[1] |
付艳, 王大华. (2009). 认知老化与脑:HAROLD模型之争. 心理科学进展, 17(1), 86-91.
|
[2] |
Billino, J., Bremmer, F., & Gegenfurtner, K. R. (2008). Differential aging of motion processing mechanisms: Evidence against general perceptual decline. Vision Research, 48(10), 1254-1261.
doi: 10.1016/j.visres.2008.02.014
pmid: 18396307
|
[3] |
Bowling, A. C., Lindsay, P., Smith, B. G., & Storok, K. (2015). Saccadic eye movements as indicators of cognitive function in older adults. Aging, Neuropsychology and Cognition, 22(2), 201-219.
|
[4] |
Braun, D. I., Schütz, A. C., & Gegenfurtner, K. R. (2021). Age effects on saccadic suppression of luminance and color. Journal of Vision, 21(6), 11.
|
[5] |
Bueno, A., Sato, J. R., & Hornberger, M. (2019). Eye tracking - The overlooked method to measure cognition in neurodegeneration? Neuropsychologia, 133, Article 107191.
|
[6] |
Chen, J., Sperandio, I., Henry, M. J., & Goodale, M. A. (2019). Changing the real viewing distance reveals the temporal evolution of size constancy in visual cortex. Current Biology, 29(13), 2237-2243.
doi: S0960-9822(19)30683-9
pmid: 31257140
|
[7] |
Davis, E. E., Chemnitz, E., Collins, T. K., Geerligs, L., & Campbell, K. L. (2021). Looking the same, but remembering differently: Preserved eye-movement synchrony with age during movie watching. Psychology and Aging, 36(5), 604-615.
|
[8] |
Davis, S. W., Dennis, N. A., Daselaar, S. M., Fleck, M. S., & Cabeza, R. (2008). Que pasa? The posterior-anterior shift in aging. Cerebral Cortex, 18(5), 1201-1209.
|
[9] |
de Haas, B., Iakovidis, A. L., Schwarzkopf, D. S., & Gegenfurtner, K. R. (2019). Individual differences in visual salience vary along semantic dimensions. Proceedings of the National Academy of Sciences of the United States of America, 116(24), 11687-11692.
doi: 10.1073/pnas.1820553116
pmid: 31138705
|
[10] |
Hardstone, R., Zhu, M., Flinker, A., Melloni, L., Devore, S., Friedman, D.,... He, B. J. (2021). Long-term priors influence visual perception through recruitment of long- range feedback. Nature Communications, 12(1), Article 6288.
|
[11] |
Herzfeld, D. J., Kojima, Y., Soetedjo, R., & Shadmehr, R. (2015). Encoding of action by the Purkinje cells of the cerebellum. Nature, 526(7573), 439-442.
|
[12] |
Herzfeld, D. J., Kojima, Y., Soetedjo, R., & Shadmehr, R. (2018). Encoding of error and learning to correct that error by the Purkinje cells of the cerebellum. Nature Neuroscience, 21(5), 736-743.
doi: 10.1038/s41593-018-0136-y
pmid: 29662213
|
[13] |
Huang, J., Gegenfurtner, K. R., Schütz, A. C., & Billino, J. (2017). Age effects on saccadic adaptation: Evidence from different paradigms reveals specific vulnerabilities. Journal of Vision, 17(6), 9.
|
[14] |
Huang, J., Hegele, M., & Billino, J. (2018). Motivational modulation of age-related effects on reaching adaptation. Frontiers in Psychology, 9, Article 2285.
|
[15] |
Idrees, S., Baumann, M. P., Franke, F., Münch, T. A., & Hafed, Z. M. (2020). Perceptual saccadic suppression starts in the retina. Nature Communications, 11(1), 1977.
|
[16] |
Jia, L., Du, Y., Chu, L., Zhang, Z., Li, F., Lyu, D., …Jia, J. (2020). Prevalence, risk factors, and management of dementia and mild cognitive impairment in adults aged 60 years or older in China: A cross-sectional study. The Lancet Public Health, 5(12), e661-e671.
|
[17] |
Kim, S., Ogawa, K., Lv, J., Schweighofer, N., & Imamizu, H. (2015). Neural substrates related to motor memory with multiple timescales in sensorimotor adaptation. PLoS Biology, 13(12), Article e1002312.
|
[18] |
Li, T., Wang, L., Huang, W., Zhen, Y., Zhong, C., Qu, Z., & Ding, Y. (2020). Onset time of inhibition of return is a promising index for assessing cognitive functions in older adults. The Journals of Gerontology. Series B, Psychological Sciences and Social Sciences, 75(4), 753-761.
|
[19] |
Li, X., Wang, Y., Wang, W., Huang, W., Chen, K., Xu, K.,... Zhang, Z. (2020). Age-related decline in the topological efficiency of the brain structural connectome and cognitive aging. Cerebral Cortex, 30(8), 4651-4661.
|
[20] |
Long, N. M., & Kuhl, B. A. (2018). Bottom-up and top-down factors differentially influence stimulus representations across large-scale attentional networks. The Journal of Neuroscience, 38(10), 2495-2504.
|
[21] |
Markowitz, D. A., Shewcraft, R. A., Wong, Y. T., & Pesaran, B. (2011). Competition for visual selection in the oculomotor system. The Journal of Neuroscience, 31(25), 9298-9306.
|
[22] |
Najemnik, J., & Geisler, W. S. (2005). Optimal eye movement strategies in visual search. Nature, 434(7031), 387-391.
|
[23] |
Navalpakkam, V., Koch, C., Rangel, A., & Perona, P. (2010). Optimal reward harvesting in complex perceptual environments. Proceedings of the National Academy of Sciences of the United States of America, 107(11), 5232-5237.
doi: 10.1073/pnas.0911972107
pmid: 20194768
|
[24] |
Noorani, I., & Carpenter, R. H. (2016). The LATER model of reaction time and decision. Neuroscience and Biobehavioral Reviews, 64, 229-251.
|
[25] |
Park, D. C., Lautenschlager, G., Hedden, T., Davidson, N. S., Smith, A. D., & Smith, P. K. (2002). Models of visuospatial and verbal memory across the adult life span. Psychology and Aging, 17(2), 299-320.
pmid: 12061414
|
[26] |
Park, D. C., & Reuter-Lorenz, P. (2009). The adaptive brain: Aging and neurocognitive scaffolding. Annual Review of Psychology, 60, 173-196.
doi: 10.1146/annurev.psych.59.103006.093656
pmid: 19035823
|
[27] |
Peltsch, A., Hemraj, A., Garcia, A., & Munoz, D. P. (2011). Age-related trends in saccade characteristics among the elderly. Neurobiology of Aging, 32(4), 669-679.
doi: 10.1016/j.neurobiolaging.2009.04.001
pmid: 19414208
|
[28] |
Poletti, M., Rucci, M., & Carrasco, M. (2017). Selective attention within the foveola. Nature Neuroscience, 20(10), 1413-1417.
doi: 10.1038/nn.4622
pmid: 28805816
|
[29] |
Ramzaoui, H., Faure, S., & Spotorno, S. (2021). Top-down and bottom-up guidance in normal aging during scene search. Psychology and Aging, 36(4), 433-451.
doi: 10.1037/pag0000485
pmid: 34124920
|
[30] |
Salthouse, T. A. (1996). The processing-speed theory of adult age differences in cognition. Psychological Review, 103(3), 403-428.
doi: 10.1037/0033-295x.103.3.403
pmid: 8759042
|
[31] |
Schütz, A. C., Braun, D. I., & Gegenfurtner, K. R. (2011). Eye movements and perception: A selective review. Journal of Vision, 11(5), 9.
|
[32] |
Schütz, A. C., Trommershäuser, J., & Gegenfurtner, K. R. (2012). Dynamic integration of information about salience and value for saccadic eye movements. Proceedings of the National Academy of Sciences of the United States of America, 109(19), 7547-7552.
|
[33] |
Seidler, R. D. (2006). Differential effects of age on sequence learning and sensorimotor adaptation. Brain Research Bulletin, 70(4-6), 337-346.
|
[34] |
Shadmehr, R., Smith, M. A., & Krakauer, J. W. (2010). Error correction, sensory prediction, and adaptation in motor control. Annual Review of Neuroscience, 33, 89-108.
doi: 10.1146/annurev-neuro-060909-153135
pmid: 20367317
|
[35] |
Siegel, M., Buschman, T. J., & Miller, E. K. (2015). Cortical information flow during flexible sensorimotor decisions. Science, 348(6241), 1352-1355.
doi: 10.1126/science.aab0551
pmid: 26089513
|
[36] |
Spreng, R. N., DuPre, E., Selarka, D., Garcia, J., Gojkovic, S., Mildner, J.,... Turner, G. R. (2014). Goal-congruent default network activity facilitates cognitive control. The Journal of Neuroscience, 34(42), 14108-14114.
|
[37] |
Sugiura, M. (2016). Functional neuroimaging of normal aging: Declining brain, adapting brain. Ageing Research Reviews, 30, 61-72.
doi: 10.1016/j.arr.2016.02.006
pmid: 26988858
|
[38] |
Teufel, C., & Fletcher, P. C. (2020). Forms of prediction in the nervous system. Nature Reviews Neuroscience, 21(4), 231-242.
|
[39] |
Trommershäuser, J., Glimcher, P. W., & Gegenfurtner, K. R. (2009). Visual processing, learning and feedback in the primate eye movement system. Trends in Neurosciences, 32(11), 583-590.
doi: 10.1016/j.tins.2009.07.004
pmid: 19729211
|
[40] |
Valsecchi, M., Billino, J., & Gegenfurtner, K. R. (2018). Healthy aging is associated with decreased risk-taking in motor decision-making. Journal of Experimental Psychology: Human Perception and Performance, 44(1), 154-167.
doi: 10.1037/xhp0000436
pmid: 28504524
|
[41] |
Wang, F., Huang, J., Lv, Y., Ma, X., Yang, B., Wang, E., Du, B., Li, W., & Song, Y. (2016). Predicting perceptual learning from higher-order cortical processing. NeuroImage, 124(Pt A),682-692.
doi: S1053-8119(15)00830-7
pmid: 26391126
|
[42] |
Wiebel, C. B., Valsecchi, M., & Gegenfurtner, K. R. (2013). The speed and accuracy of material recognition in natural images. Attention, Perception & Psychophysics, 75(5), 954-966.
|
[43] |
Wolpert, D. M., & Flanagan, J. R. (2016). Computations underlying sensorimotor learning. Current Opinion in Neurobiology, 37, 7-11.
doi: S0959-4388(15)00181-6
pmid: 26719992
|
[44] |
Wynn, J. S., Ryan, J. D., & Buchsbaum, B. R. (2020). Eye movements support behavioral pattern completion. Proceedings of the National Academy of Sciences of the United States of America, 117(11), 6246-6254.
doi: 10.1073/pnas.1917586117
pmid: 32123109
|