Acta Psychologica Sinica ›› 2026, Vol. 58 ›› Issue (4): 755-772.doi: 10.3724/SP.J.1041.2026.0755
• Reports of Empirical Studies • Previous Articles Next Articles
TAO Jinhong1, ZHAO Wei1, CHENG Nuo1, QIAO Lifang2, JIANG Qiang1
Received:2024-03-11
Published:2026-04-25
Online:2026-01-16
TAO Jinhong, ZHAO Wei, CHENG Nuo, QIAO Lifang, JIANG Qiang. (2026). Cognitive diagnosis method via neural networks with transfer learning and Q-matrix constraints. Acta Psychologica Sinica, 58(4), 755-772.
Add to citation manager EndNote|Ris|BibTeX
URL: https://journal.psych.ac.cn/acps/EN/10.3724/SP.J.1041.2026.0755
| [1] Chen, D., & Yan, C. (2021). Classification of attribute mastery patterns using deep learning. [2] Chiu, C.-Y., & Douglas, J. (2013). A nonparametric approach to cognitive diagnosis by proximity to ideal response patterns. [3] Chiu C.-Y., Douglas J. A., & Li X. (2009). Cluster analysis for cognitive diagnosis: Theory and applications. [4] Chiu C.-Y., Sun Y., & Bian Y. (2018). Cognitive diagnosis for small educational programs: The general nonparametric classification method. [5] Cui Y., Gierl M., & Guo Q. (2016). Statistical classification for cognitive diagnostic assessment: An artificial neural network approach. [6] DeCarlo, L. T. (2011). On the analysis of fraction subtraction data: The DINA model, classification, latent class sizes, and the q-matrix. [7] DeCarlo, L. T. (2012). Recognizing uncertainty in the Q-matrix via a Bayesian extension of the DINA model. [8] de la Torre, J. (2009). DINA model and parameter estimation: A didactic. [9] de la Torre, J., & Minchen, N. D. (2019). The G-DINA model framework. In M. von Davier & Y.-S. Lee (Eds.), [10] de la Torre, J. (2011). The generalized DINA model framework. [11] Gao X. L., Gong Y., & Wang F. (2021). Research progress in polytomous cognitive diagnosis model. [高旭亮, 龚毅, 王芳. (2021). 多级评分认知诊断模型述评. [12] Guo L., Yang J., & Song N. (2020). Spectral clustering algorithm for cognitive diagnostic assessment. [13] Guo, L., & Zhou, W. J. (2021). Nonparametric methods for cognitive diagnosis to multiple-choice test items. [郭磊, 周文杰. (2021). 基于选项层面的认知诊断非参数方法. [14] Junker, B. W., & Sijtsma, K. (2001). Cognitive assessment models with few assumptions, and connections with nonparametric item response theory. [15] Kang C. H., Ren P., & Zeng P. F. (2015). Nonparametric cognitive diagnosis: A cluster diagnostic method based on grade response items. [康春花, 任平, 曾平飞. (2015). 非参数认知诊断方法: 多级评分的聚类分析. [16] Kang C. H., Zhang S. J., Li Y. B., & Zeng P. F. (2019). The cognitive diagnosis of k-nearest neighbor algorithm and its application. [康春花, 张淑君, 李元白, 曾平飞. (2019). KNN认知诊断法及其应用. [17] Liu, C., & Cheng, Y. (2018). An application of the support vector machine for attribute-by-attribute classification in cognitive diagnosis. [18] Liu, Q. (2021, August). Towards a new generation of cognitive diagnosis. In [19] Liu Y., Zhang T., Wang X., Yu G., & Li T. (2022). New development of cognitive diagnosis models. [20] Ma, W., & de la Torre, J. (2016). A sequential cognitive diagnosis model for polytomous responses. [21] Nájera P., Abad F. J., & Sorrel M. A. (2021). Determining the number of attributes in cognitive diagnosis modeling. [22] Nie C., Sun X. J., & Xin T. (2021). Factors affecting the classification accuracy in cognitive diagnosis assessment based on BP neural network.Journal of China Examinations, (3), 28-35. [聂畅, 孙小坚, 辛涛. (2021). 基于BP神经网络的认知诊断评估分类准确率影响因素分析. [23] Pan, S. J., & Yang, Q. (2010). A survey on transfer learning.IEEE Transactions on Knowledge and Data Engineering, 22(10), 1345-1359. [24] Qin, H., & Guo, L. (2024). Using machine learning to improve Q-matrix validation. [25] Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. [26] Rumelhart D. E., Hinton G. E., & Williams, R. J. (1986). Learning internal representations by error propagation. In D. E. Rumelhart & J. L. McClelland (Eds.), Parallel distributed processing: Explorations in the microstructure of cognition (Vol. 1: Foundations, pp. 318-362). MIT Press. [27] Sen, S., & Cohen, A. S. (2021). Sample size requirements for applying diagnostic classification models. [28] Song L. H., Wang W. Y., & Ding S. L. (2024). Q-matrix theory and its applications in cognitive diagnostic assessment. [宋丽红, 汪文义, 丁树良. (2024). 认知诊断评估中Q矩阵理论及应用. [29] Sorrel M. A., Escudero S., Nájera P., Kreitchmann R. S., & Vázquez-Lira R. (2023). Exploring approaches for estimating parameters in cognitive diagnosis models with small sample sizes. [30] Srivastava N., Hinton G., Krizhevsky A., Sutskever I., & Salakhutdinov R. (2014). Dropout: A simple way to prevent neural networks from overfitting. [31] Tan C., Sun F., Kong T., Zhang W., Yang C., & Liu C. (2018). A survey on deep transfer learning. In V. Kůrková, Y. Manolopoulos, B. Hammer, L. Iliadis, & I. Maglogiannis (Eds.), [32] Tatsuoka, K. K. (1995). Architecture of knowledge structures and cognitive diagnosis: A statistical pattern recognition and classification approach. In P. D. Nichols, S. F. Chipman, & R. L. Brennan (Eds.), [33] Templin, J. L., & Henson, R. A. (2006). Measurement of psychological disorders using cognitive diagnosis models. [34] Tian Y. S., Zhan P. D., & Wang L. J. (2023). Joint cognitive diagnostic modeling for probabilistic attributes incorporating item responses and response times. [田亚淑, 詹沛达, 王立君. (2023). 联合作答精度和作答时间的概率态认知诊断模型. [35] Wang D., Ma W., Cai Y., & Tu D. (2024). A general nonparametric classification method for multiple strategies in cognitive diagnostic assessment. [36] Wang D. X., Xiao Q. W., Tan Q. R., Cai Y., & Tu D. B. (2023). A non-parametric multi-strategy cognitive diagnosis method.Journal of Psychological Science, 46(4), 971-979. [汪大勋, 肖清文, 谭青蓉, 蔡艳, 涂冬波. (2023). 非补偿的非参数化多策略认知诊断方法:NCNPMSC方法开发. [37] Wang F., Liu Q., Chen E., Huang Z., Chen Y., Yin Y., … Wang S. (2020, April). Neural cognitive diagnosis for intelligent education systems. In [38] Wang, M., & Deng, W. (2018). Deep visual domain adaptation: A survey [39] Wang W., Song L., Chen P., Meng Y., & Ding S. (2015). Attribute-level and pattern-level classification consistency and accuracy indices for cognitive diagnostic assessment. [40] Wang W. Y., Ding S. L., Song L. H., Kuang Z., & Gao, H Y. (2016). Application of neural networks and support vector machines to cognitive diagnosis. [汪文义, 丁树良, 宋丽红, 邝铮, 曹慧媛. (2016). 神经网络和支持向量机在认知诊断中的应用. [41] Wang W. Y., Song L. H., Ding S. L., Wang T., & Xiong J. (2021). A probabilistic representation approach for the nonparametric classification method to cognitive diagnosis. [汪文义, 宋丽红, 丁树良, 汪腾, 熊建. (2021). 非参数认知诊断方法下诊断结果的概率化表征. [42] Wen H., Liu Y., & Zhao N. (2020). Longitudinal cognitive diagnostic assessment based on the HMM/ANN model. [43] Xin T., Wang C., Chen P., & Liu Y. (2022). Editorial: Cognitive diagnostic models: Methods for practical applications. [44] Xu, G., & Zhang, S. (2016). Identifiability of diagnostic classification models. [45] Xu H. Y., Chen Q. P., Liu Y. H., & Zhan P. D. (2023). Nonparametric diagnostic classification for polytomous attributes: A comparison of 18 distance discriminant methods. [徐慧颖, 陈琦鹏, 刘耀辉, 詹沛达. (2023). 多分属性的非参数诊断分类:18种距离判别法的对比. [46] Xue, K., & Bradshaw, L. P. (2021). A semi-supervised learning-based diagnostic classification method using artificial neural networks. [47] Yamaguchi, K. (2023). On the boundary problems in diagnostic classification models. [48] Zhan P., Man K., Wind S. A., & Malone J. (2022). Cognitive diagnosis modeling incorporating response times and fixation counts: Providing comprehensive feedback and accurate diagnosis. [49] Zhang W., Meng L., & Liang B. (2022). EW-KNN: Evaluating information technology courses in high school with a non-parametric cognitive diagnosis method. [50] Zhuang F., Qi Z., Duan K., Xi D., Zhu Y., Zhu H., Xiong H., & He Q. (2021). A comprehensive survey on transfer learning. |
| [1] | TAN Qingrong, CAI Yan, WANG Daxun, LUO Fen, TU Dongbo. Development of Online Calibration Method based on SCAD penalty and EM perspective in CD-CAT: G-DINA model [J]. Acta Psychologica Sinica, 2024, 56(5): 670-688. |
| [2] | GUO Lei, QIN Haijiang. Cognitive diagnostic assessment based on signal detection theory: Modeling and application [J]. Acta Psychologica Sinica, 2024, 56(3): 339-351. |
| [3] | YOU Xiaofeng, YANG Jianqin, Qin Chunying, LIU Hongyun. Missing data analysis in cognitive diagnostic models: Random forest threshold imputation method [J]. Acta Psychologica Sinica, 2023, 55(7): 1192-1206. |
| [4] | LIU Yanlou, WU Qiongqiong. An empirical Q-matrix validation method using complete information matrix in cognitive diagnostic models [J]. Acta Psychologica Sinica, 2023, 55(1): 142-158. |
| [5] | LI Jia, MAO Xiuzhen, WEI Jia. A simple and effective new method of Q-matrix validation [J]. Acta Psychologica Sinica, 2022, 54(8): 996-1008. |
| [6] | QIN Chunying, YU Xiaofeng. Validation and estimation of expert-defined Q-matrix with polytomous attribute [J]. Acta Psychologica Sinica, 2022, 54(11): 1403-1415. |
| [7] | GUO Lei, ZHOU Wenjie. Nonparametric methods for cognitive diagnosis to multiple-choice test items [J]. Acta Psychologica Sinica, 2021, 53(9): 1032-1043. |
| [8] | TAN Qingrong, WANG Daxun, LUO Fen, CAI Yan, TU Dongbo. A high-efficiency and new online calibration method in CD-CAT based on information gain of entropy and EM algorithm [J]. Acta Psychologica Sinica, 2021, 53(11): 1286-1298. |
| [9] | WANG Daxun,GAO Xuliang,CAI Yan,TU Dongbo. A method of Q-matrix validation for polytomous response cognitive diagnosis model based on relative fit statistics [J]. Acta Psychologica Sinica, 2020, 52(1): 93-106. |
| [10] | PENG Yafeng; LUO Zhaosheng; YU Xiaofeng; GAO Chunlei; LI Yujun. The optimization of test design in Cognitive Diagnostic Assessment [J]. Acta Psychologica Sinica, 2016, 48(12): 1600-1611. |
| [11] | LUO Zhaosheng; LI Yujun; YU Xiaofeng; GAO Chunlei; PENG Yafeng. A Simple Cognitive Diagnosis Method Based on Q-Matrix Theory [J]. Acta Psychologica Sinica, 2015, 47(2): 264-272. |
| [12] | YU Xiaofeng; LUO Zhaosheng; QIN Chunying; GAO Chunlei; LI Yujun. Joint Estimation of Model Parameters and Q-Matrix Based on Response Data [J]. Acta Psychologica Sinica, 2015, 47(2): 273-282. |
| [13] | WANG Wenyi; DING Shuliang; SONG Lihong. Distance Discrimination Method based on Conditional Expectation in Cognitive Diagnosis [J]. Acta Psychologica Sinica, 2015, 47(12): 1499-1510. |
| [14] | TU Dong-Bo,CAI Yan,DAI Hai-Qi. A New Method of Q-matrix Validation Based on DINA Model [J]. , 2012, 44(4): 558-568. |
| [15] | TU Dong-Bo;CAI Yan;DAI Hai-Qi;DING Shu-Liang. A New Multiple-Strategies Cognitive Diagnosis Model: the MSCD Method [J]. Acta Psychologica Sinica, 2012, 44(11): 1547-1553. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||