心理科学进展 ›› 2020, Vol. 28 ›› Issue (7): 1056-1070.doi: 10.3724/SP.J.1042.2020.01056
收稿日期:
2018-12-10
出版日期:
2020-07-15
发布日期:
2020-05-21
通讯作者:
张君
E-mail:zhangj@outlook.com
基金资助:
YIN Kui1, PENG Jian2, ZHANG Jun3()
Received:
2018-12-10
Online:
2020-07-15
Published:
2020-05-21
Contact:
ZHANG Jun
E-mail:zhangj@outlook.com
摘要:
以个体为中心的研究路径将各个变量看作是相互依赖的一个系统, 基于多项特征(变量)将被试分为多个子群体, 分析子群体的前因与影响。以个体为中心的研究路径理解更加直观、更贴近实践, 受到越来越多的关注。潜在剖面分析(latent profile analysis, LPA)是以个体为中心研究路径的典型分析技术。在总结归纳以个体与以变量为中心两种研究路径异同、LPA与传统以个体为中心的分析技术差异后, 系统梳理了LPA在组织行为学领域的应用主题, 并从研究主题选取、样本要求、理论使用、剖面数量确定等方面归纳了LPA应用的步骤与注意事项。最后, 提出了未来研究的方向。
中图分类号:
尹奎, 彭坚, 张君. (2020). 潜在剖面分析在组织行为领域中的应用. 心理科学进展 , 28(7), 1056-1070.
YIN Kui, PENG Jian, ZHANG Jun. (2020). The application of latent profile analysis in organizational behavior research. Advances in Psychological Science, 28(7), 1056-1070.
以变量为中心的路径 | 以个体为中心的路径 | |
---|---|---|
研究目的 | 描述变量间关系 用某些变量解释特定变量的方差 | 识别在变量系统中共有相似关系/水平模式的子群体 |
前提假设 | 样本和总体同质, 即变量间关系可以推广到总体中 | 样本或总体中包含不同子群体 根据变量间的组合方式区分子群体 |
优势 | 能够清晰识别方差的解释 能够得出可以推广到总体的结论 | 能够分析多个变量之间的复杂组合模式识别子群体, 并将群体类型作为变量 |
特定主题的应用 | 前因、结果、相关 叠加和交互作用 | 在不同群体中检验变量间关系; 探索或者检验未知群体 |
常用分析方法 | 描述性统计、相关、多元回归、SEM、跨层次分析、元分析 | 均值分割、聚类分析、LPA、潜剖面增长模型、潜在剖面/类别转移分析 |
管理实践意义 | 因素单一、可操作性较差 | 综合考虑、容易理解、直觉上更有吸引力 |
表1 以变量为中心与以个体为中心研究路径的区别
以变量为中心的路径 | 以个体为中心的路径 | |
---|---|---|
研究目的 | 描述变量间关系 用某些变量解释特定变量的方差 | 识别在变量系统中共有相似关系/水平模式的子群体 |
前提假设 | 样本和总体同质, 即变量间关系可以推广到总体中 | 样本或总体中包含不同子群体 根据变量间的组合方式区分子群体 |
优势 | 能够清晰识别方差的解释 能够得出可以推广到总体的结论 | 能够分析多个变量之间的复杂组合模式识别子群体, 并将群体类型作为变量 |
特定主题的应用 | 前因、结果、相关 叠加和交互作用 | 在不同群体中检验变量间关系; 探索或者检验未知群体 |
常用分析方法 | 描述性统计、相关、多元回归、SEM、跨层次分析、元分析 | 均值分割、聚类分析、LPA、潜剖面增长模型、潜在剖面/类别转移分析 |
管理实践意义 | 因素单一、可操作性较差 | 综合考虑、容易理解、直觉上更有吸引力 |
均值分割 | 聚类分析 | LPA | |
---|---|---|---|
优势 | 简单; 事先确定分组, 有利于指导假设提出。 | 相比于均值分割较为灵活; 对于总体样本, 基于客观指标的分类效率高。 | 采用更加严格稳健的统计标准来确定分类数量, 更加客观; 适用于分析不同类型量表的数据, 不需要进行数据转换; 基于概率将个体分布在各个子群体上。 |
劣势 | (1)不同样本均值不同, 难以进行跨样本比较; (2)简单划分高低组过于简单化了个体差异, 难以满足群体内同质性; (3)强制划分群体可能不符合实际; (4)可能遗漏潜在的子群体。 | (1)通过最小化组内差异、最大化组间差异确定分组数量; (2)模型选择、组数量确定有较强的主观性; (3)假设变量间彼此独立、分类变量服从多项分布、连续变量服从正态分布。 | (1)对样本量敏感, 大样本可能会提取更多类别; (2)在非线性情况下, 可能会存在过量提取数量; (3)可能出现各个拟合指标冲突, 难以确定最终剖面数量。 |
表2 LPA与传统以个体为中心分析技术的差异
均值分割 | 聚类分析 | LPA | |
---|---|---|---|
优势 | 简单; 事先确定分组, 有利于指导假设提出。 | 相比于均值分割较为灵活; 对于总体样本, 基于客观指标的分类效率高。 | 采用更加严格稳健的统计标准来确定分类数量, 更加客观; 适用于分析不同类型量表的数据, 不需要进行数据转换; 基于概率将个体分布在各个子群体上。 |
劣势 | (1)不同样本均值不同, 难以进行跨样本比较; (2)简单划分高低组过于简单化了个体差异, 难以满足群体内同质性; (3)强制划分群体可能不符合实际; (4)可能遗漏潜在的子群体。 | (1)通过最小化组内差异、最大化组间差异确定分组数量; (2)模型选择、组数量确定有较强的主观性; (3)假设变量间彼此独立、分类变量服从多项分布、连续变量服从正态分布。 | (1)对样本量敏感, 大样本可能会提取更多类别; (2)在非线性情况下, 可能会存在过量提取数量; (3)可能出现各个拟合指标冲突, 难以确定最终剖面数量。 |
作者(年份) | 研究主题 | 结果 | 样本来源 | 样本量 |
---|---|---|---|---|
人格 | 上网磨洋工、工作投入 | 美国 | N = 148 | |
Conte等(2017) | 人格 | 留职率、损耗 | 美国 | N = 4763 |
人格 | 主观幸福感、自我提升价值观、改变开放性等 | 新西兰 | N = 6518 | |
人格 | 生活满意度、工作自信、工作热情等 | 全球 | N = 3137694 | |
动机 | 需要满意度、角色内绩效 | 中国 | N = 226 | |
动机 | 人岗匹配、工作投入、工作满意度 | 德国 | N1 = 577; N2 = 949 | |
心理契约 | 工作投入 | 葡萄牙 | N1 = 1821; N2 = 1046 | |
心理资本 | 工作投入、工作绩效等 | 澳大利亚 | N1 = 171, N2 = 190 | |
心理资本 | 组织公民行为、心理抑郁 | 中国 | N = 283 | |
心理资本 | 工作投入、工作绩效 | 巴基斯坦、乌克兰 | N1 = 171, N2 = 190 | |
工作-家庭冲突 | 工作控制、离职意愿 | 芬兰 | N123 = 789 | |
幸福感 | — | 芬兰 | N = 402, 连续三年 | |
幸福感 | — | 西班牙 | N = 396 | |
幸福感 | — | 欧洲 | N = 3461 | |
指导关系 | — | 中国 | N = 381 | |
组织承诺 | 工作退缩行为、离职意愿、组织公民行为、组织认同工作压力 | 土耳其 | N1 = 914, N2 = 336 | |
组织承诺 | 心理幸福感、留职意愿、沮丧、焦虑、工作搜寻活动 | 加拿大 | N = 6501 | |
组织承诺 | 工作压力、工作满意度等 | 土耳其 | N1 = 346, N2 = 797 | |
组织承诺 | 离职意愿、幸福感 | 香港 | N = 1096 | |
情绪劳动 | 情绪耗竭、工作满意度等 | 美国和新加坡 | N1 = 692, N2 = 480 | |
情绪劳动事件 | 幸福感 | 中国 | N = 246 | |
情绪劳动 | 工作满意度、工作绩效等 | 法国 | N1 = 311, N2 = 311 | |
恢复体验 | 工作投入、工作倦怠等 | 美国 | N1 = 520, N2 = 536 | |
工作与家庭冲突 | 工作满意度、组织公民行为等 | —— | N = 823 | |
团队冲突 | 团队效能、合作型冲突管理 | 加拿 | N1 = 195; N2 = 92 | |
企业分类 | 企业绩效 | 德国 | N = 314 | |
企业分类 | 人-岗匹配、人-组织匹配、组织绩效 | 德国 | N = 259 |
表3 LPA的应用主题与样本信息
作者(年份) | 研究主题 | 结果 | 样本来源 | 样本量 |
---|---|---|---|---|
人格 | 上网磨洋工、工作投入 | 美国 | N = 148 | |
Conte等(2017) | 人格 | 留职率、损耗 | 美国 | N = 4763 |
人格 | 主观幸福感、自我提升价值观、改变开放性等 | 新西兰 | N = 6518 | |
人格 | 生活满意度、工作自信、工作热情等 | 全球 | N = 3137694 | |
动机 | 需要满意度、角色内绩效 | 中国 | N = 226 | |
动机 | 人岗匹配、工作投入、工作满意度 | 德国 | N1 = 577; N2 = 949 | |
心理契约 | 工作投入 | 葡萄牙 | N1 = 1821; N2 = 1046 | |
心理资本 | 工作投入、工作绩效等 | 澳大利亚 | N1 = 171, N2 = 190 | |
心理资本 | 组织公民行为、心理抑郁 | 中国 | N = 283 | |
心理资本 | 工作投入、工作绩效 | 巴基斯坦、乌克兰 | N1 = 171, N2 = 190 | |
工作-家庭冲突 | 工作控制、离职意愿 | 芬兰 | N123 = 789 | |
幸福感 | — | 芬兰 | N = 402, 连续三年 | |
幸福感 | — | 西班牙 | N = 396 | |
幸福感 | — | 欧洲 | N = 3461 | |
指导关系 | — | 中国 | N = 381 | |
组织承诺 | 工作退缩行为、离职意愿、组织公民行为、组织认同工作压力 | 土耳其 | N1 = 914, N2 = 336 | |
组织承诺 | 心理幸福感、留职意愿、沮丧、焦虑、工作搜寻活动 | 加拿大 | N = 6501 | |
组织承诺 | 工作压力、工作满意度等 | 土耳其 | N1 = 346, N2 = 797 | |
组织承诺 | 离职意愿、幸福感 | 香港 | N = 1096 | |
情绪劳动 | 情绪耗竭、工作满意度等 | 美国和新加坡 | N1 = 692, N2 = 480 | |
情绪劳动事件 | 幸福感 | 中国 | N = 246 | |
情绪劳动 | 工作满意度、工作绩效等 | 法国 | N1 = 311, N2 = 311 | |
恢复体验 | 工作投入、工作倦怠等 | 美国 | N1 = 520, N2 = 536 | |
工作与家庭冲突 | 工作满意度、组织公民行为等 | —— | N = 823 | |
团队冲突 | 团队效能、合作型冲突管理 | 加拿 | N1 = 195; N2 = 92 | |
企业分类 | 企业绩效 | 德国 | N = 314 | |
企业分类 | 人-岗匹配、人-组织匹配、组织绩效 | 德国 | N = 259 |
理论依据 | 统计指标依据 |
---|---|
(1) 每个剖面(子群体)在分类指标上均有差异性, 内容差异比水平差异更重要。 (2) 每个剖面有足够的个体, 一般要求占总体5%以上。 (3) 以往的直接或相关研究, 证实存在某些特征的剖面。 | (1) AIC、BIC、SSABIC、CAIC比竞争模型小。 (2) BLRT对应p在0.05水平上显著, 再多一个剖面变得不显著。 (3) 绘制剖面数量与△BIC、△ABIC等指标的折线图(elbow plots), 查找拐点。 |
表4 剖面数量确定的依据
理论依据 | 统计指标依据 |
---|---|
(1) 每个剖面(子群体)在分类指标上均有差异性, 内容差异比水平差异更重要。 (2) 每个剖面有足够的个体, 一般要求占总体5%以上。 (3) 以往的直接或相关研究, 证实存在某些特征的剖面。 | (1) AIC、BIC、SSABIC、CAIC比竞争模型小。 (2) BLRT对应p在0.05水平上显著, 再多一个剖面变得不显著。 (3) 绘制剖面数量与△BIC、△ABIC等指标的折线图(elbow plots), 查找拐点。 |
[1] | 巢琳, 杨婉君, 郑雪. (2017). 基于潜在剖面分析的中小企业员工心理资本. 中国健康心理学杂志, 25(1), 54-60. |
[2] | 苏斌原, 张洁婷, 喻承甫, 张卫. (2015). 大学生心理行为问题的识别: 基于潜在剖面分析. 心理发展与教育, 31(3), 350-359. |
[3] | 王孟成, 毕向阳. (2018). 潜变量建模与Mplus应用·进阶篇. 重庆大学出版社. |
[4] | 王孟成, 邓俏文, 毕向阳, 叶浩生, 杨文登. (2017). 分类精确性指数Entropy在潜剖面分析中的表现: 一项蒙特卡罗模拟研究. 心理学报, 49(11), 1473-1482. |
[5] | 项紫霓, 张兴慧, 黎亚军, 王耘, 李燕芳. (2014). 3~5岁儿童母亲抚养压力类型特点及其影响因素. 心理发展与教育, 30(4), 427-434. |
[6] | 薛晓州, 张敏, 侯楠, 周文霞. (2017). 导师指导关系类型及其在未来工作自我与主动职业行为间的调节作用: 一个潜在剖面分析. 中国人力资源开发, 34(3), 81-89. |
[7] | 尹奎, 孙健敏, 徐贯英. (2016). 工作重塑对工作投入的影响: 基于优势比较分析方法. 商业经济与管理, (8), 24-33. |
[8] | 张洁婷, 焦璨, 张敏强. (2010). 潜在类别分析技术在心理学研究中的应用. 心理科学进展, 18(12), 1991-1998. |
[9] | Aguinis, H., & Gottfredson, R. K. (2010). Best-practice recommendations for estimating interaction effects using moderated multiple regression. Journal of Organizational Behavior, 31(6), 776-786. |
[10] |
Asendorpf, J. B., & van, Aken, M. A., G. (2003). Personality- relationship transaction in adolescence: Core versus surface personality characteristics. Journal of Personality, 71(4), 629-666.
URL pmid: 12901433 |
[11] |
Asparouhov, T., & Muthen, B. O. (2014). Auxiliary variables in mixture modeling: Three-step approaches using Mplus. Structural Equation Modeling, 21( 3), 329-341.
doi: 10.1080/10705511.2014.856699 URL pmid: 29333054 |
[12] | Austin, E. J., Dore, T. C. P., & O’Donovan, K. M. (2008). Associations of personality and emotional intelligence with display rule perceptions and emotional labour. Personality and Individual Differences, 44(3), 679-688. |
[13] | Benitez, M., Peccei, R., & Medina, F. J. (2019). Employee well-being profiles and service quality: A unit-level analysis using a multilevel latent profile approach. European Journal of Work and Organizational Psychology, 28(6), 859-872. |
[14] | Bergman, L. R., & Lundh, L. G. (2015). Introduction: The person-oriented approach: Roots and roads to the future. Journal for Person-Oriented Research, 1(1), 1-6. |
[15] | Bergman, L. R., Magnusson, D., & El Khouri, B. M.(2003) . Studying individual development in an interindividual context: A person-oriented approach Mahwah: Psychology Press A person-oriented approach. Mahwah: Psychology Press. |
[16] | Bouckenooghe, D., de Clercq, D., & Raja, U. (2019). A person- centered, latent profile analysis of psychological capital. Australian Journal of Management, 44(1), 91-108. |
[17] |
Bucci, S., Emsley, R., & Berry, K. (2017). Attachment in psychosis: A latent profile analysis of attachment styles and association with symptoms in a large psychosis cohort. Psychiatry Research, 247, 243-249.
doi: 10.1016/j.psychres.2016.11.036 URL pmid: 27930965 |
[18] | Bujacz, A., Eib, C., & Toivanen, S. (2019). Not all are equal: A latent profile analysis of well-being among the self- employed. Journal of Happiness Studies, 21, 1661-1680. |
[19] | Chambel, M. J., Lorente, L., Carvalho, V., & Martinez, I. M. (2016). Psychological contract profiles among permanent and temporary agency workers. Journal of Managerial Psychology, 31(1), 79-94. |
[20] | Clark, S. L., & Muthén, B. (2017). Relating latent class analysis results to variables not included in the analysis. Unpublished manuscript. https://www.statmodel.com/download/relatinglca. pdf. |
[21] | Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multiple regression/correlation analysis for the behavioral sciences (3rd ed.). Hillsdale: Erlbaum. |
[22] | Collins, L. M., & Lanza, S. T. (2010). Latent class and latent transition analysis: With applications in the social, behavioral, and health sciences. Hoboken, NJ: John Wiley & Sons. |
[23] | Costa Jr, P. T., Herbst, J. H., McCrae, R. R., Samuels, J., & Ozer, D. J. (2002). The replicability and utility of three personality types. European Journal of Personality, 16(S1), S73-S87. |
[24] |
Diefendorff, J. M., Gabriel, A. S., Nolan, M. T., & Yang, J. (2019). Emotion regulation in the context of customer mistreatment and felt affect: An event-based profile approach. Journal of Applied Psychology, 104(7), 965-983.
doi: 10.1037/apl0000389 URL pmid: 30667238 |
[25] | Fisher, P. A., & Robie, C. (2019). A latent profile analysis of the Five Factor Model of personality: A constructive replication and extension. Personality and Individual Differences, 139, 343-348. |
[26] | Fouquereau, E., Morin, A. J., Lapointe, É., Mokounkolo, R., & Gillet, N. (2019). Emotional labour profiles: Associations with key predictors and outcomes. Work & Stress, 33(3), 268-294. |
[27] | Gabriel, A. S., Calderwood, C., Bennett, A. A., Wong, E. M., Dahling, J. J., & Trougakos, J. P. (2019). Examining recovery experiences among working college students: A person- centered study. Journal of Vocational Behavior, 115, 103329. |
[28] | Gabriel, A. S., Campbell, J. T., Djurdjevic, E., Johnson, R. E., & Rosen, C. C. (2018). Fuzzy profiles: Comparing and contrasting latent profile analysis and fuzzy set qualitative comparative analysis for person-centered research. Organizational Research Methods, 21(4), 877-904. |
[29] | Gabriel, A. S., Daniels, M. A., Diefendorff, J. M., & Greguras, G. J. (2015). Emotional labor actors: A latent profile analysis of emotional labor strategies. Journal of Applied Psychology, 100(3), 863-879. |
[30] | Gellatly, I. R., Meyer, J. P., & Luchak, A. A. (2006). Combined effects of the three commitment components on focal and discretionary behaviors: A test of Meyer and Herscovitch’s propositions. Journal of Vocational Behavior, 69(2), 331-345. |
[31] | Gillet, N., Caesens, G., Morin, A. J. S., & Stinglhamber, F. (2019). Complementary variable-and person-centred approaches to the dimensionality of work engagement: A longitudinal investigation. European Journal of Work and Organizational Psychology, 28(2), 239-258. |
[32] | Henson, J. M., Reise, S. P., & Kim, K. H. (2007). Detecting mixtures from structural model differences using latent variable mixture modeling: A comparison of relative model fit statistics. Structural Equation Modeling: A Multidisciplinary Journal, 14(2), 202-226. |
[33] |
Herscovitch, L., & Meyer, J. P. (2002). Commitment to organizational change: Extension of a three-component model. Journal of Applied Psychology, 87(3), 474-487.
doi: 10.1037/0021-9010.87.3.474 URL pmid: 12090605 |
[34] | Herzberg, P. Y., & Roth, M. (2006). Beyond resilients, under controllers, and over controllers? An extension of personality prototype research. European Journal of Personality, 20(1), 5-28. |
[35] | Howard, J., Gagné, M., Morin, A. J. S., & van den Broeck, A. (2016). Motivation profiles at work: A self-determination theory approach. Journal of Vocational Behavior, 95-96, 74-89. |
[36] | Howard, M. C., & Hoffman, M. E. (2018). Variable-centered, person-centered, and person-specific approaches: Where theory meets the method. Organizational Research Methods, 21(4), 846-876. |
[37] | Isler, L., Fletcher, G. J. O., Liu, J. H., & Sibley, C. G. (2017). Validation of the four-profile configuration of personality types within the Five-Factor Model. Personality and Individual Differences, 106, 257-262. |
[38] | Jebb, A. T., Parrigon, S., & Woo, S. E. (2017). Exploratory data analysis as a foundation of inductive research. Human Resource Management Review, 27(2), 265-276. |
[39] | Kam, C., Morin, A. J. S., Meyer, J. P., & Topolnytsky, L. (2016). Are commitment profiles stable and predictable? A latent transition analysis. Journal of Management, 42(6), 1462-1490. |
[40] | Ketchen, Jr, D., J., & Shook, C. L. (1996). The application of cluster analysis in strategic management research: An analysis and critique. Strategic Management Journal, 17(6), 441-458. |
[41] | Kollitz, R., Ruhle, S., & Süß, S. (2019). Recruitment practices under scrutiny: A latent-profile analysis of family firms’ approaches to recruit non-family employees. German Journal of Human Resource Management, 33(3), 167-196. |
[42] | Laursen, B. (2015). I don´t quite get it…personal experiences with the person-oriented approach. Journal for Person- Oriented Research, 1(1), 42-47. |
[43] | Laursen, B. P., & Hoff, E. (2006). Person-centered and variable- centered approaches to longitudinal data. Merrill-Palmer Quarterly, 52(3), 377-389. |
[44] |
Lee, Y., & Cho, D. (2019). The effects of job demands, job resources, and personal resources on the psychological well-being of middle-aged workers in the United States: Assessing latent profile differences. International Journal for Educational and Vocational Guidance, https://doi.org/10.1007/s10775-019-09414-2
URL pmid: 26101556 |
[45] | Lee, Y. (2018). Identifying latent profiles in work-to-family conflict and family-to-work conflict. Human Resource Development Quarterly, 29(6), 203-217. |
[46] |
Lubke, G., & Neale, M. C. (2006). Distinguishing between latent classes and continuous factors: Resolution by maximum likelihood? Multivariate Behavioral Research, 41(4), 499-532.
URL pmid: 26794916 |
[47] | MacCallum, R. C., Zhang, S., Preacher, K. J., & Rucker, D. D. (2002). On the practice of dichotomization of quantitative variables. Psychological Methods, 7(1), 19-40. |
[48] | Macrae, C. N., & Bodenhausen, G. V. (2000). Social cognition: Thinking categorically about others. Annual Review of Psychology, 51(1), 93-120. |
[49] | Magidson, J., & Vermunt, J. (2002). Latent class models for clustering: A comparison with K-means. Canadian Journal of Marketing Research, 20(1), 36-43. |
[50] | Mäkikangas, A. (2018). Job crafting profiles and work engagement: A person-centered approach. Journal of Vocational Behavior, 106, 101-111. |
[51] | Mäkikangas, A., & Kinnunen, U. (2016). The person-oriented approach to burnout: A systematic review. Burnout Research, 3(1), 11-23. |
[52] | Mäkikangas, A., Schaufeli, W., Leskinen, E., Kinnunen, U., Hyvönen, K., & Feldt, T. (2015). Long-term development of employee well-being: A latent transition approach. Journal of Happiness Studies, 17, 2325-2345. |
[53] | Mäkikangas, A., Tolvanen, A., Aunola, K., Feldt, T., Mauno, S., & Kinnunen, U. (2018). Multilevel latent profile analysis with covariates: Identifying job characteristics profiles in hierarchical data as an example. Organizational Research Methods, 21(4), 931-954. |
[54] | Marsh, H. W., Lüdtke, O., Trautwein, U., & Morin, A. J. S . (2009). Classical latent profile analysis of academic self- concept dimensions: Synergy of person-and variable- centered approaches to theoretical models of self-concept. Structural Equation Modeling, 16(2), 191-225. |
[55] |
Merz, E. L., & Roesch, S. C. (2011). A latent profile analysis of the five factor model of personality: Modeling trait interactions. Personality & Individual Differences, 51(8), 915-919.
doi: 10.1016/j.paid.2011.07.022 URL pmid: 21984857 |
[56] | Meyer, J. P., & Morin, A. J. S. (2016). A person-centered approach to commitment research: Theory, research, and methodology. Journal of Organizational Behavior, 37(4), 584-612. |
[57] | Meyer, J. P., Morin, A. J. S., & Wasti, S. A. (2018). Employee commitment before and after an economic crisis: A stringent test of profile similarity. Human Relations, 71(9), 1204-1233. |
[58] | Meyer, J. P., Stanley, L. J., & Parfyonova, N. M. (2012). Employee commitment in context: The nature and implication of commitment profiles. Journal of Vocational Behavior, 80(1), 1-16. |
[59] | Meyer, J. P., Stanley, L. J., & Vandenberg, R. J. (2013). A person-centered approach to the study of commitment. Human Resource Management Review, 23(2), 190-202. |
[60] | Milligan, G. W., & Cooper, M. C. (1985). An examination of procedures for determining the number of clusters in a data set. Psychometrika, 50(2), 159-179. |
[61] | Moazami-Goodarzi, A., Nurmi, J. E., Mauno, S., Aunola, K., & Rantanen, J. (2019). Longitudinal latent profiles of work-family balance: Examination of antecedents and outcomes. International Journal of Stress Management, 26(1), 65-77. |
[62] | Moran, C. M., Diefendorff, J. M., Kim, T. Y., & Liu, Z. Q. (2012). A profile approach to self-determination theory motivations at work. Journal of Vocational Behavior, 81(3), 354-363. |
[63] | Morin, A. J. S., Bujacz, A., & Gagné, M. (2018). Person- centered methodologies in the organizational sciences: Introduction to the feature topic. Organizational Research Methods, 21(4), 803-813. |
[64] | Morin, A. J. S., & Marsh, H. W. (2015). Disentangling shape from level effects in person-centered analyses: An illustration based on university teachers’ multidimensional profiles of effectiveness. Structural Equation Modeling: A Multidisciplinary Journal, 22(1), 39-59. |
[65] | Morin, A. J. S., Meyer, J. P., Mcinerney, D. M., Marsh, H. W., & Ganotice, F. A. (2015). Profiles of dual commitment to the occupation and organization: Relations to well-being and turnover intentions. Asia Pacific Journal of Management, 32(3), 717-744. |
[66] | Morin, A. J. S., Morizot, J., Boudrias, J. S., & Madore, I. (2011). A multifoci person-centered perspective on workplace affective commitment: A latent profile/factor mixture analysis. Organizational Research Methods, 14(1), 58-90. |
[67] | Morin, A. J. S., Scalas, L. F., & Marsh, H. W. (2015). Tracking the elusive actual-ideal discrepancy model within latent subpopulations. Journal of Individual Differences, 36(2), 65-72. |
[68] | Muthén, B. O. (2002). Beyond SEM: General latent variable modeling. Behaviormetrika, 29(1), 81-117. |
[69] | Nagin, D. S. (2005). Group-based modeling of development. Cambridge, MA: Harvard University Press. |
[70] | Nylund, K. L., Asparouhov, T., & Muthén, B. O. (2007). Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study. Structural Equation Modeling, 14(4), 535-569. |
[71] | O’Neill, T. A., Hambley, L. A., & Chatellier, G. S. (2014). Cyberslacking, engagement, and personality in distributed work environments. Computers in Human Behavior, 40(40), 152-160. |
[72] | O’Neill, T. A., McLarnon, M. J. W., Hoffart, G. C., Woodley, H. J. R., & Allen, N. J. (2018). The structure and function of team conflict state profiles. Journal of Management, 44(2), 811-836. |
[73] | Parker, S. K., Bindl, U. K., & Strauss, K. (2010). Making things happen: A model of proactive motivation. Journal of Management, 36(4), 827-856. |
[74] | Petras, H., & Masyn, K. (2010). General growth mixture analysis with antecedents and consequences of change. In A. R. Piquero & D. Weisburd (Eds.), Handbook of quantitative criminology (pp. 69-100). New York, NY: Springer. |
[75] | Peugh, J., & Fan, X. (2013). Modeling unobserved heterogeneity using latent profile analysis: A Monte Carlo simulation. Structural Equation Modeling, 20(4), 616-639. |
[76] |
Robins, R. W., & Tracy, J. L. (2003). Setting an agenda for a person-centered approach to personality development. Monographs of the Society for Research in Child Development, 68(1), 110-122.
URL pmid: 12875201 |
[77] | Schmiege, S. J., Masyn, K. E., & Bryan, A. D. (2018). Confirmatory latent class analysis: Illustrations of empirically driven and theoretically driven model constraints. Organizational Research Methods, 21(4), 983-1001. |
[78] |
Seo, M. G., Barrett, L. F., & Bartunek, J. M. (2004). The role of affective experience in work motivation. Academy of Management Review, 29(3), 423-439.
URL pmid: 16871321 |
[79] | Skrondal, A., & Laake, P. (2001). Regression among factor scores. Psychometrika, 66(4), 563-575. |
[80] | Spector, P. E., Rogelberg, S. G., Ryan, A. M., Schmitt, N., & Zedeck, S. (2014). Moving the pendulum back to the middle: Reflections on and introduction to the inductive research special issue of Journal of Business and Psychology. Journal of Business and Psychology, 29(4), 499-502. |
[81] | Stanley, L., Kellermanns, F. W., & Zellweger, T. M. (2017). Latent profile analysis: Understanding family firm profiles. Family Business Review, 30(1) 84-102. |
[82] | Stanley, L., Vandenberghe, C., Vandenberg, R., & Bentein, K. (2013). Commitment profiles and employee turnover. Journal of Vocational Behavior, 82(3), 176-187. |
[83] |
Steinley, D., & McDonald, R. P. (2007). Examining factor score distributions to determine the nature of latent spaces. Multivariate Behavioral Research, 42(1), 133-156.
doi: 10.1080/00273170701341217 URL pmid: 26821079 |
[84] |
Takeuchi, R., Li, Y., & Wang, M. (2019). Expatriates’ performance profiles: Examining the effects of work experiences on the longitudinal change patterns. Journal of Management, 45(2), 451-475.
doi: 10.1177/0149206317741195 URL |
[85] | Tofighi, D., & Enders, C. K. (2007). Identifying the correct number of classes in a growth mixture model. In G. R. Hancock & K. M. Samuelsen (Eds.), Advances in latent variable mixture models (pp. 317-341). Charlotte, NC: Information Age. |
[86] | Valero, D., & Hirschi, A. (2016). Latent profiles of work motivation in adolescents in relation to work expectations, goal engagement, and changes in work experiences. Journal of Vocational Behavior, 93, 67-80. |
[87] | Vargha, A., Bergman, L. R., & Takács, S. (2016). Performing cluster analysis within a person-oriented context: Some methods for evaluating the quality of cluster solutions. Journal of Person-Oriented Research, 2(1-2), 78-86. |
[88] |
Wang, J. C. K., Morin, A. J. S., Ryan, R. M., & Liu, W. C. (2016). Students’ motivational profiles in the physical education context. Journal of Sport and Exercise Psychology, 38(6), 612-630.
doi: 10.1123/jsep.2016-0153 URL |
[89] |
Wang, M., & Hanges, P. J. (2011). Latent class procedures: Applications to organizational research. Organizational Research Methods, 14(1), 24-31.
doi: 10.1177/1094428110383988 URL |
[90] |
Wasti, S. A. (2005). Commitment profiles: Combinations of organizational commitment forms and job outcomes. Journal of Vocational Behavior, 67(2), 290-308.
doi: 10.1016/j.jvb.2004.07.002 URL |
[91] | Woo, S. E., Jebb, A. T., Tay, L., & Parrigon, S. (2018). Putting the “person” in the center: Review and synthesis of person-centered approaches and methods in organizational science. Organizational Research Methods, 21(4), 814-845. |
[92] | Yang, C. C. (2006). Evaluating latent class analysis models in qualitative phenotype identification. Computational Statistics & Data Analysis, 50(4), 1090-1104. |
[93] | Zyphur, M. J. (2009). When mindsets collide: Switching analytical mindsets to advance organization science. Academy of Management Review, 34(4), 677-688. |
[1] | 尹奎, 赵景, 周静, 聂琦. “大五”人格剖面:以个体为中心的研究路径[J]. 心理科学进展, 2021, 29(10): 1866-1877. |
[2] | 王笑天;李爱梅;吴伟炯;孙海龙;熊冠星. 工作时间长真的不快乐吗?异质性视角下工作时间对幸福感的影响[J]. 心理科学进展, 2017, 25(1): 180-189. |
[3] | 姚春序;项小霞;倪旭东. 团队内隐异质性:内涵拓展及其效能机制[J]. 心理科学进展, 2014, 22(2): 323-333. |
[4] | 倪旭东;薛宪方. 基于知识异质性团队的异质性知识网络运行机制[J]. 心理科学进展, 2013, 21(3): 389-397. |
[5] | 田录梅;张向葵. 高自尊的异质性研究述评[J]. 心理科学进展, 2006, 14(5): 704-709. |
[6] | 刘嘉;许燕. 团队异质性研究回顾与展望[J]. 心理科学进展, 2006, 14(4): 636-640. |
[7] | 倪凤琨. 自尊与攻击行为的关系述评[J]. 心理科学进展, 2005, 13(1): 66-71. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||