Acta Psychologica Sinica ›› 2022, Vol. 54 ›› Issue (1): 40-53.doi: 10.3724/SP.J.1041.2022.00040
• Reports of Empirical Studies • Previous Articles Next Articles
XIANG Yanhui(), HE Jiali, LI Qingyin
Received:
2021-01-13
Published:
2022-01-25
Online:
2021-11-26
Contact:
XIANG Yanhui
E-mail:xiangyh@hunnu.edu.cn
Supported by:
XIANG Yanhui, HE Jiali, LI Qingyin. (2022). The causal mechanism between envy and subjective well-being: Based on a longitudinal study and a diary method. Acta Psychologica Sinica, 54(1), 40-53.
Add to citation manager EndNote|Ris|BibTeX
URL: https://journal.psych.ac.cn/acps/EN/10.3724/SP.J.1041.2022.00040
Figure 1. A bi-factor model of subjective well-being. Note. PA: positive affect; NA: negative affect; LS: Life Satisfaction; gSWB: general subjective well-being factor. The below is as the same.
Figure 2. A cross-lagged model of trait envy and subjective well-being. Note. In order to explore the causal relationship between trait envy and subjective well-being (PA, NA, LS and gSWB), four competitive structural equation models were tested, in which the Model 1 path represented the baseline Model and the Model 2 path represented the normal causal Model, and the path of Model 3 represents the reverse causal Model. All paths from Model 1 to Model 3 were included in Model 4, which represented the bidirectional causal Model.
Statistical Indicator | Envy | PA | NA | LS |
---|---|---|---|---|
Cohen's d | 0.33 | -0.21 | -0.04 | -0.11 |
Effect Size (r) | 0.16 | -0.10 | -0.02 | -0.05 |
F | 3.65 | 0.01 | 1.93 | 0.53 |
p | 0.05 | 0.93 | 0.17 | 0.47 |
Table 1 Effect size hypothesis test and repeated measures analysis of variance table
Statistical Indicator | Envy | PA | NA | LS |
---|---|---|---|---|
Cohen's d | 0.33 | -0.21 | -0.04 | -0.11 |
Effect Size (r) | 0.16 | -0.10 | -0.02 | -0.05 |
F | 3.65 | 0.01 | 1.93 | 0.53 |
p | 0.05 | 0.93 | 0.17 | 0.47 |
Variables | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
1. PAT1 | - | |||||||
2. NAT1 | 0.13* | - | ||||||
3. LST1 | 0.31** | -0.20** | - | |||||
4. EnvyT1 | -0.19** | 0.32** | -0.26** | - | ||||
5. PAT2 | 0.49** | 0.00 | 0.18** | -0.19** | - | |||
6. NAT2 | 0.06 | 0.36** | -0.12* | 0.31** | -0.03 | - | ||
7. LST2 | 0.21** | -0.13* | 0.40** | -0.19** | 0.35** | -0.27** | - | |
8. EnvyT2 | -0.10 | 0.20** | -0.20** | 0.54** | -0.23** | 0.48** | -0.22** | - |
M | 29.46 | 18.89 | 19.39 | 17.63 | 31.04 | 19.12 | 20.00 | 15.91 |
SD | 7.65 | 5.82 | 5.57 | 5.00 | 7.62 | 5.96 | 5.94 | 5.46 |
Table 2 Descriptive statistics and correlation tables for major variables
Variables | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
1. PAT1 | - | |||||||
2. NAT1 | 0.13* | - | ||||||
3. LST1 | 0.31** | -0.20** | - | |||||
4. EnvyT1 | -0.19** | 0.32** | -0.26** | - | ||||
5. PAT2 | 0.49** | 0.00 | 0.18** | -0.19** | - | |||
6. NAT2 | 0.06 | 0.36** | -0.12* | 0.31** | -0.03 | - | ||
7. LST2 | 0.21** | -0.13* | 0.40** | -0.19** | 0.35** | -0.27** | - | |
8. EnvyT2 | -0.10 | 0.20** | -0.20** | 0.54** | -0.23** | 0.48** | -0.22** | - |
M | 29.46 | 18.89 | 19.39 | 17.63 | 31.04 | 19.12 | 20.00 | 15.91 |
SD | 7.65 | 5.82 | 5.57 | 5.00 | 7.62 | 5.96 | 5.94 | 5.46 |
Model | χ2 | df | RMSEA | SRMR | CFI | TLI | Comparison | Δχ2 | Δdf |
---|---|---|---|---|---|---|---|---|---|
Model 1 | 376.03 | 148 | 0.07 | 0.14 | 0.94 | 0.93 | |||
Model 2 | 340.86 | 146 | 0.07 | 0.11 | 0.95 | 0.94 | M1-M2 | 35.17 | 2 |
Model 3 | 369.10 | 146 | 0.07 | 0.13 | 0.95 | 0.93 | M1-M3 | 6.93 | 2 |
Model 4 | 337.66 | 142 | 0.07 | 0.11 | 0.95 | 0.94 | M1-M4 | 38.37 | 6 |
Table 3 The fitting index of Model 1 ~ 4
Model | χ2 | df | RMSEA | SRMR | CFI | TLI | Comparison | Δχ2 | Δdf |
---|---|---|---|---|---|---|---|---|---|
Model 1 | 376.03 | 148 | 0.07 | 0.14 | 0.94 | 0.93 | |||
Model 2 | 340.86 | 146 | 0.07 | 0.11 | 0.95 | 0.94 | M1-M2 | 35.17 | 2 |
Model 3 | 369.10 | 146 | 0.07 | 0.13 | 0.95 | 0.93 | M1-M3 | 6.93 | 2 |
Model 4 | 337.66 | 142 | 0.07 | 0.11 | 0.95 | 0.94 | M1-M4 | 38.37 | 6 |
Model | Autoregressive path | β | Cross-lagged path | β |
---|---|---|---|---|
1 | gSWBT1→gSWBT2 | 0.53*** | ||
PAT1→PAT2 | 0.51*** | |||
NAT1→NAT2 | 0.41*** | |||
LST1→LST2 | 0.48*** | |||
EnvyT1→EnvyT2 | 0.63*** | |||
2 | gSWBT1→gSWBT2 | 0.31*** | EnvyT1→PAT2 | -0.72** |
PAT1→PAT2 | 0.34*** | EnvyT1→NAT2 | 0.48*** | |
NAT1→NAT2 | 0.23*** | EnvyT1→LST2 | -0.78** | |
LST1→LST2 | 0.27*** | EnvyT1→gSWBT2 | 0.79* | |
EnvyT1→EnvyT2 | 0.68*** | |||
3 | gSWBT1→gSWBT2 | 0.74*** | PAT1→EnvyT2 | 0.13 |
PAT1→PAT2 | 0.47*** | NAT1→EnvyT2 | 0.01 | |
NAT1→NAT2 | 0.34*** | LST1→EnvyT2 | 0.01 | |
LST1→LST2 | 0.37** | gSWBT1→EnvyT2 | -0.31*** | |
EnvyT1→EnvyT2 | 0.60*** | |||
4 | gSWBT1→gSWBT2 | 0.32*** | EnvyT1→PAT2 | -0.73* |
PAT1→PAT2 | 0.32*** | EnvyT1→NAT2 | 0.54** | |
NAT1→NAT2 | 0.23*** | EnvyT1→LST2 | -0.82* | |
LST1→LST2 | 0.24*** | EnvyT1→gSWBT2 | 0.81* | |
EnvyT1→EnvyT2 | 0.66*** | PAT1→EnvyT2 | 0.11 | |
NAT1→EnvyT2 | 0.01 | |||
LST1→EnvyT2 | 0.00 | |||
gSWBT1→EnvyT2 | -0.17* |
Table 4 Standardized stability and cross-lag factors
Model | Autoregressive path | β | Cross-lagged path | β |
---|---|---|---|---|
1 | gSWBT1→gSWBT2 | 0.53*** | ||
PAT1→PAT2 | 0.51*** | |||
NAT1→NAT2 | 0.41*** | |||
LST1→LST2 | 0.48*** | |||
EnvyT1→EnvyT2 | 0.63*** | |||
2 | gSWBT1→gSWBT2 | 0.31*** | EnvyT1→PAT2 | -0.72** |
PAT1→PAT2 | 0.34*** | EnvyT1→NAT2 | 0.48*** | |
NAT1→NAT2 | 0.23*** | EnvyT1→LST2 | -0.78** | |
LST1→LST2 | 0.27*** | EnvyT1→gSWBT2 | 0.79* | |
EnvyT1→EnvyT2 | 0.68*** | |||
3 | gSWBT1→gSWBT2 | 0.74*** | PAT1→EnvyT2 | 0.13 |
PAT1→PAT2 | 0.47*** | NAT1→EnvyT2 | 0.01 | |
NAT1→NAT2 | 0.34*** | LST1→EnvyT2 | 0.01 | |
LST1→LST2 | 0.37** | gSWBT1→EnvyT2 | -0.31*** | |
EnvyT1→EnvyT2 | 0.60*** | |||
4 | gSWBT1→gSWBT2 | 0.32*** | EnvyT1→PAT2 | -0.73* |
PAT1→PAT2 | 0.32*** | EnvyT1→NAT2 | 0.54** | |
NAT1→NAT2 | 0.23*** | EnvyT1→LST2 | -0.82* | |
LST1→LST2 | 0.24*** | EnvyT1→gSWBT2 | 0.81* | |
EnvyT1→EnvyT2 | 0.66*** | PAT1→EnvyT2 | 0.11 | |
NAT1→EnvyT2 | 0.01 | |||
LST1→EnvyT2 | 0.00 | |||
gSWBT1→EnvyT2 | -0.17* |
Daily measurement items | Mean value | Individual level variation (τ00) | Variation in daily level (σ2) | ICC | Reliability |
---|---|---|---|---|---|
PA | 3.62 | 0.36 | 0.25 | 0.59 | 0.95 |
NA | 1.74 | 0.36 | 0.23 | 0.62 | 0.96 |
LS | 3.77 | 0.32 | 0.47 | 0.41 | 0.91 |
Envy | 1.45 | 0.32 | 0.28 | 0.53 | 0.94 |
Table 5 Inspection form for daily measurement items
Daily measurement items | Mean value | Individual level variation (τ00) | Variation in daily level (σ2) | ICC | Reliability |
---|---|---|---|---|---|
PA | 3.62 | 0.36 | 0.25 | 0.59 | 0.95 |
NA | 1.74 | 0.36 | 0.23 | 0.62 | 0.96 |
LS | 3.77 | 0.32 | 0.47 | 0.41 | 0.91 |
Envy | 1.45 | 0.32 | 0.28 | 0.53 | 0.94 |
Variables | 1 | 2 | 3 | 4 |
---|---|---|---|---|
1. Day-level Envy | - | |||
2. Day-level PA | -0.39*** | - | ||
3. Day-level NA | 0.71*** | -0.58*** | - | |
4. Day-level LS | -0.46*** | 0.82*** | -0.68*** | - |
M | 1.43 | 3.63 | 1.73 | 3.81 |
SD | 0.55 | 0.62 | 0.62 | 0.56 |
Table 6 Table of correlation between mean daily level of study variables
Variables | 1 | 2 | 3 | 4 |
---|---|---|---|---|
1. Day-level Envy | - | |||
2. Day-level PA | -0.39*** | - | ||
3. Day-level NA | 0.71*** | -0.58*** | - | |
4. Day-level LS | -0.46*** | 0.82*** | -0.68*** | - |
M | 1.43 | 3.63 | 1.73 | 3.81 |
SD | 0.55 | 0.62 | 0.62 | 0.56 |
Path | Coefficient | SE | C.R. | p |
---|---|---|---|---|
Intercept → PA. | -0.61 | 0.49 | -1.25 | 0.212 |
Intercept → NA | 0.59 | 0.23 | 2.51 | 0.012 |
Intercept → LS | -0.49 | 0.41 | -1.18 | 0.239 |
Intercept → gSWB | -0.11 | 0.47 | -0.24 | 0.811 |
Slope → PA | -1.27 | 1.60 | -0.79 | 0.428 |
Slope → NA | 3.16 | 0.77 | 4.08 | 0.000 |
Slope → LS | -1.31 | 1.37 | -0.96 | 0.339 |
Slope → gSWB | -0.47 | 1.55 | -0.31 | 0.761 |
Table 7 Parameter estimate of path in the model
Path | Coefficient | SE | C.R. | p |
---|---|---|---|---|
Intercept → PA. | -0.61 | 0.49 | -1.25 | 0.212 |
Intercept → NA | 0.59 | 0.23 | 2.51 | 0.012 |
Intercept → LS | -0.49 | 0.41 | -1.18 | 0.239 |
Intercept → gSWB | -0.11 | 0.47 | -0.24 | 0.811 |
Slope → PA | -1.27 | 1.60 | -0.79 | 0.428 |
Slope → NA | 3.16 | 0.77 | 4.08 | 0.000 |
Slope → LS | -1.31 | 1.37 | -0.96 | 0.339 |
Slope → gSWB | -0.47 | 1.55 | -0.31 | 0.761 |
Path | Fixed effect | Random effect | ||||||
---|---|---|---|---|---|---|---|---|
Coefficient | SE | t | p | Standard deviation | Variance component | χ2 | p | |
Envy→PA | ||||||||
Intercept | 3.91 | 0.05 | 71.76 | 0.00 | 0.64 | 0.41 | 531.74 | 0.00 |
Slope | -0.20 | 0.02 | -8.24 | 0.00 | 0.16 | 0.03 | 207.94 | 0.00 |
Envy→NA | ||||||||
Intercept | 1.37 | 0.05 | 26.84 | 0.00 | 0.58 | 0.34 | 510.07 | 0.00 |
Slope | 0.26 | 0.02 | 10.31 | 0.00 | 0.18 | 0.03 | 270.63 | 0.00 |
Envy→LS | ||||||||
Intercept | 4.20 | 0.06 | 67.32 | 0.00 | 0.67 | 0.45 | 338.68 | 0.00 |
Slope | -0.29 | 0.03 | -8.61 | 0.00 | 0.26 | 0.07 | 254.80 | 0.00 |
Table 8 Daily Action Table
Path | Fixed effect | Random effect | ||||||
---|---|---|---|---|---|---|---|---|
Coefficient | SE | t | p | Standard deviation | Variance component | χ2 | p | |
Envy→PA | ||||||||
Intercept | 3.91 | 0.05 | 71.76 | 0.00 | 0.64 | 0.41 | 531.74 | 0.00 |
Slope | -0.20 | 0.02 | -8.24 | 0.00 | 0.16 | 0.03 | 207.94 | 0.00 |
Envy→NA | ||||||||
Intercept | 1.37 | 0.05 | 26.84 | 0.00 | 0.58 | 0.34 | 510.07 | 0.00 |
Slope | 0.26 | 0.02 | 10.31 | 0.00 | 0.18 | 0.03 | 270.63 | 0.00 |
Envy→LS | ||||||||
Intercept | 4.20 | 0.06 | 67.32 | 0.00 | 0.67 | 0.45 | 338.68 | 0.00 |
Slope | -0.29 | 0.03 | -8.61 | 0.00 | 0.26 | 0.07 | 254.80 | 0.00 |
Path | Fixed effect | Random effect | ||||||
---|---|---|---|---|---|---|---|---|
Coefficient | SE | t | p | Standard deviation | Variance component | χ2 | p | |
Envy→PA | ||||||||
Intercept | 3.75 | 0.05 | 73.52 | 0.00 | 0.59 | 0.34 | 424.88 | 0.00 |
Slope | -0.09 | 0.02 | -4.32 | 0.00 | 0.09 | 0.01 | 139.53 | 0.18 |
Envy→NA | ||||||||
Intercept | 1.62 | 0.05 | 32.03 | 0.00 | 0.58 | 0.34 | 493.31 | 0.00 |
Slope | 0.08 | 0.02 | 3.79 | 0.00 | 0.13 | 0.01 | 178.90 | 0.00 |
Envy→LS | ||||||||
Intercept | 3.96 | 0.06 | 71.43 | 0.00 | 0.55 | 0.31 | 258.83 | 0.00 |
Slope | -0.13 | 0.03 | -4.54 | 0.00 | 0.14 | 0.02 | 139.22 | 0.18 |
PA→Envy | ||||||||
Intercept | 1.73 | 0.10 | 16.80 | 0.00 | 0.90 | 0.81 | 292.71 | 0.00 |
Slope | -0.08 | 0.02 | -3.12 | 0.00 | 0.17 | 0.03 | 239.15 | 0.01 |
NA→Envy | ||||||||
Intercept | 1.16 | 0.05 | 21.34 | 0.00 | 0.52 | 0.27 | 429.75 | 0.00 |
Slope | 0.15 | 0.03 | 5.19 | 0.00 | 0.25 | 0.06 | 293.06 | 0.00 |
LS→Envy | ||||||||
Intercept | 1.68 | 0.09 | 18.33 | 0.00 | 0.92 | 0.85 | 425.18 | 0.00 |
Slope | -0.06 | 0.02 | -2.96 | 0.00 | 0.18 | 0.03 | 356.56 | 0.00 |
Table 9 Hysteretic Action Table
Path | Fixed effect | Random effect | ||||||
---|---|---|---|---|---|---|---|---|
Coefficient | SE | t | p | Standard deviation | Variance component | χ2 | p | |
Envy→PA | ||||||||
Intercept | 3.75 | 0.05 | 73.52 | 0.00 | 0.59 | 0.34 | 424.88 | 0.00 |
Slope | -0.09 | 0.02 | -4.32 | 0.00 | 0.09 | 0.01 | 139.53 | 0.18 |
Envy→NA | ||||||||
Intercept | 1.62 | 0.05 | 32.03 | 0.00 | 0.58 | 0.34 | 493.31 | 0.00 |
Slope | 0.08 | 0.02 | 3.79 | 0.00 | 0.13 | 0.01 | 178.90 | 0.00 |
Envy→LS | ||||||||
Intercept | 3.96 | 0.06 | 71.43 | 0.00 | 0.55 | 0.31 | 258.83 | 0.00 |
Slope | -0.13 | 0.03 | -4.54 | 0.00 | 0.14 | 0.02 | 139.22 | 0.18 |
PA→Envy | ||||||||
Intercept | 1.73 | 0.10 | 16.80 | 0.00 | 0.90 | 0.81 | 292.71 | 0.00 |
Slope | -0.08 | 0.02 | -3.12 | 0.00 | 0.17 | 0.03 | 239.15 | 0.01 |
NA→Envy | ||||||||
Intercept | 1.16 | 0.05 | 21.34 | 0.00 | 0.52 | 0.27 | 429.75 | 0.00 |
Slope | 0.15 | 0.03 | 5.19 | 0.00 | 0.25 | 0.06 | 293.06 | 0.00 |
LS→Envy | ||||||||
Intercept | 1.68 | 0.09 | 18.33 | 0.00 | 0.92 | 0.85 | 425.18 | 0.00 |
Slope | -0.06 | 0.02 | -2.96 | 0.00 | 0.18 | 0.03 | 356.56 | 0.00 |
[1] | Alauddin F., Blum R. W., Diallo I., Djaelani J., Ghose S., Gupta G. R., … Zarrouk A. M. (1999). Programming for adolescent health and development. World Health Organization Technical Report, 886(886), i. |
[2] |
Ateca-Amestoy V., Aguilar A. C., & Moro-Egido A. I. (2014). Social interactions and life satisfaction: Evidence from Latin America. Journal of Happiness Studies, 15(3), 527-554.
doi: 10.1007/s10902-013-9434-y URL |
[3] |
Busseri, M. A., & Sadava, S. W. (2011). A review of the tripartite structure of subjective well-being: Implications for conceptualization, operationalization, analysis, and synthesis. Personality and Social Psychology Review, 15(3), 290-314.
doi: 10.1177/1088868310391271 URL |
[4] | Casu, G. (2015). Envy: A Psychometric Refinement of the Construct. [Dissertation thesis]. Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Scienze psicologiche, 27 Ciclo. |
[5] |
Chan, K., & Prendergast, G. (2007). Materialism and social comparison among adolescents. Social Behavior and Personality: An International Journal, 35(2), 213-228.
doi: 10.2224/sbp.2007.35.2.213 URL |
[6] |
Chen F. F., Jing Y., Hayes A., & Lee J. M. (2013). Two concepts or two approaches? A bifactor analysis of psychological and subjective well-being. Journal of Happiness Studies, 14(3), 1033-1068.
doi: 10.1007/s10902-012-9367-x URL |
[7] | Davey, A., & Savla, J. (2015). Statistical power analysis with missing data: A structural equation modeling approach. Routledge Academic,1-386. |
[8] |
Diener, E. (2000). Subjective well-being: The science of happiness and a proposal for a national index. American Psychologist, 55(1), 34-43.
pmid: 11392863 |
[9] |
Diener E., Emmons R. A., Larsen R. J., & Griffin S. (1985). The satisfaction with life scale. Journal of Personality Assessment, 49(1), 71-75.
pmid: 16367493 |
[10] |
Diener, E., & Ryan, K. (2009). Subjective well-being: A general overview. South African Journal of Psychology, 39(4), 391-406.
doi: 10.1177/008124630903900402 URL |
[11] |
Diener E., Suh E. M., Lucas R. E., & Smith H. L. (1999). Subjective well-being: Three decades of progress. Psychological Bulletin, 125(2), 276-302.
doi: 10.1037/0033-2909.125.2.276 URL |
[12] | Dogan, K., & Vecchio, R. P. (2001). Managing envy and jealousy in the workplace. Compensation & Benefits Review, 33(2), 57-64. |
[13] | Dvash J., Gilam G., Ben‐Ze’ev A., Hendler T., & Shamay‐Tsoory S. G. (2010). The envious brain: The neural basis of social comparison. Human Brain Mapping, 31(11), 1741-1750. |
[14] |
Extremera N., Salguero J. M., & Fernández-Berrocal P. (2011). Trait meta-mood and subjective happiness: A 7-week prospective study. Journal of Happiness Studies, 12(3), 509-517.
doi: 10.1007/s10902-010-9233-7 URL |
[15] | Gilbert D. T., Giesler R. B., & Morris K. A. (1995). When comparisons arise. Journal of Personality & Social Psychology, 69(2), 227-236. |
[16] | Gunthert K. C. & Wenze, S. J. (2012). Daily diary methods. In M. R. Mehl & T. S. Conner (Eds.), Handbook of research methods for studying daily life (pp. 144-159). The Guilford Press. |
[17] |
Habimana, E., & Massé, L. (2000). Envy manifestations and personality disorders. European Psychiatry, 15, 15-21.
doi: 10.1016/S0924-9338(00)00501-0 URL |
[18] |
Holzinger, K. J., & Swineford, F. (1937). The bi-factor method. Psychometrika, 2(1), 41-54.
doi: 10.1007/BF02287965 URL |
[19] |
Hu, L.-t., & Bentler, P. M. (1998). Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification. Psychological Methods, 3(4), 424-453.
doi: 10.1037/1082-989X.3.4.424 URL |
[20] |
Jovanović, V. (2015). A bifactor model of subjective well-being: A re-examination of the structure of subjective well-being. Personality and Individual Differences, 87, 45-49.
doi: 10.1016/j.paid.2015.07.026 URL |
[21] |
Kehayes, I.-L. L., & Mackinnon, S. P. (2019). Investigating the relationship between perfectionistic self-presentation and social anxiety using daily diary methods: A replication. Collabra: Psychology, 5(1), 33.
doi: 10.1525/collabra.257 URL |
[22] | Kleiber D. A., Hutchinson S. L., & Williams R. (2002). Leisure as a resource in transcending negative life events: Self-protection, self-restoration, and personal transformation. Leisure Sciences, 24(2), 219-235. |
[23] | Krasnova H., Wenninger H., Widjaja T., & Buxmann P. (2013). Envy on facebook: A hidden threat to users' life satisfaction?. Publications of Darmstadt Technical University,Institute for Business Studies (BWL). |
[24] |
Krekels, G., & Pandelaere, M. (2015). Dispositional greed. Personality and Individual Differences, 74, 225-230.
doi: 10.1016/j.paid.2014.10.036 URL |
[25] |
Li, Y. (2019). Upward social comparison and depression in social network settings: The roles of envy and self-efficacy. Internet Research, 29(1), 46-59.
doi: 10.1108/IntR-09-2017-0358 URL |
[26] |
Lin, R., & Utz, S. (2015). The emotional responses of browsing Facebook: Happiness, envy, and the role of tie strength. Computers in Human Behavior, 52, 29-38.
doi: 10.1016/j.chb.2015.04.064 URL |
[27] | Lu, Q. (2016). A Model of Workplace Envy and Well-being. Academy of Management Annual Meeting Proceedings, 2016(1), 15509. |
[28] |
Miao M., Zheng L., & Gan Y. (2017). Meaning in Life Promotes Proactive Coping via Positive Affect: A Daily Diary Study. Journal of Happiness Studies, 18(6), 1683-1696.
doi: 10.1007/s10902-016-9791-4 URL |
[29] |
Morgan G. B., Hodge K. J., Wells K. E., & Watkins M. W. (2015). Are fit indices biased in favor of bi-factor models in cognitive ability research?: A comparison of fit in correlated factors, higher-order, and bi-factor models via Monte Carlo simulations. Journal of Intelligence, 3(1), 2-20.
doi: 10.3390/jintelligence3010002 URL |
[30] |
Ng J. C. K., Lau V. C. Y., & Chen S. X. (2020). Why are dispositional enviers not satisfied with their lives? An investigation of intrapersonal and interpersonal pathways among adolescents and young adults. Journal of Happiness Studies, 21(2), 525-545.
doi: 10.1007/s10902-019-00094-x URL |
[31] |
Parrott, W. G., & Smith, R. H. (1993). Distinguishing the experiences of envy and jealousy. Journal of Personality and Social Psychology, 64(6), 906-920.
pmid: 8326472 |
[32] |
Rook, K. S. (2001). Emotional health and positive versus negative social exchanges: A daily diary analysis. Applied Developmental Science, 5(2), 86-97.
doi: 10.1207/S1532480XADS0502_4 URL |
[33] | Sirgy, M. J. (2020). Positive balance at the emotional level: Hedonic well-being. Positive Balance (pp. 41-52). |
[34] |
Smith, R. H., & Kim, S. H. (2007). Comprehending envy. Psychological Bulletin, 133(1), 46-64.
doi: 10.1037/0033-2909.133.1.46 URL |
[35] |
Smith R. H., Parrott W. G., Diener E. F., Hoyle R. H., & Kim S. H. (1999). Dispositional envy. Personality and Social Psychology Bulletin, 25(8), 1007-1020.
doi: 10.1177/01461672992511008 URL |
[36] |
Solomon, R. C., & Stone, L. D. (2002). On “positive” and “negative” emotions. Journal for the Theory of Social Behaviour, 32(4), 417-435.
doi: 10.1111/jtsb.2002.32.issue-4 URL |
[37] |
Suls J., Martin R., & Wheeler L. (2002). Social comparison: Why, with whom, and with what effect? Current Directions in Psychological Science, 11(5), 159-163.
doi: 10.1111/1467-8721.00191 URL |
[38] | Uchida, Y., & Ogihara, Y. (2012). Personal or interpersonal construal of happiness: A cultural psychological perspective. International Journal of Wellbeing, 2(4), 354-369. |
[39] |
van de Ven N., Zeelenberg M., & Pieters R. (2009). Leveling up and down: The experiences of benign and malicious envy. Emotion, 9(3), 419-429.
doi: 10.1037/a0015669 URL |
[40] |
Vogel E. A., Rose J. P., Roberts L. R., & Eckles K. (2014). Social comparison, social media, and self-esteem. Psychology of Popular Media Culture, 3(4), 206-222.
doi: 10.1037/ppm0000047 URL |
[41] |
Watson, D., & Clark, L. A. (1984). Negative affectivity: The disposition to experience aversive emotional states. Psychological Bulletin, 96(3), 465-490.
pmid: 6393179 |
[42] |
Watson D., Clark L. A., & Tellegen A. (1988). Development and validation of brief measures of positive and negative affect: The PANAS scales. Journal of Personality and Social Psychology, 54(6), 1063-1070.
pmid: 3397865 |
[43] |
Wenninger H., Cheung C. M. K., & Krasnova H. (2019). College-aged users behavioral strategies to reduce envy on social networking sites: A cross-cultural investigation. Computers in Human Behavior, 97, 10-23.
doi: 10.1016/j.chb.2019.02.025 |
[44] |
Wolff J. K., Schmiedek F., Brose A., & Lindenberger U. (2013). Physical and emotional well-being and the balance of needed and received emotional support: Age differences in a daily diary study. Social Science & Medicine, 91, 67-75.
doi: 10.1016/j.socscimed.2013.04.033 URL |
[45] |
Xiang Y., Chao X., & Ye Y. (2018). Effect of gratitude on benign and malicious envy: The mediating role of social support. Frontiers in Psychiatry, 9, 139.
doi: 10.3389/fpsyt.2018.00139 URL |
[46] |
Xiang Y., Dong X., & Zhao J. (2020). Effects of envy on depression: The mediating roles of psychological resilience and social support. Psychiatry Investigation, 17(6), 547-555.
doi: 10.30773/pi.2019.0266 URL |
[47] |
Xiang, Y., & Yuan, R. (2020). Why do people with high dispositional gratitude tend to experience high life satisfaction? A broaden-and-build theory perspective. Journal of Happiness Studies, 22(3), 1-14.
doi: 10.1007/s10902-019-00216-5 URL |
[48] | Xiang Y., Yuan R., & Zhao J. (2020). Childhood maltreatment and life satisfaction in adulthood: The mediating effect of emotional intelligence, positive affect and negative affect. Journal of Health Psychology, (8), 135910532091438. |
[49] | Yang K., Yan W., Jia N., Wang Q., & Kong F. (2020). Longitudinal relationship between trait gratitude and subjective well-being in adolescents: Evidence from the bi-factor model. The Journal of Positive Psychology, 1-9. |
[50] | Zhou, H., & Long, L. (2004). Statistical remedies for common method biases. Advances in Psychological Science, 12(6), 942-950. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||