectral EEG. Frontiers in Neuroscience, 14, 251.
doi: 10.3389/fnins.2020.00251 pmid: 32327965 |
[27] |
Eichstaedt, J. C., Smith, R. J., Merchant, R. M., Ungar, L. H., Crutchley, P., Preoţiuc-Pietro, D., … Schwartz, H. A. (2018). Facebook language predicts depression in medical records. Proceedings of the National Academy of Sciences, 115(44), 11203-11208.
doi: 10.1073/pnas.1802331115 URL |
[28] |
Flynn, R. M., Colón-Acosta, N., Zhou, J., & Bower, J. (2019). A game-based repeated assessment for cognitive monitoring: Initial usability and adherence study in a summer camp setting. Journal of Autism and Developmental Disorders, 49(5), 2003-2014.
doi: 10.1007/s10803-019-03881-w URL |
[29] |
Guo, Z. H., Wu, X., Liu, J. H., Yao, L., & Hu, B. (2018). Altered electroencephalography functional connectivity in depression during the emotional face-word Stroop task. Journal of neural engineering, 15(5), 056014.
doi: 10.1088/1741-2552/aacdbb URL |
[30] | Haque, A., Guo, M., Miner, A. S., & Fei-Fei, L. (2018). Measuring depression symptom severity from spoken language and 3D facial expressions. arXiv preprint arXiv:1811.08592. |
[31] |
Harari, G. M., Vaid, S. S., Müller, S. R., Stachl, C., Marrero, Z., Schoedel, R., Bühner, M., & Gosling, S. D. (2020). Personality sensing for theory development and assessment in the digital age. European Journal of Personality, 34(5), 649-669.
doi: 10.1002/per.2273 URL |
[32] |
Hautala, J., Heikkilä, R., Nieminen, L., Rantanen, V., Latvala, J. M., & Richardson, U. (2020). Identification of reading difficulties by a digital game-based assessment technology. Journal of Educational Computing Research, 58(5), 1003-1028.
doi: 10.1177/0735633120905309 URL |
[33] |
He, Q. W., Veldkamp, B. P., & de Vries, T. (2012). Screening for posttraumatic stress disorder using verbal features in self narratives: A text mining approach. Psychiatry Research, 198(3), 441-447.
doi: 10.1016/j.psychres.2012.01.032 URL |
[34] |
He, Q. W., Veldkamp, B. P., Glas, C. A. W., & de Vries, T. (2017). Automated assessment of patients’ self-narratives for posttraumatic stress disorder screening using natural language processing and text mining. Assessment, 24(2), 157-172.
doi: 10.1177/1073191115602551 URL |
[35] | Heinzen, T. E., Landrum, R. E., Gurung, R. A. R., & Dunn, D. S. (2015). Game-based assessment:The mash-up we’ve been waiting for. Gamification in Education and Business (pp.201-217). Springer. |
[36] |
Ihmig, F. R., Gogeascoechea H, A., Neurohr-Parakenings, F., Schäfer, S. K., Lass-Hennemann, J., & Michael, T. (2020). On-line anxiety level detection from biosignals: Machine learning based on a randomized controlled trial with spider-fearful individuals. Plos One, 15(6), e0231517.
doi: 10.1371/journal.pone.0231517 URL |
[37] | Ive, J., Gkotsis, G., Dutta, R., Stewart, R., & Velupillai, S. (2018, June). Hierarchical neural model with attention mechanisms for the classification of social media text related to mental health. Proceedings of the Fifth Workshop on Computational Linguistics and Clinical Psychology: From Keyboard to Clinic (pp.69-77). |
[38] | Jiang, X. L., Chen, Y. Q., Huang, W. L., Zhang, T., Gao, C. L., Xing, Y. B., & Zheng, Y. (2020, April). WeDA:Designing and evaluating a scale-driven wearable diagnostic assessment system for children with ADHD. Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems (pp.1-12). |
[39] | Johannes Dechant, M., Frommel, J., & Mandryk, R. (2021, May). Assessing social anxiety through digital biomarkers embedded in a gaming task. Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (pp.1-15). |
[40] |
Kern, M. L., Park, G., Eichstaedt, J. C., Schwartz, H. A., Sap, M., Smith, L. K., & Ungar, L. H. (2016). Gaining insights from social media language: Methodologies and challenges. Psychological Methods, 21(4), 507-525.
doi: 10.1037/met0000091 URL |
[41] | Kodratoff, Y. (2014). Introduction to machine learning. San Mateo, CA: Morgan Kaufmann. |
[42] |
Kosinski, M., Wang, Y., Lakkaraju, H., & Leskovec, J. (2016). Mining big data to extract patterns and predict real-life outcomes. Psychological Methods, 21(4), 493-506.
pmid: 27918179 |
[43] | Latynov, V., & Shepeleva, E. (2020). Applied aspects of the use of algorithms of digital psychometrics. Psikhologicheskii Zhurnal, 41(4), 66-77. |
[44] |
Laxminarayan, S., Wang, C., Oyama, T., Cashmere, J. D., Germain, A., & Reifman, J. (2020). Identification of veterans with PTSD based on EEG features collected during sleep. Frontiers in Psychiatry, 11, 532623.
doi: 10.3389/fpsyt.2020.532623 pmid: 33329079 |
[45] |
Lecun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444.
doi: 10.1038/nature14539 URL |
[46] |
Lee, J. E., & Recker, M. (2017). Measuring students’ use of self-regulated learning strategies from learning management system data: An evidence-centered design approach about analytics for learning. doi: 10.13140/RG.2.2.24971.75047
doi: 10.13140/RG.2.2.24971.75047 |
[47] |
Lo, J. C., Sehic, E., & Meijer, S. A. (2017). Measuring mental workload with low-cost and wearable sensors: Insights into the accuracy, obtrusiveness, and research usability of three instruments. Journal of Cognitive Engineering and Decision Making, 11(4), 323-336.
doi: 10.1177/1555343417716040 URL |
[48] | Lynn, V., Balasubramanian, N., & Schwartz, H. A. (2020, July). Hierarchical modeling for user personality prediction:The role of message-level attention. Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (pp.5306-5316). |
[49] | Mandryk, R. L., & Birk, M. V. (2019). The potential of game-based digital biomarkers for modeling mental health. Journal of Medical Internet Research, 6(4), e13485. |
[50] | Mandryk, R. L., Dielschneider, S., Kalyn, M. R., Bertram, C. P., Gaetz, M., Doucette, A., … Keiver, K. (2013, June). Games as neurofeedback training for children with FASD. Proceedings of the 12th International Conference on Interaction Design and Children (pp.165-172). |
[51] | Manera, V., Petit, P. D., Derreumaux, A., Orvieto, I., Romagnoli, M., Lyttle, G., … Robert, P. H. (2015). “Kitchen and cooking”, a serious game for mild cognitive impairment and Alzheimer's disease: A pilot study. Frontiers in Aging Neuroscience, 7, 24. |
[52] | Marouf, A. A., Hasan, M. K., Mahmud, H. (2019 February). Identifying neuroticism from user generated content of social media based on psycholinguistic cues. 2019 International Conference on Electrical, Computer and Communication Engineering (pp.1-5). |
[53] |
Meyer, T., Quaedflieg, C. W. E. M., Weijland, K., Schruers, K., Merckelbach, H., & Smeets, T. (2018). Frontal EEG asymmetry during symptom provocation predicts subjective responses to intrusions in survivors with and without PTSD. Psychophysiology, 55(1), e12779.
doi: 10.1111/psyp.2018.55.issue-1 URL |
[54] | Mislevy, R. J. (2013). Evidence-centered design for simulation-based assessment. Military Medicine, 178(10), 107-114. |
[55] | Mislevy, R. J., Almond, R. G., & Lukas, J. F. (2003). A brief introduction to evidence-centered design. ETS Research Report Series, (1), 1-29. |
[56] |
Mislevy, R. J., & Haertel, G. D. (2006). Implications of evidence‐centered design for educational testing. Educational Measurement: Issues and Practice, 25(4), 6-20.
doi: 10.1111/j.1745-3992.2006.00075.x URL |
[57] |
Mundt, J. C., Vogel, A. P., Feltner, D. E., & Lenderking, W. R. (2012). Vocal acoustic biomarkers of depression severity and treatment response. Biological Psychiatry, 72(7), 580-587.
doi: 10.1016/j.biopsych.2012.03.015 URL |
[58] | Pan, Z. Y., Ma, H. M., Zhang, L., & Wang, Y. H. (2019). Depression detection based on reaction time and eye movement. 2019 IEEE International Conference on Image Processing (ICIP). IEEE. |
[59] |
Park, G., Schwartz, H. A., Eichstaedt, J. C., Kern, M. L., Kosinski, M., Stillwell, D. J., … Seligman, M. E. P. (2015). Automatic personality assessment through social media language. Journal of Personality and Social Psychology, 108(6), 934-952.
doi: 10.1037/pspp0000020 |
[60] |
Pereira, T., Almeida, P. R., Cunha, J. P., & Aguiar, A. (2017). Heart rate variability metrics for fine-grained stress level assessment. Computer Methods and Programs in Biomedicine, 148, 71-80.
doi: S0169-2607(16)30802-1 pmid: 28774440 |
[61] | Pluntke, U., Gerke, S., Sridhar, A., Weiss, J., & Michel, B. (2019, July). Evaluation and classification of physical and psychological stress in firefighters using heart rate variability. 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp.2207-2212). IEEE. |
[62] |
Polyak, S. T., von Davier, A. A., & Peterschmidt, K. (2017). Computational psychometrics for the measurement of collaborative problem solving skills. Frontiers in Psychology, 8, 2029.
doi: 10.3389/fpsyg.2017.02029 URL |
[63] |
Rahwan, I., Cebrian, M., Obradovich, N., Bongard, J., Bonnefon, J. F., Breazeal, C., … Wellman, M. (2019). Machine behaviour. Nature, 568(7753), 477-486.
doi: 10.1038/s41586-019-1138-y URL |
[64] | Richer, R., Zhao, N., Amores, J., Eskofier, B. M., & Paradiso, J. A. (2018, July). Real-time mental state recognition using a wearable EEG. 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp.5495-5498). IEEE. |
[65] |
Saef, R., Woo, S. E., Carpenter, J., & Tay, L. (2018). Fostering socio-informational behaviors online: The interactive effect of openness to experience and extraversion. Personality and Individual Differences, 122, 93-98.
doi: 10.1016/j.paid.2017.10.009 URL |
[66] |
Sajjadiani, S., Sojourner, A. J., Kammeyer-Mueller, J. D., & Mykerezi, E. (2019). Using machine learning to translate applicant work history into predictors of performance and turnover. The Journal of Applied Psychology, 104(10), 1207-1225.
doi: 10.1037/apl0000405 URL |
[67] | Shute, V. J. (2011). Stealth assessment in computer-based games to support learning. Computer Games and Instruction, 55(2), 503-524. |
[68] |
Shute, V. J., Wang, L. B., Greiff, S., Zhao, W. N, & Moore, G. (2016). Measuring problem solving skills via stealth assessment in an engaging video game. Computers in Human Behavior, 63, 106-117.
doi: 10.1016/j.chb.2016.05.047 URL |
[69] |
Snow, E., Rutstein, D., Basu, S., Bienkowski, M., & Everson, H. T. (2019). Leveraging evidence-centered design to develop assessments of computational thinking practices. International Journal of Testing, 19(2), 103-127.
doi: 10.1080/15305058.2018.1543311 URL |
[70] | Song, H., Yi, D. J., & Park, H. J. (2020). Validation of a mobile game-based assessment of cognitive control among children and adolescents. Plos One, 15(3), 1-18. |
[71] |
Song, T. F., Zheng, W. M., Song, P., & Cui, Z. (2018). EEG emotion recognition using dynamical graph convolutional neural networks. IEEE Transactions on Affective Computing, 11(3), 532-541.
doi: 10.1109/T-AFFC.5165369 URL |
[72] |
Song, Y., & Sparks, J. R. (2019). Measuring argumentation skills through a game-enhanced scenario-based assessment. Journal of Educational Computing Research, 56(8), 1324-1344.
doi: 10.1177/0735633117740605 |
[73] |
Stachl, C., Au, Q., Schoedel, R., Gosling, S. D., Harari, G. M., Buschek, D., … Bühner, M. (2020). Predicting personality from patterns of behavior collected with smartphones. Proceedings of the National Academy of Sciences, 117(30), 17680-17687.
doi: 10.1073/pnas.1920484117 URL |
[74] |
Tay, L., Woo, S. E., Hickman, L., & Saef, R. M. (2020). Psychometric and validity issues in machine learning approaches to personality assessment: A focus on social media text mining. European Journal of Personality, 34(5), 826-844.
doi: 10.1002/per.2290 URL |
[75] | van Nimwegen, C., van Oostendorp, H., Modderman, J., & Bas, M. (2011). A test case for GameDNA: Conceptualizing a serious game to measure personality traits. 16th International Conference on Computer Games (CGAMES) (pp.217-222). IEEE. |
[76] |
Ventura, M., & Shute, V. (2013). The validity of a game-based assessment of persistence. Computers in Human Behavior, 29(6), 2568-2572.
doi: 10.1016/j.chb.2013.06.033 URL |
[77] |
Vogel, L. (2018). AI opens new frontier for suicide prevention. Canadian Medical Association Journal, 190(4), E119-E119.
doi: 10.1503/cmaj.109-5549 URL |
[78] |
von Davier, A. A., Deonovic, B., Yudelson, M., Polyak, S. T., & Woo, A. (2019, July). Computational psychometrics approach to holistic learning and assessment systems. Frontiers in Education, 4, 69
doi: 10.3389/feduc.2019.00069 URL |
[79] | von Davier, A. A., & Halpin, P. F. (2013). Collaborative problem solving and the assessment of cognitive skills: Psychometric considerations. ETS Research Report Series, (2), 1-36. |
[80] |
Voosen, P. (2017). The AI detectives. Science, 357, 22-27.
doi: 10.1126/science.357.6346.22 pmid: 28684483 |
[81] |
Wang, J. Y., Zhang, L., Liu, T. L., Pan, W., Hu, B., & Zhu, T. S. (2019). Acoustic differences between healthy and depressed people: A cross-situation study. BMC Psychiatry, 19(1), 300.
doi: 10.1186/s12888-019-2300-7 URL |
[82] |
Wang, Q. X., Yang, H. X., & Yu, Y. H. (2018). Facial expression video analysis for depression detection in Chinese patients. Journal of Visual Communication and Image Representation, 57, 228-233.
doi: 10.1016/j.jvcir.2018.11.003 URL |
[83] |
Wen, W. H., Liu, G. Y., Mao, Z. H., Huang, W. J., Zhang, X., Hu, H., … Jia, W. Y. (2018). Toward constructing a real-time social anxiety evaluation system: Exploring effective heart rate features. IEEE Transactions on Affective Computing, 11(1), 100-110.
doi: 10.1109/T-AFFC.5165369 URL |
[84] | Williamson, J. R., Godoy, E., Cha, M., Schwarzentruber, A., Khorrami, P., Gwon, Y., … Quatieri, T. F. (2016, October). Detecting depression using vocal, facial and semantic communication cues. Proceedings of the 6th International Workshop on Audio/Visual Emotion Challenge (pp.11-18). |
[85] |
Yu, H. B., Li, F., Wu, T., Li, R., Yao, L., Wang, C. Y., & Wu, X. (2018). Functional brain abnormalities in major depressive disorder using the Hilbert-Huang transform. Brain Imaging and Behavior, 12(6), 1556-1568.
doi: 10.1007/s11682-017-9816-6 URL |
[86] | Zhang, X. W., Pan, J., Shen, J., Din, Z. U., Li, J. L., Lu, D. W., … Hu, B. (2020). Fusing of electroencephalogram and eye movement with group sparse canonical correlation analysis for anxiety detection. IEEE Transactions on Affective Computing, 99, 1. |
[87] |
Zhao, N., Zhang, Z., Wang, Y. M., Wang, J. Y., Li, B. B., Zhu, T. S., & Xiang, Y. Y. (2019). See your mental state from your walk: Recognizing anxiety and depression through Kinect-recorded gait data. Plos One, 14(5), e0216591.
doi: 10.1371/journal.pone.0216591 URL |
[88] | Zhu, Z. Y., Zhen, Z. L., Wu, X., & Li, S. (2020). Estimating functional connectivity by integration of inherent brain function activity pattern priors. IEEE/ACM transactions on computational biology and bioinformatics. |
[1] | 吴胜涛, 茅云云, 吴舒涵, 冯健仁, 张庆鹏, 谢天, 陈浩, 朱廷劭. 基于大数据的文化心理分析[J]. 心理科学进展, 2023, 31(3): 317-329. |
[2] | 黄潇潇, 张亚利, 俞国良. 2010~2020中国内地小学生心理健康问题检出率的元分析[J]. 心理科学进展, 2022, 30(5): 953-964. |
[3] | 张亚利, 靳娟娟, 俞国良. 2010~2020中国内地初中生心理健康问题检出率的元分析[J]. 心理科学进展, 2022, 30(5): 965-977. |
[4] | 于晓琪, 张亚利, 俞国良. 2010~2020中国内地高中生心理健康问题检出率的元分析[J]. 心理科学进展, 2022, 30(5): 978-990. |
[5] | 陈雨濛, 张亚利, 俞国良. 2010~2020中国内地大学生心理健康问题检出率的元分析[J]. 心理科学进展, 2022, 30(5): 991-1004. |
[6] | 蒋路远, 曹李梅, 秦昕, 谭玲, 陈晨, 彭小斐. 人工智能决策的公平感知[J]. 心理科学进展, 2022, 30(5): 1078-1092. |
[7] | 邓士昌, 许祺, 张晶晶, 李象千. 基于心灵知觉理论的AI服务用户接受机制及使用促进策略[J]. 心理科学进展, 2022, 30(4): 723-737. |
[8] | 杨雪, 朱旭. 情感触摸对心理健康的影响及应用[J]. 心理科学进展, 2022, 30(12): 2789-2798. |
[9] | 邱小燕, 葛艳莹, 胡超. 表达性写作应用于社会灾难时期心理救援的理论探讨[J]. 心理科学进展, 2022, 30(12): 2799-2808. |
[10] | 袁玉琢, 骆方. 人工智能辅助的自闭症早期患者的筛查与诊断[J]. 心理科学进展, 2022, 30(10): 2303-2320. |
[11] | 靳宇倡, 张政, 郑佩璇, 安俊秀. 远程心理健康服务:应用、优势及挑战[J]. 心理科学进展, 2022, 30(1): 141-156. |
[12] | 张珊珊, 王婧怡, 李昱汝. 情绪自旋及其心理健康功能[J]. 心理科学进展, 2021, 29(8): 1430-1437. |
[13] | 徐潞杰, 张镇. 老年人的消极交往与心理健康[J]. 心理科学进展, 2021, 29(8): 1472-1483. |
[14] | 黄骐, 陈春萍, 罗跃嘉, 伍海燕. 好奇心的机制及作用[J]. 心理科学进展, 2021, 29(4): 723-736. |
[15] | 俞国良, 陈婷婷, 赵凤青. 气温与气温变化对心理健康的影响[J]. 心理科学进展, 2020, 28(8): 1282-1292. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||