Acta Psychologica Sinica ›› 2026, Vol. 58 ›› Issue (4): 603-617.doi: 10.3724/SP.J.1041.2026.0603
• Reports of Empirical Studies • Previous Articles Next Articles
WU Xia1,2,3, LI Yiwei1, SUN Xiaoya1, CHEN Ying4, JIANG Yunpeng1,2,3, CHEN Yan5, 1
Received:2025-02-22
Published:2026-04-25
Online:2026-01-16
WU Xia, LI Yiwei, SUN Xiaoya, CHEN Ying, JIANG Yunpeng, CHEN Yan. (2026). Functional division and synergy of cognitive control and salience processing in category-based attentional selection: Evidence from fMRI. Acta Psychologica Sinica, 58(4), 603-617.
Add to citation manager EndNote|Ris|BibTeX
URL: https://journal.psych.ac.cn/acps/EN/10.3724/SP.J.1041.2026.0603
| [1] Arcizet F., Mirpour K., & Bisley J. W. (2011). A pure salience response in posterior parietal cortex.Cerebral Cortex, 21(11), 2498-2506. [2] Awh E., Belopolsky A. V., & Theeuwes J. (2012). Top-down versus bottom-up attentional control: A failed theoretical dichotomy.Trends in cognitive sciences, 16(8), 437-443. [3] Bekinschtein T. A., Dehaene S., Rohaut B., Tadel F., Cohen L., & Naccache L. (2009). Neural signature of the conscious processing of auditory regularities. Proceedings of the National Academy of Sciences, 106(5), 1672-1677. [4] Bouvier B., Susini P., Marquis-Favre C., Misdariis N. (2023). Revealing the stimulus-driven component of attention through modulations of auditory salience by timbre attributes. Scientific Reports, 13(1), 6842. [5] Brass, M., & von Cramon, D. Y. (2004). Selection for cognitive control: A functional magnetic resonance imaging study on the selection of task-relevant information.Journal of Neuroscience, 24(40), 8847-8852. [6] Bressler, S. L., & Menon, V. (2010). Large-scale brain networks in cognition: Emerging methods and principles.Trends in Cognitive Sciences, 14(6), 277-290. [7] Broschard M. B., Turner B. M., Tranel D., & Freeman J. H. (2024). Dissociable roles of the dorsolateral and ventromedial prefrontal cortex in human categorization. Journal of Neuroscience, 44(34), e2343232024. [8] Campbell, J. I. D., & Thompson, V. A. (2012). MorePower 6.0 for ANOVA with relational confidence intervals and Bayesian analysis.Behavior Research Methods, 44(4), 1255-1265. [9] Chapman, A. F., & Störmer, V. S. (2022). Feature similarity is non-linearly related to attentional selection: Evidence from visual search and sustained attention tasks.Journal of Vision, 22(8), 4. [10] Chen Q., Weidner R., Weiss P. H., Marshall J. C., & Fink G. R. (2012). Neural interaction between spatial domain and spatial reference frame in parietal-occipital junction.Journal of Cognitive Neuroscience, 24(11), 2223-2236. [11] Collignon O., Vandewalle G., Voss P., Albouy G., Charbonneau G., Lassonde M., & Lepore F. (2011). Functional specialization for auditory-spatial processing in the occipital cortex of congenitally blind humans.Proceedings of the National Academy of Sciences, 108(11), 4435-4440. [12] Corbetta M., Kincade J. M., & Shulman G. L. (2002). Neural systems for visual orienting and their relationships to spatial working memory.Journal of Cognitive Neuroscience, 14(3), 508-523. [13] Corbetta M., Patel G., & Shulman G. L. (2008). The reorienting system of the human brain: From environment to theory of mind.Neuron, 58(3), 306-324. [14] Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention.Annual Review of Neuroscience, 18(1), 193-222. [15] De Fockert J., Rees G., Frith C., & Lavie N. (2004). Neural correlates of attentional capture in visual search.Journal of Cognitive Neuroscience, 16(5), 751-759. [16] Fan, J. (2014). An information theory account of cognitive control.Frontiers in Human Neuroscience, 8, 680. [17] Fan J., Guise K. G., Liu X., & Wang H. (2008). Searching for the majority: Algorithms of voluntary control. [18] Fecteau, J. H., & Munoz, D. P. (2006). Salience, relevance, and firing: A priority map for target selection. Trends in Cognitive Sciences, 10(8), 382-390. [19] Ferrera V. P., Yanike M., & Cassanello C. (2009). Frontal eye field neurons signal changes in decision criteria.Nature Neuroscience, 12(11), 1458-1462. [20] Freedman D. J., Riesenhuber M., Poggio T., & Miller E. K. (2003). A comparison of primate prefrontal and inferior temporal cortices during visual categorization.Journal of Neuroscience, 23(12), 5235-5246. [21] Garrido M. I., Kilner J. M., Stephan K. E., & Friston K. J. (2009). The mismatch negativity: A review of underlying mechanisms. Clinical Neurophysiology, 120(3), 453-463. [22] Geng, J. J., & Mangun, G. R. (2011). Right temporoparietal junction activation by a salient contextual cue facilitates target discrimination.Neuroimage, 54(1), 594-601. [23] Harsay H. A., Spaan M., Wijnen J. G., & Ridderinkhof K. R. (2012). Error awareness and salience processing in the oddball task: Shared neural mechanisms.Frontiers in Human Neuroscience, 6, 246. [24] Haxby J. V., Gobbini M. I., Furey M. L., Ishai A., Schouten J. L., & Pietrini P. (2001). Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science, 293(5539), 2425-2430. [25] Itti, L., & Koch, C. (2001). Computational modelling of visual attention.Nature Reviews Neuroscience, 2(3), 194-203. [26] Katsuki, F., & Constantinidis, C. (2014). Bottom-up and top-down attention: Different processes and overlapping neural systems.The Neuroscientist, 20(5), 509-521. [27] Keller A. S., Jagadeesh A. V., Bugatus L., Williams L. M., & Grill-Spector K. (2022). Attention enhances category representations across the brain with strengthened residual correlations to ventral temporal cortex.Neuroimage, 249, 118900. [28] Kim, H. (2014). Involvement of the dorsal and ventral attention networks in oddball stimulus processing: A meta‐analysis.Human Brain Mapping, 35(5), 2265-2284. [29] Kroner A., Senden M., & Goebel R. (2023). Neural correlates of high-level visual saliency models. [30] Kucyi A., Hodaie M., & Davis K. D. (2012). Lateralization in intrinsic functional connectivity of the temporoparietal junction with salience-and attention-related brain networks.Journal of Neurophysiology, 108(12), 3382-3392. [31] Kumaran D., Summerfield J. J., Hassabis D., & Maguire E. A. (2009). Tracking the emergence of conceptual knowledge during human decision making.Neuron, 63(6), 889-901. [32] Lavie, N. (2005). Distracted and confused?: Selective attention under load.Trends in Cognitive Sciences, 9(2), 75-82. [33] Lerebourg M., de Lange F. P., & Peelen M. V. (2024). Attentional guidance through object associations in visual cortex. Science Advances, 10(41), eado6226. [34] Li L., Gratton C., Yao D., & Knight R. T. (2010). Role of frontal and parietal cortices in the control of bottom-up and top-down attention in humans.Brain Research, 1344, 173-184. [35] Logothetis, N. K. (2008). What we can do and what we cannot do with fMRI.Nature, 453(7197), 869-878. [36] Macé M. J.-M., Joubert O. R., Nespoulous J.-L., & Fabre-Thorpe M. (2009). The time-course of visual categorizations: You spot the animal faster than the bird.PLoS One, 4(6), e5927. [37] Miao Z., Wang J., Wang Y., Jiang Y., Chen Y., & Wu X. (2023). The time course of category-based attentional template pre-activation depends on the category framework. [38] Mo C., He D., & Fang F. (2018). Attention priority map of face images in human early visual cortex. Journal of Neuroscience, 38(1), 149-157. [39] Näätänen R., Kujala T., & Winkler I. (2011). Auditory processing that leads to conscious perception: A unique window to central auditory processing opened by the mismatch negativity and related responses.Psychophysiology, 48(1), 4-22. [40] Noudoost, B., & Moore, T. (2011). Control of visual cortical signals by prefrontal dopamine.Nature, 474(7351), 372-375. [41] Oxner M., Martinovic J., Forschack N., Lempe R., Gundlach C., & Müller M. (2023). Global enhancement of target color-not proactive suppression-explains attentional deployment during visual search.Journal of Experimental Psychology: General, 152(6), 1705-1722. [42] Peelen, M. V., & Kastner, S. (2014). Attention in the real world: Toward understanding its neural basis. Trends in Cognitive Sciences, 18(5), 242-250. [43] Reeder, R. R., & Peelen, M. V. (2013). The contents of the search template for category-level search in natural scenes. Journal of Vision, 13(3), 1-13. [44] Rosch E., Mervis C. B., Gray W. D., Johnson D. M., & Boyes-Braem P. (1976). Basic objects in natural categories.Cognitive Psychology, 8(3), 382-439. [45] Talairach J., Tournoux P., & Rayport M. (1988). [46] Thayer D. D., Bahle B., & Hollingworth A. (2022). Guidance of attention from visual working memory is feature-based, not object-based: Implications for models of feature binding.Journal of Experimental Psychology: General, 151(5), 1018-1034. [47] Theeuwes, J. (2010). Top-down and bottom-up control of visual selection.Acta Psychologica, 135(2), 77-99. [48] Townsend J. T.,& Ashby, F. G. (1983). Stochastic modeling of elementary psychological processes. Cambridge University Press.. [49] Wang H., Liu X., & Fan J. (2011). Cognitive control in majority search: A computational modeling approach. [50] Wang M., Yu B., Luo C., Fogelson N., Zhang J., Jin Z., & Li L. (2020). Evaluating the causal contribution of fronto-parietal cortices to the control of the bottom-up and top-down visual attention using fMRI-guided TMS.Cortex, 126, 200-212. [51] Wu Q., Chang C.-F., Xi S., Huang I.-W., Liu Z., Juan C.-H., .. Fan J. (2015). A critical role of temporoparietal junction in the integration of top-down and bottom-up attentional control.Human Brain Mapping, 36(11), 4317-4333. [52] Wu T., Chen C., Spagna A., Wu X., Mackie M.-A., Russell-Giller S., … Fan J. (2020). The functional anatomy of cognitive control: A domain-general brain network for uncertainty processing.Journal of Comparative Neurology, 528(8), 1265-1292. [53] Wu T., Dufford A. J., Mackie M.-A., Egan L. J., & Fan J. (2016). The capacity of cognitive control estimated from a perceptual decision making task.Scientific Reports, 6(1), 34025. [54] Wu T., Spagna A., Chen C., Schulz K. P., Hof P. R., & Fan J. (2020). Supramodal mechanisms of the cognitive control network in uncertainty processing.Cerebral Cortex, 30(12), 6336-6349. [55] Wu, X., & Fu, S. (2017). The different roles of category and feature specific attentional control settings on attentional enhancement and inhibition.Attention, Perception, & Psychophysics, 79, 1968-1978. [56] Wu X., Liu X., & Fu S. (2016). Feature and category specific attentional control settings are differently affected by attentional engagement in contingent attentional capture.Biological Psychology, 118, 8-16. [57] Wyble B., Folk C., & Potter M. C. (2013). Contingent attentional capture by conceptually relevant images.Journal of Experimental Psychology: Human Perception and Performance, 39(3), 861-871. [58] Yang, H., & Zelinsky, G. J. (2009). Visual search is guided to categorically-defined targets.Vision Research, 49(16), 2095-2103. [59] Zhang L., Bai L., Guo Z., Gao J., Wu J., Huang J., & Liu Z. (2024). Abnormal functional connectivity of the occipital thalamus with the superior occipital gyrus is associated with mild cognitive impairment in elderly individuals with primary insomnia.Brain and Behavior, 14(2), e3411. |
| [1] | WANG Aijun, HUANG Jie, ZHAO Danna, LI Xin, ZHANG Ming. Stimulus similarity modulates sensory dominance effects in cross-modal conflicts [J]. Acta Psychologica Sinica, 2026, 58(4): 571-589. |
| [2] | PAN Yuean, JIANG Yunpeng, GUO Maojie, WU Xia. The influence of uncertainty and validity of expectation on the perceptual decision of motion direction [J]. Acta Psychologica Sinica, 2022, 54(6): 595-603. |
| [3] | CHEN Li, SHI Xiao-ke, LI Wei-na, HU Yan. Influence of cognitive control based on different conflict levels on the expression of gender stereotypes [J]. Acta Psychologica Sinica, 2022, 54(6): 628-645. |
| [4] | LI Jianhua, XIE Jiajia, ZHUANG Jin-Ying. An effect of menstrual cycle phase on episodic memory [J]. Acta Psychologica Sinica, 2022, 54(5): 466-480. |
| [5] | WU Jianxiao, CAO Bihua, CHEN Yun, LI Zixia, LI Fuhong. Hierarchical control in task switching: Electrophysiological evidence [J]. Acta Psychologica Sinica, 2022, 54(10): 1167-1180. |
| [6] | ZHANG Mengke, LI Qing, YIN Shouhang, CHEN Antao. Changes in the level of conflict trigger conflict adaptation [J]. Acta Psychologica Sinica, 2021, 53(2): 128-138. |
| [7] | HUANG Yuesheng, ZHANG Bao, FAN Xinhua, HUANG Jie. Can negative emotion of task-irrelevant working memory representation affect its attentional capture? A study of eye movements [J]. Acta Psychologica Sinica, 2021, 53(1): 26-37. |
| [8] | SUN Yan, LV Jiaojiao, LAN Fan, ZHANG Lina. Emotion regulation strategy of self-focused and situation-focused reappraisal and their impact on subsequent cognitive control [J]. Acta Psychologica Sinica, 2020, 52(12): 1393-1406. |
| [9] | CUI Yichen, WANG Pei, CUI Yajuan. Cognitive control strategies from the perspective of perceptual conflict: An example of stereotyped information and counterstereotyped information [J]. Acta Psychologica Sinica, 2019, 51(10): 1157-1170. |
| [10] | WANG Yanqing, CHEN Antao, HU Xueping, YIN Shouhang. Reward improves cognitive control by enhancing signal monitoring [J]. Acta Psychologica Sinica, 2019, 51(1): 48-57. |
| [11] | HU Cenlou, ZHANG Bao, HUANG Sai. Does irrelevant long-term memory representation guide the deployment of visual attention? [J]. Acta Psychologica Sinica, 2017, 49(5): 590-601. |
| [12] | ZHANG Bao, HU Cenlou, Huang Sai. What do eye movements reveal about the role of cognitive control in attention guidance from working memory representation [J]. Acta Psychologica Sinica, 2016, 48(9): 1105-1118. |
| [13] | LIU Cong, JIAO Lu, SUN Xun, WANG Ruiming. Immediate effect of language switch on non-proficient bilinguals’ cognitive control components [J]. Acta Psychologica Sinica, 2016, 48(5): 472-481. |
| [14] | WANG Jiaying, JIAO Runkai, ZHANG Ming. The mechanism of the effect of task setting on negative compatibility effect: The effect of top-down cognition control on subliminal prime processing [J]. Acta Psychologica Sinica, 2016, 48(11): 1370-1378. |
| [15] | LIU Xiaoyu; HE Chaodan; CHEN Jun; DENG Qinli. The Bilingual Cognitive Control Mechanism of Highly Proficient Cantonese-Mandarin Speakers: Evidence from A Dual-task Switching Paradigm [J]. Acta Psychologica Sinica, 2015, 47(4): 439-454. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||