心理科学进展 ›› 2020, Vol. 28 ›› Issue (10): 1697-1712.doi: 10.3724/SP.J.1042.2020.01697
收稿日期:
2020-01-10
出版日期:
2020-10-15
发布日期:
2020-08-24
通讯作者:
吴寅
E-mail:yinwu0407@gmail.com
基金资助:
NAN Yu1,2, LI Hong1,2,3, WU Yin1,2()
Received:
2020-01-10
Online:
2020-10-15
Published:
2020-08-24
Contact:
WU Yin
E-mail:yinwu0407@gmail.com
摘要:
睾酮是一种可以在男性的睾丸间质细胞、女性卵巢和胎盘的皮层细胞中合成并分泌的雄性激素, 它可以调节个体的各种生理、形态和行为过程, 对个体生存和繁殖至关重要。大量研究表明, 睾酮与社会行为的关联存在双向性, 睾酮可以调节社会行为, 社会行为可以反馈并进一步影响睾酮水平。我们将关注点聚焦于睾酮与人类攻击行为之间的关联。早期研究发现, 高睾酮水平个体表现出更高的攻击性; 近期的研究根据挑战假设理论模型和生物社会地位模型得出, 人体内的睾酮水平对竞争性相互作用具有高度反应性。此外, 通过对大量研究的回顾与分析, 我们总结出睾酮水平的变化可以通过增强杏仁核的反应性或减少前额叶皮质-杏仁核功能耦合来影响攻击行为。未来的研究者应考虑其他激素(如皮质醇)和人格特征调节睾酮和人类攻击行为之间关系的潜在作用, 以及相关的生物学机制。
中图分类号:
南瑜, 李红, 吴寅. (2020). 睾酮与人类攻击行为. 心理科学进展 , 28(10), 1697-1712.
NAN Yu, LI Hong, WU Yin. (2020). Testosterone and human aggression. Advances in Psychological Science, 28(10), 1697-1712.
[1] | 廖嘉俊, 李红, 吴寅. (2019). 睾酮与人类决策行为. 心理科学进展, 27(9), 1607-1621. |
[2] |
刘金婷, 刘思铭, 曲路静, 钟茹, 詹稼毓, 蒋玉石, 吴寅. (2013). 睾酮与人类社会行为. 心理科学进展, 21(11), 1956-1966.
doi: 10.3724/SP.J.1042.2013.01956 URL |
[3] | Allen, J. J., & Anderson, C. A. (2017). Aggression and violence: Definitions and distinctions. The Wiley Handbook of Violence and Aggression, 1-14. |
[4] |
Anderson, C. A., & Bushman, B. J. (2002). Human aggression. Annual Review of Psychology, 53, 27-51.
doi: 10.1146/annurev.psych.53.100901.135231 URL pmid: 11752478 |
[5] | Anderson, C. A., & Huesmann, L. R. (2003). Human aggression: A social-cognitive view. In M. A. Hogg & J. Cooper (Eds.), The Sage Handbook of Social Psychology(pp. 296-323). Thousand Oaks, CA: Sage. |
[6] |
Archer, J. (2006). Testosterone and human aggression: An evaluation of the challenge hypothesis. Neuroscience & Biobehavioral Reviews, 30(3), 319-345.
doi: 10.1016/j.neubiorev.2004.12.007 URL pmid: 16483890 |
[7] | Archer, J., & Carré, J. M. (2016). Testosterone and aggression. Aggression and Violence: A Social Psychological Perspective, 90. |
[8] |
Archer, J., Graham-Kevan, N., & Davies, M. (2005). Testosterone and aggression: A reanalysis of Book, Starzyk, and Quinsey’s (2001) study. Aggression and Violent Behavior, 10(2), 241-261.
doi: 10.1016/j.avb.2004.01.001 URL |
[9] |
Bartness, T. J., Powers, J. B., Hastings, M. H., Bittman, E. L., & Goldman, B. D. (1993). The timed infusion paradigm for melatonin delivery: What has it taught us about the melatonin signal, its reception, and the photoperiodic control of seasonal responses?. Journal of Pineal Research, 15(4), 161-190.
URL pmid: 8120796 |
[10] |
Beaver, J. D., Lawrence, A. D., Passamonti, L., & Calder, A. J. (2008). Appetitive motivation predicts the neural response to facial signals of aggression. Journal of Neuroscience, 28(11), 2719-2725.
doi: 10.1523/JNEUROSCI.0033-08.2008 URL pmid: 18337401 |
[11] |
Beck, S. G., & Handa, R. J. (2004). Dehydroepiandrosterone (DHEA): A misunderstood adrenal hormone and spine-tingling neurosteroid?. Endocrinology, 145(3), 1039-1041.
doi: 10.1210/en.2003-1703 URL pmid: 14976151 |
[12] | Becker, J. B., Breedlove, S. M., Crews, D. F., & McCarthy, M. M. (1992) Behavioral Endocrinology. Cambridge, MA: MIT Press. |
[13] |
Berman, M., Gladue, B., & Taylor, S. (1993). The effects of hormones, Type A behavior pattern, and provocation on aggression in men. Motivation and Emotion, 17(2), 125-138.
doi: 10.1007/BF00995189 URL |
[14] |
Bernhardt, P. C., Dabbs Jr, J. M., Fielden, J. A., & Lutter, C. D. (1998). Testosterone changes during vicarious experiences of winning and losing among fans at sporting events. Physiology & Behavior, 65(1), 59-62.
URL pmid: 9811365 |
[15] | Berthold, A. A. (1849). Transplantation der Hoden [Transplantation of the testes]. Archiv für Anatomie, Physiologie und wissenschaftliche Medicin, 16, 42-46. |
[16] |
Björkqvist, K. (2018). Gender differences in aggression. Current Opinion in Psychology, 19, 39-42.
URL pmid: 29279220 |
[17] |
Blair, R. J. R. (2010). Neuroimaging of psychopathy and antisocial behavior: A targeted review. Current Psychiatry Reports, 12(1), 76-82.
doi: 10.1007/s11920-009-0086-x URL |
[18] |
Boonstra, R., Lane, J. E., Boutin, S., Bradley, A., Desantis, L., Newman, A. E. M., & Soma, K. K. (2008). Plasma DHEA levels in wild, territorial red squirrels: Seasonal variation and effect of ACTH. General and Comparative Endocrinology, 158(1), 61-67.
doi: 10.1016/j.ygcen.2008.05.004 URL pmid: 18558404 |
[19] |
Booth, A., Granger, D. A., Mazur, A., & Kivlighan, K. T. (2006). Testosterone and social behavior. Social Forces, 85(1), 167-191.
doi: 10.1353/sof.2006.0116 URL |
[20] |
Booth, A., Shelley, G., Mazur, A., Tharp, G., & Kittok, R. (1989). Testosterone, and winning and losing in human competition. Hormones and Behavior, 23(4), 556-571.
doi: 10.1016/0018-506x(89)90042-1 URL pmid: 2606468 |
[21] | Borniger, J. C., & Nelson, R. J. (2017, January). Photoperiodic regulation of behavior: Peromyscus as a model system. In Seminars in cell & developmental biology (Vol. 61, pp. 82-91). Academic Press. |
[22] | Burnham, T. (2007). High testosterone men reject low ultimatum game offers. Proceedings of the Royal Society of London B: Biological Sciences, 274(1623), 2327-2330. |
[23] |
Bushman, B. J., & Anderson, C. A. (2001). Is it time to pull the plug on the hostile versus instrumental aggression dichotomy? Psychological Review, 108(1), 273-279.
doi: 10.1037/0033-295x.108.1.273 URL pmid: 11212630 |
[24] | Bushman, B. J., & Huesmann, L. R. (2010). Aggression. In S. T. Fiske, D. T. Gilbert, & G. Lindzey (Eds.), Handbook of Social Psychology (5th ed., Vol. 2, pp. 833-863). Hoboken, NJ: John Wiley & Sons. |
[25] | Buss, A. H. (1961). The psychology of aggression. Hoboken, NJ: John Wiley & Sons. |
[26] | Camerer, C. F., & Thaler, R. H. (1995). Anomalies: Ultimatums, dictators and manners. Journal of Economic Perspectives, 9(2), 209-219. |
[27] |
Carré, J. M. (2009). No place like home: Testosterone responses to victory depend on game location. American Journal of Human Biology, 21(3), 392-394.
doi: 10.1002/ajhb.20867 URL pmid: 19127526 |
[28] |
Carré, J. M., & Archer, J. (2018). Testosterone and human behavior: The role of individual and contextual variables. Current Opinion in Psychology, 19, 149-153.
doi: 10.1016/j.copsyc.2017.03.021 URL pmid: 29279215 |
[29] |
Carré, J. M., Geniole, S. N., Ortiz, T. L., Bird, B. M., Videto, A., & Bonin, P. L. (2017). Exogenous testosterone rapidly increases aggressive behavior in dominant and impulsive men. Biological Psychiatry, 82(4), 249-256.
doi: 10.1016/j.biopsych.2016.06.009 URL pmid: 27524498 |
[30] |
Carré, J. M., Iselin, A. M. R., Welker, K. M., Hariri, A. R., & Dodge, K. A. (2014). Testosterone reactivity to provocation mediates the effect of early intervention on aggressive behavior. Psychological Science, 25(5), 1140-1146.
URL pmid: 24681586 |
[31] |
Carré, J. M., McCormick, C. M., & Hariri, A. R. (2011). The social neuroendocrinology of human aggression. Psychoneuroendocrinology, 36(7), 935-944.
URL pmid: 21367531 |
[32] |
Carré, J. M., & Olmstead, N. A. (2015). Social neuroendocrinology of human aggression: Examining the role of competition-induced testosterone dynamics. Neuroscience, 286, 171-186.
doi: 10.1016/j.neuroscience.2014.11.029 URL pmid: 25463514 |
[33] |
Carré, J. M., & Putnam, S. K. (2010). Watching a previous victory produces an increase in testosterone among elite hockey players. Psychoneuroendocrinology, 35(3), 475-479.
doi: 10.1016/j.psyneuen.2009.09.011 URL pmid: 19804944 |
[34] |
Carré, J. M., Putnam, S. K., & Mccormick, C. M. (2009). Testosterone responses to competition predict future aggressive behaviour at a cost to reward in men. Psychoneuroendocrinology, 34(4), 561-570.
doi: 10.1016/j.psyneuen.2008.10.018 URL pmid: 19054624 |
[35] | Carré, J. M., Ruddick, E. L., Moreau, B. J. P., & Bird, B. M. (2017). Testosterone and Human Aggression. In P. Sturmey (Ed.). The Wiley handbook of violence and aggression. John Wiley & Sons, Ltd. |
[36] |
Cavigelli, S. A., & Pereira, M. E. (2000). Mating season aggression and fecal testosterone levels in male ring-tailed lemurs (Lemur catta). Hormones and Behavior, 37(3), 246-255.
URL pmid: 10868488 |
[37] |
Chamberlain, N. L., Driver, E. D., & Miesfeld, R. L. (1994). The length and location of CAG trinucleotide repeats in the androgen receptor N-terminal domain affect transactivation function. Nucleic Acids Research, 22(15), 3181-3186.
doi: 10.1093/nar/22.15.3181 URL pmid: 8065934 |
[38] |
Chen, F. R., Raine, A., & Granger, D. A. (2018). Testosterone and proactive-reactive aggression in youth: The moderating role of harsh discipline. Journal of Abnormal Child Psychology, 46(8), 1599-1612.
doi: 10.1007/s10802-018-0399-5 URL pmid: 29353364 |
[39] |
Coccaro, E. F., Sripada, C. S., Yanowitch, R. N., & Phan, K. L. (2011). Corticolimbic function in impulsive aggressive behavior. Biological Psychiatry, 69(12), 1153-1159.
URL pmid: 21531387 |
[40] |
Cunningham, G. R., Stephens-Shields, A. J., Rosen, R. C., Wang, C., Bhasin, S., Matsumoto, A. M., ... Snyder, P. J. (2016). Testosterone treatment and sexual function in older men with low testosterone levels. The Journal of Clinical Endocrinology & Metabolism, 101(8), 3096-3104.
URL pmid: 27355400 |
[41] |
Dabbs, J. M. (1993). Salivary testosterone measurements in behavioral studies. Annals of the New York Academy of Sciences, 694(1), 177-183.
doi: 10.1111/nyas.1993.694.issue-1 URL |
[42] |
Davidson, R. J., Putnam, K. M., & Larson, C. L. (2000). Dysfunction in the neural circuitry of emotion regulation--a possible prelude to violence. Science, 289(5479), 591-594.
URL pmid: 10915615 |
[43] |
Derntl, B., Windischberger, C., Robinson, S., Kryspin-Exner, I., Gur, R. C., Moser, E., & Habel, U. (2009). Amygdala activity to fear and anger in healthy young males is associated with testosterone. Psychoneuroendocrinology, 34(5), 687-693.
doi: 10.1016/j.psyneuen.2008.11.007 URL pmid: 19136216 |
[44] | DeWall, C. N., Anderson, C. A., & Bushman, B. J. (2012). Aggression. In H. Tennen, J. Suls, & I. B. Weiner (Eds.), Handbook of psychology (2nd ed., Vol. 5, pp. 449-466). Hoboken, NJ: John Wiley & Sons. |
[45] |
Do-Rego, J. L., Seong, J. Y., Burel, D., Leprince, J., Vaudry, D., Tonon, M. C., ... Vaudry, H. (2012). Regulation of neurosteroid biosynthesis by neurotransmitters and neuropeptides. Frontiers in Endocrinology, 3, 4.
doi: 10.3389/fendo.2012.00004 URL pmid: 22654849 |
[46] |
Eisenegger, C., Naef, M., Snozzi, R., Heinrichs, M., & Fehr, E. (2010). Prejudice and truth about the effect of testosterone on human bargaining behaviour. Nature, 463(7279), 356-359.
doi: 10.1038/nature08711 URL pmid: 19997098 |
[47] |
Eisenegger, C., von Eckardstein, A., Fehr, E., & von Eckardstein, S. (2013). Pharmacokinetics of testosterone and estradiol gel preparations in healthy young men. Psychoneuroendocrinology, 38(2), 171-178.
doi: 10.1016/j.psyneuen.2012.05.018 URL pmid: 22721608 |
[48] |
Fernández‐Guasti, A., Kruijver, F. P. M., Fodor, M., & Swaab, D. F. (2000). Sex differences in the distribution of androgen receptors in the human hypothalamus. Journal of Comparative Neurology, 425(3), 422-435.
doi: 10.1002/1096-9861(20000925)425:3<422::aid-cne7>3.0.co;2-h URL pmid: 10972942 |
[49] |
Fuxjager, M. J., Oyegbile, T. O., & Marler, C. A. (2011). Independent and additive contributions of postvictory testosterone and social experience to the development of the winner effect. Endocrinology, 152(9), 3422-3429.
URL pmid: 21771886 |
[50] |
Geniole, S. N., & Carré, J. M. (2018). Human social neuroendocrinology: Review of the rapid effects of testosterone. Hormones and Behavior, 104, 192-205.
doi: 10.1016/j.yhbeh.2018.06.001 URL pmid: 29885343 |
[51] |
Geniole, S. N., Procyshyn, T. L., Marley, N., Ortiz, T. L., Bird, B. M., Marcellus, A. L., ... Carré, J. M. (2019). Using a psychopharmacogenetic approach to identify the pathways through which—and the people for whom— testosterone promotes aggression. Psychological Science, 30(4), 481-494.
doi: 10.1177/0956797619826970 URL pmid: 30789780 |
[52] |
Gerra, G., Zaimovic, A., Avanzini, P., Chittolini, B., Giucastro, G., Caccavari, R., ... Brambilla, F. (1997). Neurotransmitter-neuroendocrine responses to experimentally induced aggression in humans: Influence of personality variable. Psychiatry Research, 66(1), 33-43.
URL pmid: 9061802 |
[53] |
Giancola, P. R., & Parrott, D. J. (2008). Further evidence for the validity of the Taylor Aggression Paradigm. Aggressive Behavior, 34(2), 214-229.
doi: 10.1002/ab.20235 URL pmid: 17894385 |
[54] |
Gleason, E. D., Fuxjager, M. J., Oyegbile, T. O., & Marler, C. A. (2009). Testosterone release and social context: When it occurs and why. Frontiers in Neuroendocrinology, 30(4), 460-469.
URL pmid: 19422843 |
[55] |
Goetz, S. M. M., Tang, L., Thomason, M. E., Diamond, M. P., Hariri, A. R., & Carré, J. M. (2014). Testosterone rapidly increases neural reactivity to threat in healthy men: A novel two-step pharmacological challenge paradigm. Biological Psychiatry, 76(4), 324-331.
doi: 10.1016/j.biopsych.2014.01.016 URL pmid: 24576686 |
[56] |
Gray, P. B., Parkin, J. C., & Samms-Vaughan, M. E. (2007). Hormonal correlates of human paternal interactions: A hospital-based investigation in urban Jamaica. Hormones and Behavior, 52(4), 499-507.
URL pmid: 17716675 |
[57] |
Harmon-Jones, E. (2003). Anger and the behavioral approach system. Personality and Individual Differences, 35(5), 995-1005.
doi: 10.1016/S0191-8869(02)00313-6 URL |
[58] |
Hartup, W. W. (1974). Aggression in childhood: Developmental perspectives. American Psychologist, 29(5), 336-341.
doi: 10.1037/h0037622 URL pmid: 4847493 |
[59] |
Haselhuhn, M. P., Ormiston, M. E., & Wong, E. M. (2015). Men’s facial width-to-height ratio predicts aggression: A meta-analysis. PLoS ONE, 10(4), e0122637.
URL pmid: 25849992 |
[60] |
Heany, S. J., Terburg, D., Stein, D. J., van Honk, J., & Bos, P. A. (2020). Neural responses in the pain matrix when observing pain of others are unaffected by testosterone administration in women. Experimental Brain Research, 238(3), 751-759.
URL pmid: 32086551 |
[61] |
Hermans, E. J., Ramsey, N. F., & van Honk, J. (2008). Exogenous testosterone enhances responsiveness to social threat in the neural circuitry of social aggression in humans. Biological Psychiatry, 63(3), 263-270.
doi: 10.1016/j.biopsych.2007.05.013 URL pmid: 17727825 |
[62] | Isbell, J., & Mehta, P. H. (2017). Low testosterone. SAGE Publications Ltd. |
[63] |
Islam, R. M., Bell, R. J., Green, S., Page, M. J., & Davis, S. R. (2019). Safety and efficacy of testosterone for women: A systematic review and meta-analysis of randomised controlled trial data. The Lancet Diabetes & Endocrinology, 7(10), 754-766.
URL pmid: 31353194 |
[64] | Kaldewaij, R., Koch, S. B. J., Zhang, W., Hashemi, M. M., Klumpers, F., & Roelofs, K. (2018). Endogenous testosterone modulates aggression-related fronto-amygdalar activation in police recruits. European Neuropsychopharmacology, 28(1), S22. |
[65] |
Kaldewaij, R., Koch, S. B., Zhang, W., Hashemi, M. M., Klumpers, F., & Roelofs, K. (2019). High endogenous testosterone levels are associated with diminished neural emotional control in aggressive police recruits. Psychological Science, 30(8), 1161-1173.
URL pmid: 31251695 |
[66] |
Klinesmith, J., Kasser, T., & McAndrew, F. T. (2006). Guns, testosterone, and aggression: An experimental test of a mediational hypothesis. Psychological Science, 17(7), 568-571.
URL pmid: 16866740 |
[67] | Krahé, B. (2013). The social psychology of aggression (2nd ed.). New York, NY: Psychology Press. |
[68] | Laube, C., Van Den Bos, W. (2016). Hormones and affect in adolescent decision making. In J. Reeve, S. Kim, & M. Bong (Eds.), Recent developments in neuroscience research on human motivation. Emerald Group Publishing Limited. |
[69] |
Manuck, S. B., Marsland, A. L., Flory, J. D., Gorka, A., Ferrell, R. E., & Hariri, A. R. (2010). Salivary testosterone and a trinucleotide (CAG) length polymorphism in the androgen receptor gene predict amygdala reactivity in men. Psychoneuroendocrinology, 35(1), 94-104.
doi: 10.1016/j.psyneuen.2009.04.013 URL pmid: 19493626 |
[70] |
Mazur, A. (1976). Effects of testosterone on status in primate groups. Folia Primatologica, 26(3), 214-226.
doi: 10.1159/000155752 URL |
[71] |
Mazur, A. (1985). A biosocial model of status in face-to-face primate groups. Social Forces, 64(2), 377-402.
doi: 10.2307/2578647 URL |
[72] |
Mazur, A., & Booth, A. (1998). Testosterone and dominance in men. Behavioral and Brain Sciences, 21(3), 353-363.
URL pmid: 10097017 |
[73] |
Mazur, A., & Lamb, T. A. (1980). Testosterone, status, and mood in human males. Hormones and Behavior, 14(3), 236-246.
doi: 10.1016/0018-506x(80)90032-x URL pmid: 7429441 |
[74] | McCarthy, M. M. (2013, February). Sexual differentiation of the brain in man and animals: Of relevance to Klinefelter syndrome?. In American Journal of Medical Genetics Part C: Seminars in Medical Genetics (Vol. 163, No. 1, pp. 3-15). Hoboken: Wiley Subscription Services, Inc., A Wiley Company. |
[75] |
Mehta, P. H., & Beer, J. (2010). Neural mechanisms of the testosterone-aggression relation: The role of orbitofrontal cortex. Journal of Cognitive Neuroscience, 22(10), 2357-2368.
doi: 10.1162/jocn.2009.21389 URL pmid: 19925198 |
[76] |
Mehta, P. H., van Son, V., Welker, K. M., Prasad, S., Sanfey, A. G., Smidts, A., & Roelofs, K. (2015). Exogenous testosterone in women enhances and inhibits competitive decision-making depending on victory-defeat experience and trait dominance. Psychoneuroendocrinology, 60, 224-236.
doi: 10.1016/j.psyneuen.2015.07.004 URL pmid: 26209809 |
[77] |
Meyer-Lindenberg, A., Buckholtz, J. W., Kolachana, B., Hariri, A. R., Pezawas, L., Blasi, G., ... Weinberger, D. R. (2006). Neural mechanisms of genetic risk for impulsivity and violence in humans. Proceedings of the National Academy of Sciences, 103(16), 6269-6274.
doi: 10.1073/pnas.0511311103 URL |
[78] |
Mooradian, A. D., Morley, J. E., & Korenman, S. G. (1987). Biological actions of androgens. Endocrine Reviews, 8(1), 1-28.
doi: 10.1210/edrv-8-1-1 URL pmid: 3549275 |
[79] |
Muller, M. N., & Wrangham, R. W. (2004). Dominance, aggression and testosterone in wild chimpanzees: A test of the ‘challenge hypothesis’. Animal Behaviour, 67(1), 113-123.
doi: 10.1016/j.anbehav.2003.03.013 URL |
[80] |
Munley, K. M., Rendon, N. M., & Demas, G. E. (2018). Neural androgen synthesis and aggression: Insights from a seasonally breeding rodent. Frontiers in Endocrinology, 9, 136.
URL pmid: 29670576 |
[81] |
Nadler, A., Camerer, C. F., Zava, D. T., Ortiz, T. L., Watson, N. V., Carré, J. M., & Nave, G. (2019). Does testosterone impair men's cognitive empathy? Evidence from two large-scale randomized controlled trials. Proceedings of the Royal Society B, 286(1910), 20191062.
doi: 10.1098/rspb.2019.1062 URL pmid: 31480979 |
[82] |
Nelson, R. J., & Trainor, B. C. (2007). Neural mechanisms of aggression. Nature Reviews Neuroscience, 8(7), 536-546.
doi: 10.1038/nrn2174 URL pmid: 17585306 |
[83] |
Newman, S. W. (1999). The medial extended amygdala in male reproductive behavior. A node in the mammalian social behavior network. Annals of the New York Academy of Sciences, 877, 242-257.
doi: 10.1111/j.1749-6632.1999.tb09271.x URL pmid: 10415653 |
[84] |
Norman, R. E., Moreau, B. J. P., Welker, K. M., & Carré, J. M. (2015). Trait anxiety moderates the relationship between testosterone responses to competition and aggressive behavior. Adaptive Human Behavior and Physiology, 1(3), 312-324.
doi: 10.1007/s40750-014-0016-y URL |
[85] |
Oliveira, R. F. (2009). Social behavior in context: Hormonal modulation of behavioral plasticity and social competence. Integrative and Comparative Biology, 49(4), 423-440.
doi: 10.1093/icb/icp055 URL pmid: 21665831 |
[86] | Oliveira, R. F., & Oliveira, G. (2014). Androgen responsiveness to competition in humans: The role of cognitive variables. Neuroscience and Neuroeconomics, 2014(3), 19-32. |
[87] |
Oliveira, R. F., Silva, A., & Canario, A. V. (2009). Why do winners keep winning? Androgen mediation of winner but not loser effects in cichlid fish. Proceedings of the Royal Society B: Biological Sciences, 276(1665), 2249-2256.
URL pmid: 19324741 |
[88] |
Parrott, D. J., & Giancola, P. R. (2007). Addressing “the criterion problem” in the assessment of aggressive behavior: Development of a new taxonomic system. Aggression and Violent Behavior, 12(3), 280-299.
doi: 10.1016/j.avb.2006.08.002 URL |
[89] |
Passamonti, L., Rowe, J. B., Ewbank, M., Hampshire, A., Keane, J., & Calder, A. J. (2008). Connectivity from the ventral anterior cingulate to the amygdala is modulated by appetitive motivation in response to facial signals of aggression. Neuroimage, 43(3), 562-570.
URL pmid: 18722533 |
[90] |
Persky, H., Smith, K. D., & Basu, G. K. (1971). Relation of psychologic measures of aggression and hostility to testosterone production in man. Psychosomatic Medicine, 33(3), 265-277.
doi: 10.1097/00006842-197105000-00007 URL pmid: 4326360 |
[91] |
Popma, A., Vermeiren, R., Geluk, C. A., Rinne, T., van den Brink, W., Knol, D. L., ... Doreleijers, T. A. (2007). Cortisol moderates the relationship between testosterone and aggression in delinquent male adolescents. Biological Psychiatry, 61(3), 405-411.
doi: 10.1016/j.biopsych.2006.06.006 URL pmid: 16950214 |
[92] |
Rinnewitz, L., Parzer, P., Koenig, J., Bertsch, K., Brunner, R., Resch, F., & Kaess, M. (2019). A Biobehavioral Validation of the Taylor Aggression paradigm in Female Adolescents. Scientific Reports, 9, 7036.
doi: 10.1038/s41598-019-43456-4 URL pmid: 31065043 |
[93] |
Roney, J. R., & Gettler, L. T. (2015). The role of testosterone in human romantic relationships. Current Opinion in Psychology, 1, 81-86.
doi: 10.1016/j.copsyc.2014.11.003 URL |
[94] |
Salvador, A., Suay, F., Martinez-Sanchis, S., Simon, V. M., & Brain, P. F. (1999). Correlating testosterone and fighting in male participants in judo contests. Physiology & Behavior, 68, 205-209.
doi: 10.1016/s0031-9384(99)00168-7 URL pmid: 10627082 |
[95] |
Sapolsky, R. M. (1986). Stress-induced elevation of testosterone concentration in high ranking baboons: Role of catecholamines. Endocrinology, 118(4), 1630-1635.
doi: 10.1210/endo-118-4-1630 URL pmid: 3948796 |
[96] |
Schultheiss, O. C., Wirth, M. M., Torges, C. M., Pang, J. S., Villacorta, M. A., & Welsh, K. M. (2005). Effects of implicit power motivation on men's and women's implicit learning and testosterone changes after social victory or defeat. Journal of Personality and Social Psychology, 88(1), 174-188.
doi: 10.1037/0022-3514.88.1.174 URL pmid: 15631583 |
[97] |
Scott, M. P. (2006). Resource defense and juvenile hormone: The “challenge hypothesis” extended to insects. Hormones and Behavior, 49(3), 276-281.
URL pmid: 16087184 |
[98] |
Siegel, A., Bhatt, S., Bhatt, R., & Zalcman, S. S. (2007). The neurobiological bases for development of pharmacological treatments of aggressive disorders. Current Neuropharmacology, 5(2), 135-147.
doi: 10.2174/157015907780866929 URL pmid: 18615178 |
[99] |
Siever, L. J. (2008). Neurobiology of aggression and violence. American Journal of Psychiatry, 165(4), 429-442.
URL pmid: 18346997 |
[100] |
Soma, K. K., Rendon, N. M., Boonstra, R., Albers, H. E., & Demas, G. E. (2015). DHEA effects on brain and behavior: Insights from comparative studies of aggression. The Journal of Steroid Biochemistry and Molecular Biology, 145, 261-272.
doi: 10.1016/j.jsbmb.2014.05.011 URL pmid: 24928552 |
[101] |
Soma, K. K., Scotti, M. A. L., Newman, A. E. M., Charlier, T. D., & Demas, G. E. (2008). Novel mechanisms for neuroendocrine regulation of aggression. Frontiers in Neuroendocrinology, 29(4), 476-489.
doi: 10.1016/j.yfrne.2007.12.003 URL pmid: 18280561 |
[102] |
Spielberg, J. M., Forbes, E. E., Ladouceur, C. D., Worthman, C. M., Olino, T. M., Ryan, N. D., & Dahl, R. E. (2014). Pubertal testosterone influences threat-related amygdala-orbitofrontal cortex coupling. Social Cognitive and Affective Neuroscience, 10(3), 408-415.
doi: 10.1093/scan/nsu062 URL pmid: 24795438 |
[103] |
Spielberg, J. M., Olino, T. M., Forbes, E. E., & Dahl, R. E. (2014). Exciting fear in adolescence: Does pubertal development alter threat processing?. Developmental Cognitive Neuroscience, 8, 86-95.
doi: 10.1016/j.dcn.2014.01.004 URL pmid: 24548554 |
[104] |
Terburg, D., Aarts, H., & van Honk, J. (2012). Testosterone affects gaze aversion from angry faces outside of conscious awareness. Psychological Science, 23(5), 459-463.
doi: 10.1177/0956797611433336 URL pmid: 22477106 |
[105] |
Trumble, B. C., Cummings, D., von Rueden, C., O'Connor, K. A., Smith, E. A., Gurven, M., & Kaplan, H. (2012). Physical competition increases testosterone among Amazonian forager-horticulturalists: A test of the ‘challenge hypothesis’. Proceedings of the Royal Society B: Biological Sciences, 279(1739), 2907-2912.
doi: 10.1098/rspb.2012.0455 URL pmid: 22456888 |
[106] |
Tsutsui, K., Ukena, K., Usui, M., Sakamoto, H., & Takase, M. (2000). Novel brain function: Biosynthesis and actions of neurosteroids in neurons. Neuroscience Research, 36(4), 261-273.
doi: 10.1016/s0168-0102(99)00132-7 URL pmid: 10771104 |
[107] | van Honk, J., & Schutter, D. J. L. G. (2007). Vigilant and avoidant responses to angry facial expressions. Social Neuroscience: Integrating Biological and Psychological Explanations of Social Behavior, 197-223. |
[108] |
van Honk, J., Schutter, D. J., Bos, P. A., Kruijt, A. W., Lentjes, E. G., & Baron-Cohen, S. (2011). Testosterone administration impairs cognitive empathy in women depending on second-to-fourth digit ratio. Proceedings of the National Academy of Sciences, 108(8), 3448-3452.
doi: 10.1073/pnas.1011891108 URL |
[109] |
van Honk, J., Tuiten, A., Hermans, E., Putnam, P., Koppeschaar, H., Thijssen, J., ... van Doornen, L. (2001). A single administration of testosterone induces cardiac accelerative responses to angry faces in healthy young women. Behavioral Neuroscience, 115(1), 238-242.
URL pmid: 11256447 |
[110] |
van Honk, J., Tuiten, A., Verbaten, R., van den Hout, M., Koppeschaar, H., Thijssen, J., & de Haan, E. (1999). Correlations among salivary testosterone, mood, and selective attention to threat in humans. Hormones and Behavior, 36(1), 17-24.
doi: 10.1006/hbeh.1999.1521 URL pmid: 10433883 |
[111] |
van Wingen, G., Mattern, C., Verkes, R. J., Buitelaar, J., & Fernández, G. (2010). Testosterone reduces amygdala- orbitofrontal cortex coupling. Psychoneuroendocrinology, 35(1), 105-113.
doi: 10.1016/j.psyneuen.2009.09.007 URL pmid: 19782476 |
[112] |
Veldhuis, J. D., & Iranmanesh, A. (2004). Pulsatile intravenous infusion of recombinant human luteinizing hormone under acute gonadotropin-releasing hormone receptor blockade reconstitutes testosterone secretion in young men. The Journal of Clinical Endocrinology & Metabolism, 89(9), 4474-4479.
doi: 10.1210/jc.2004-0203 URL pmid: 15356050 |
[113] |
Vermeersch, H., T'sjoen, G., Kaufman, J. M., Vincke, J., & van Houtte, M. (2010). Testosterone, androgen receptor gene CAG repeat length, mood and behaviour in adolescent males. European Journal of Endocrinology, 163(2), 319-328.
doi: 10.1530/EJE-10-0090 URL pmid: 20479013 |
[114] |
Walton, J. C., Weil, Z. M., & Nelson, R. J. (2011). Influence of photoperiod on hormones, behavior, and immune function. Frontiers in Neuroendocrinology, 32(3), 303-319.
URL pmid: 21156187 |
[115] |
Webb, S. J., Geoghegan, T. E., Prough, R. A., & Michael Miller, K. K. (2006). The biological actions of dehydroepiandrosterone involves multiple receptors. Drug Metabolism Reviews, 38(1-2), 89-116.
doi: 10.1080/03602530600569877 URL pmid: 16684650 |
[116] |
Wingfield, J. C. (2017). The challenge hypothesis: Where it began and relevance to humans. Hormones and Behavior, 92, 9-12.
URL pmid: 27856292 |
[117] |
Wingfield, J. C., Hegner, R. E., Dufty, A. M., & Ball, G. F. (1990). The challenge hypothesis-theoretical implications for patterns of testosterone secretion, mating systems, and breeding strategies. American Naturalist, 136(6), 829-846.
doi: 10.1086/285134 URL |
[118] |
Wingfield, J. C., Lynn, S. E., & Soma, K. K. (2001). Avoiding the ‘costs’ of testosterone: Ecological bases of hormone-behavior interactions. Brain, Behavior and Evolution, 57(5), 239-251.
doi: 10.1159/000047243 URL pmid: 11641561 |
[119] |
Wirth, M. M., & Schultheiss, O. C. (2007). Basal testosterone moderates responses to anger faces in humans. Physiology & Behavior, 90(2-3), 496-505.
doi: 10.1016/j.physbeh.2006.10.016 URL pmid: 17174989 |
[120] |
Wood, R. I., & Newman, S. W. (1999). Androgen receptor immunoreactivity in the male and female Syrian hamster brain. Journal of Neurobiology, 39(3), 359-370.
doi: 10.1002/(sici)1097-4695(19990605)39:3<359::aid-neu3>3.0.co;2-w URL pmid: 10363909 |
[121] |
Wu, Y., Eisenegger, C., Sivanathan, N., Crockett, M. J., & Clark, L. (2017). The role of social status and testosterone in human conspicuous consumption. Scientific Reports, 7(1), 11803.
doi: 10.1038/s41598-017-12260-3 URL |
[122] |
Zak, P. J., Kurzban, R., Ahmadi, S., Swerdloff, R. S., Park, J., Efremidze, L., ... Matzner, W. (2009). Testosterone administration decreases generosity in the ultimatum game. PloS One, 4(12), e8330.
doi: 10.1371/journal.pone.0008330 URL pmid: 20016825 |
[123] |
Zilioli, S., & Watson, N. V. (2014). Testosterone across successive competitions: Evidence for a ‘winner effect’ in humans?. Psychoneuroendocrinology, 47, 1-9.
doi: 10.1016/j.psyneuen.2014.05.001 URL pmid: 25001950 |
[1] | 陈静, 冉光明, 张琪, 牛湘. 儿童和青少年同伴侵害与攻击行为关系的三水平元分析[J]. 心理科学进展, 2022, 30(2): 275-290. |
[2] | 武丽丽, 程刚, 张大均. 重复性急性应激对攻击行为的影响及调控机制[J]. 心理科学进展, 2021, 29(8): 1358-1370. |
[3] | 朱亚琳, 金灿灿. 黑暗三联征与攻击行为关系的元分析[J]. 心理科学进展, 2021, 29(7): 1195-1209. |
[4] | 谢家全, 谢昌颐, 杨文登. 饥饿对认知与社会行为的影响及其机制[J]. 心理科学进展, 2020, 28(1): 141-149. |
[5] | 廖嘉俊, 李红, 吴寅. 睾酮与人类决策行为[J]. 心理科学进展, 2019, 27(9): 1607-1621. |
[6] | 张丽华, 苗丽. 敌意解释偏向与攻击的关系[J]. 心理科学进展, 2019, 27(12): 2097-2108. |
[7] | 王兴超;杨继平;杨力. 道德推脱与攻击行为关系的元分析[J]. 心理科学进展, 2014, 22(7): 1092-1102. |
[8] | 刘金婷;刘思铭;曲路静;钟茹;詹稼毓;蒋玉石;吴寅. 睾酮与人类社会行为[J]. 心理科学进展, 2013, 21(11): 1956-1966. |
[9] | 王美萍;张文新. COMT基因多态性与攻击行为的关系[J]. 心理科学进展, 2010, 18(8): 1256-1262. |
[10] | 杨继平; 王兴超; 高玲. 道德推脱的概念、测量及相关变量[J]. 心理科学进展, 2010, 18(4): 671-678. |
[11] | 高雯;陈会昌. 攻击行为社会信息加工模型与道德领域理论的整合[J]. 心理科学进展, 2008, 16(1): 91-97. |
[12] | 郑宏明;孙延军. 暴力电子游戏对攻击行为及相关变量的影响[J]. 心理科学进展, 2006, 14(2): 266-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||