Acta Psychologica Sinica ›› 2023, Vol. 55 ›› Issue (8): 1243-1254.doi: 10.3724/SP.J.1041.2023.01243
• Reports of Empirical Studies • Previous Articles Next Articles
LI Lin1,2(), ZHANG Xiaoyou1,2, XU Yakui1, ZONG Boyi1,2, ZHAO Wenrui6, ZHAO Ge1, YAO Meng1, ZHAN Zhuxuan, YIN Dazhi3,4, FAN Mingxia5
Received:
2022-05-31
Published:
2023-08-25
Online:
2023-05-16
Contact:
LI Lin
E-mail:lilin.xtt@163.com
Supported by:
LI Lin, ZHANG Xiaoyou, XU Yakui, ZONG Boyi, ZHAO Wenrui, ZHAO Ge, YAO Meng, ZHAN Zhuxuan, YIN Dazhi, FAN Mingxia. (2023). Dynamic changes on brain function during early stage of Tai Chi training: A motor imagery-based fMRI study. Acta Psychologica Sinica, 55(8), 1243-1254.
Variables | Experimental group | Control group | t(χ2) | p |
---|---|---|---|---|
Gender (M/F) | 9/10 | 4/6 | 0.14 | 0.705 |
Age (years) | 23.37 ± 0.90 | 23.00 ± 0.82 | 1.08 | 0.288 |
Height (m) | 1.69 ± 0.08 | 1.66 ± 0.09 | 0.93 | 0.362 |
Weight (kg) | 62.69 ± 6.79 | 58.00 ± 8.40 | 1.63 | 0.114 |
Years of education (years) | 16.32 ± 0.48 | 16.50 ± 0.71 | ?0.84 | 0.411 |
Kinaesthetic imagery score | 6.20 ± 0.71 | 5.63 ± 0.76 | 2.03 | 0.053 |
Table 1 Demographic characteristics of the experimental and control groups
Variables | Experimental group | Control group | t(χ2) | p |
---|---|---|---|---|
Gender (M/F) | 9/10 | 4/6 | 0.14 | 0.705 |
Age (years) | 23.37 ± 0.90 | 23.00 ± 0.82 | 1.08 | 0.288 |
Height (m) | 1.69 ± 0.08 | 1.66 ± 0.09 | 0.93 | 0.362 |
Weight (kg) | 62.69 ± 6.79 | 58.00 ± 8.40 | 1.63 | 0.114 |
Years of education (years) | 16.32 ± 0.48 | 16.50 ± 0.71 | ?0.84 | 0.411 |
Kinaesthetic imagery score | 6.20 ± 0.71 | 5.63 ± 0.76 | 2.03 | 0.053 |
Variables | Group | 2 weeks | 14 weeks |
---|---|---|---|
Tai Chi skill level | Experimental group (n = 19) | 5.84 ± 0.50 | 7.55 ± 0.58 |
Control group (n = 10) | 3.25 ± 0.92 | 3.20 ± 0.79 | |
Time consistency (ms) | Experimental group (n = 19) | 2045.81 ± 719.99 | 1641.70 ± 915.47 |
Control group (n = 10) | 2276.24 ± 1116.19 | 2799.13 ± 1601.13 |
Table 2 Descriptive statistics of two groups of behavior (M ± SD)
Variables | Group | 2 weeks | 14 weeks |
---|---|---|---|
Tai Chi skill level | Experimental group (n = 19) | 5.84 ± 0.50 | 7.55 ± 0.58 |
Control group (n = 10) | 3.25 ± 0.92 | 3.20 ± 0.79 | |
Time consistency (ms) | Experimental group (n = 19) | 2045.81 ± 719.99 | 1641.70 ± 915.47 |
Control group (n = 10) | 2276.24 ± 1116.19 | 2799.13 ± 1601.13 |
Activating brain areas | Hemispheres | Number of voxels | Coordinates of peak point MNI | t-value | ||
---|---|---|---|---|---|---|
X | Y | Z | ||||
First collection (2 weeks) | ||||||
Supplementary motor area/precentral gyrus/inferior parietal lobule/postcentral gyrus/superior temporal gyrus | Left | 2542 | ?9 | ?3 | 63 | 8.92 |
Inferior frontal gyrus | Right | 203 | 39 | 15 | 6 | 6.76 |
Middle frontal gyrus | Left | 148 | ?33 | 36 | 27 | 7.80 |
Postcentral gyrus/inferior parietal lobule | Right | 231 | 42 | ?36 | 45 | 7.75 |
Calcarine fissure/precuneus | left/right | 4360 | 27 | ?27 | ?6 | ?11.07 |
Middle temporal gyrus | Right | 376 | 24 | 15 | ?21 | ?7.43 |
Middle temporal gyrus | Left | 329 | ?48 | 6 | ?33 | ?8.01 |
Medial superior frontal gyrus | left/right | 1579 | 3 | 63 | 3 | ?8.43 |
Second collection (8 weeks) | ||||||
Insula/precentral gyrus/superior temporal gyrus | Left | 120 | ?45 | 0 | 3 | 6.17 |
Inferior parietal lobule / posterior central gyrus | Left | 398 | ?57 | ?27 | 39 | 7.07 |
Supplementary motor area/precentral gyrus | Left | 1010 | ?6 | ?3 | 60 | 9.99 |
Inferior parietal lobule/posterior central gyrus | Right | 157 | 39 | ?39 | 42 | 7.27 |
Cerebellar area 9 | Right | 296 | 3 | ?54 | ?45 | ?8.93 |
Calcarine fissure/precuneus | left/right | 5804 | 9 | ?45 | 39 | ?11.79 |
Middle temporal gyrus | Right | 222 | 51 | 3 | ?39 | ?7.11 |
Middle temporal gyrus | Left | 640 | ?54 | 3 | ?30 | ?6.60 |
Medial superior frontal gyrus | left/right | 1918 | 30 | 63 | 9 | ?9.75 |
Third collection (14 weeks) | ||||||
Superior temporal gyrus | Right | 414 | 63 | ?21 | 9 | 8.81 |
Postcentral gyrus/precentral gyrus/superior temporal gyrus/supplementary motor area | Left | 3352 | ?51 | ?21 | 0 | 10.28 |
Inferior frontal gyrus | Right | 144 | 57 | 9 | 24 | 7.94 |
Postcentral gyrus | Right | 511 | 42 | ?36 | 57 | 8.30 |
Cerebellar area 6 | Right | 56 | 30 | ?48 | ?33 | 6.02 |
Calcarine fissure / precuneus | left/right | 2240 | ?6 | ?75 | 6 | ?7.64 |
Cerebellar area 9 | Right | 81 | 15 | ?45 | ?48 | ?7.22 |
Parahippocampal gyrus | left/right | 100 | 27 | ?27 | ?6 | ?8.11 |
Medial cingulate gyrus | Left | 359 | ?9 | ?39 | 39 | ?8.28 |
Middle frontal gyrus | Right | 233 | 24 | 42 | 45 | ?6.02 |
Table 3 Brain regions activated by motor imagery at different time points
Activating brain areas | Hemispheres | Number of voxels | Coordinates of peak point MNI | t-value | ||
---|---|---|---|---|---|---|
X | Y | Z | ||||
First collection (2 weeks) | ||||||
Supplementary motor area/precentral gyrus/inferior parietal lobule/postcentral gyrus/superior temporal gyrus | Left | 2542 | ?9 | ?3 | 63 | 8.92 |
Inferior frontal gyrus | Right | 203 | 39 | 15 | 6 | 6.76 |
Middle frontal gyrus | Left | 148 | ?33 | 36 | 27 | 7.80 |
Postcentral gyrus/inferior parietal lobule | Right | 231 | 42 | ?36 | 45 | 7.75 |
Calcarine fissure/precuneus | left/right | 4360 | 27 | ?27 | ?6 | ?11.07 |
Middle temporal gyrus | Right | 376 | 24 | 15 | ?21 | ?7.43 |
Middle temporal gyrus | Left | 329 | ?48 | 6 | ?33 | ?8.01 |
Medial superior frontal gyrus | left/right | 1579 | 3 | 63 | 3 | ?8.43 |
Second collection (8 weeks) | ||||||
Insula/precentral gyrus/superior temporal gyrus | Left | 120 | ?45 | 0 | 3 | 6.17 |
Inferior parietal lobule / posterior central gyrus | Left | 398 | ?57 | ?27 | 39 | 7.07 |
Supplementary motor area/precentral gyrus | Left | 1010 | ?6 | ?3 | 60 | 9.99 |
Inferior parietal lobule/posterior central gyrus | Right | 157 | 39 | ?39 | 42 | 7.27 |
Cerebellar area 9 | Right | 296 | 3 | ?54 | ?45 | ?8.93 |
Calcarine fissure/precuneus | left/right | 5804 | 9 | ?45 | 39 | ?11.79 |
Middle temporal gyrus | Right | 222 | 51 | 3 | ?39 | ?7.11 |
Middle temporal gyrus | Left | 640 | ?54 | 3 | ?30 | ?6.60 |
Medial superior frontal gyrus | left/right | 1918 | 30 | 63 | 9 | ?9.75 |
Third collection (14 weeks) | ||||||
Superior temporal gyrus | Right | 414 | 63 | ?21 | 9 | 8.81 |
Postcentral gyrus/precentral gyrus/superior temporal gyrus/supplementary motor area | Left | 3352 | ?51 | ?21 | 0 | 10.28 |
Inferior frontal gyrus | Right | 144 | 57 | 9 | 24 | 7.94 |
Postcentral gyrus | Right | 511 | 42 | ?36 | 57 | 8.30 |
Cerebellar area 6 | Right | 56 | 30 | ?48 | ?33 | 6.02 |
Calcarine fissure / precuneus | left/right | 2240 | ?6 | ?75 | 6 | ?7.64 |
Cerebellar area 9 | Right | 81 | 15 | ?45 | ?48 | ?7.22 |
Parahippocampal gyrus | left/right | 100 | 27 | ?27 | ?6 | ?8.11 |
Medial cingulate gyrus | Left | 359 | ?9 | ?39 | 39 | ?8.28 |
Middle frontal gyrus | Right | 233 | 24 | 42 | 45 | ?6.02 |
Figure 3. Differences in skill level (A) and time consistency (B) at different time periods (2, 8, and 14 weeks). Note: ** represents p < 0.01, *** represents p < 0.001, error lines indicate standard error (SE) of the mean, Bonferroni correction was used for post-hoc multiple comparisons.
Figure 4. Brain areas activated by motor imagery at different time points. Note: Correction thresholds are voxel level uncorrected, p < 0.001, FWE corrected for clump level, p < 0.05; first collection voxel count > 147, second collection voxel count > 119, third collection voxel count > 55.
Activating brain areas | Hemispheres | Number of voxels | Coordinates of peak point MNI | F-value | ||
---|---|---|---|---|---|---|
X | Y | Z | ||||
Left superior temporal gyrus | Left | 106 | ?57 | ?21 | 9 | 15.04 |
Left precuneus | Left | 61 | ?3 | ?54 | 33 | 11.33 |
Table 4 Brain regions with different activation of motor imagery at different time points
Activating brain areas | Hemispheres | Number of voxels | Coordinates of peak point MNI | F-value | ||
---|---|---|---|---|---|---|
X | Y | Z | ||||
Left superior temporal gyrus | Left | 106 | ?57 | ?21 | 9 | 15.04 |
Left precuneus | Left | 61 | ?3 | ?54 | 33 | 11.33 |
Figure 5. Differences in mean signal values of the left superior temporal gyrus (A) and left precuneus (B) at different time points. Note: The left column shows the sagittal and coronal planes of the interacting brain regions, and the right column shows the post-hoc tests of the mean signal values of the spherical ROI with the coordinates of the peak point as the centre of the sphere and a radius of 6 mm, respectively; * represents p < 0.05, ** represents p < 0.01, *** represents p < 0.001, and the error line indicates the standard error (SE) of the mean, with Bonferroni correction for post-hoc multiple comparisons.
Variables | M | SD | 1 | 2 | 3 |
---|---|---|---|---|---|
1 Skill level | 6.51 | 0.91 | — | ||
2 Time consistency (ms) | 1831.66 | 905.61 | ?0.27* | — | |
3 Left superior temporal gyrus | 0.86 | 0.81 | 0.41** | ?0.16 | — |
4 Left precuneus | ?0.49 | 0.72 | 0.50?*** | ?0.18 | 0.41** |
Table 5 Correlation analysis of the variables
Variables | M | SD | 1 | 2 | 3 |
---|---|---|---|---|---|
1 Skill level | 6.51 | 0.91 | — | ||
2 Time consistency (ms) | 1831.66 | 905.61 | ?0.27* | — | |
3 Left superior temporal gyrus | 0.86 | 0.81 | 0.41** | ?0.16 | — |
4 Left precuneus | ?0.49 | 0.72 | 0.50?*** | ?0.18 | 0.41** |
Figure 6. Correlation between left superior temporal gyrus (A), left precuneus (B), time consistency (C) and Tai Chi skill level. Note: The shaded area in the graph shows the confidence interval of the fitted line.
Figure 7. Correlation between the difference in mean signal values of the left precuneus and the difference in Tai Chi skill level (A) and the difference in time consistency (B). Note: The difference in (A) is the third collection (14 weeks) minus the first (2 weeks), and the difference in (B) is the third (14 weeks) minus the second (8 weeks), with confidence intervals for the fitted lines shaded in the graph.
Scoring Points | Scoring Criteria |
---|---|
0~2 | Unfamiliarity with movements, unable to complete single poses |
2~4 | Nonstandard movements, incoherence drills |
4~6 | Basic standard of movement and consistency of drill |
6~8 | Standard action, smooth drill, gentle power |
8~10 | The rhythm, breathing and manner are consistent with the charm of Tai Chi |
Supplementary Table 1 Tai Chi skills scoring criteria
Scoring Points | Scoring Criteria |
---|---|
0~2 | Unfamiliarity with movements, unable to complete single poses |
2~4 | Nonstandard movements, incoherence drills |
4~6 | Basic standard of movement and consistency of drill |
6~8 | Standard action, smooth drill, gentle power |
8~10 | The rhythm, breathing and manner are consistent with the charm of Tai Chi |
F | p | ηp2 | ||
---|---|---|---|---|
Tai Chi skill level | Group | 304.54*** | < 0.001 | 0.92 |
Time | 25.17*** | < 0.001 | 0.48 | |
Group × Time | 28.29*** | < 0.001 | 0.51 | |
Imagery time (ms) | Group | 0.71 | 0.406 | 0.03 |
Time | 0.14 | 0.709 | 0.01 | |
Group × Time | 3.05 | 0.092 | 0.10 | |
Actual execution time (ms) | Group | 66.69*** | < 0.001 | 0.71 |
Time | 10.50** | 0.003 | 0.28 | |
Group × Time | 5.10* | 0.032 | 0.16 | |
Time consistency (ms) | Group | 4.60* | 0.041 | 0.15 |
Time | 0.06 | 0.812 | < 0.01 | |
Group × Time | 3.51 | 0.072 | 0.12 |
Supplementary Table 2 Two-factor repeated measures ANOVA (19 in experimental group, 10 in control group)
F | p | ηp2 | ||
---|---|---|---|---|
Tai Chi skill level | Group | 304.54*** | < 0.001 | 0.92 |
Time | 25.17*** | < 0.001 | 0.48 | |
Group × Time | 28.29*** | < 0.001 | 0.51 | |
Imagery time (ms) | Group | 0.71 | 0.406 | 0.03 |
Time | 0.14 | 0.709 | 0.01 | |
Group × Time | 3.05 | 0.092 | 0.10 | |
Actual execution time (ms) | Group | 66.69*** | < 0.001 | 0.71 |
Time | 10.50** | 0.003 | 0.28 | |
Group × Time | 5.10* | 0.032 | 0.16 | |
Time consistency (ms) | Group | 4.60* | 0.041 | 0.15 |
Time | 0.06 | 0.812 | < 0.01 | |
Group × Time | 3.51 | 0.072 | 0.12 |
Post-hoc tests | t | p | Cohen’s d | ||
---|---|---|---|---|---|
Tai Chi skill level | Experimental group | Pre-test - Post-test | ?8.80*** | < 0.001 | ?2.06 |
Control group | Pre-test - Post-test | 0.19 | 0.853 | ?0.06 | |
Pre-test | Experimental group - control group | 9.89*** | < 0.001 | 3.12 | |
Post-test | Experimental group - control group | 17.04*** | < 0.001 | 5.23 | |
Imagery time (ms) | Experimental group | Pre-test - Post-test | 1.81 | 0.082 | 0.42 |
Control group | Pre-test - Post-test | ?0.85 | 0.405 | ?0.27 | |
Pre-test | Experimental group - control group | 1.54 | 0.135 | 0.62 | |
Post-test | Experimental group - control group | ?0.20 | 0.845 | ?0.07 | |
Actual execution time (ms) | Experimental group | Pre-test - Post-test | 4.68*** | < 0.001 | 1.09 |
Control group | Pre-test - Post-test | 0.61 | 0.549 | 0.20 | |
Pre-test | Experimental group - control group | 7.61*** | < 0.001 | 2.73 | |
Post-test | Experimental group - control group | 5.61*** | < 0.001 | 1.83 | |
Time consistency (ms) | Experimental group | Pre-test - Post-test | 1.39 | 0.176 | 0.36 |
Control group | Pre-test - Post-test | ?1.31 | 0.203 | ?0.42 | |
Pre-test | Experimental group - control group | ?0.68 | 0.504 | ?0.19 | |
Post-test | Experimental group - control group | ?2.49* | 0.019 | ?0.93 |
Supplementary Table 3 Post-hoc tests of group and time (19 in experimental group, 10 in control group)
Post-hoc tests | t | p | Cohen’s d | ||
---|---|---|---|---|---|
Tai Chi skill level | Experimental group | Pre-test - Post-test | ?8.80*** | < 0.001 | ?2.06 |
Control group | Pre-test - Post-test | 0.19 | 0.853 | ?0.06 | |
Pre-test | Experimental group - control group | 9.89*** | < 0.001 | 3.12 | |
Post-test | Experimental group - control group | 17.04*** | < 0.001 | 5.23 | |
Imagery time (ms) | Experimental group | Pre-test - Post-test | 1.81 | 0.082 | 0.42 |
Control group | Pre-test - Post-test | ?0.85 | 0.405 | ?0.27 | |
Pre-test | Experimental group - control group | 1.54 | 0.135 | 0.62 | |
Post-test | Experimental group - control group | ?0.20 | 0.845 | ?0.07 | |
Actual execution time (ms) | Experimental group | Pre-test - Post-test | 4.68*** | < 0.001 | 1.09 |
Control group | Pre-test - Post-test | 0.61 | 0.549 | 0.20 | |
Pre-test | Experimental group - control group | 7.61*** | < 0.001 | 2.73 | |
Post-test | Experimental group - control group | 5.61*** | < 0.001 | 1.83 | |
Time consistency (ms) | Experimental group | Pre-test - Post-test | 1.39 | 0.176 | 0.36 |
Control group | Pre-test - Post-test | ?1.31 | 0.203 | ?0.42 | |
Pre-test | Experimental group - control group | ?0.68 | 0.504 | ?0.19 | |
Post-test | Experimental group - control group | ?2.49* | 0.019 | ?0.93 |
Pre-test | Post-test | t | p | Cohen’s d | |
---|---|---|---|---|---|
Left superior temporal gyrus | 0.25 ± 0.48 | 0.37 ± 0.52 | ?0.57 | 0.580 | ?0.18 |
Left precuneus | ?0.59 ± 0.65 | ?0.53 ± 0.63 | ?0.28 | 0.786 | ?0.09 |
Supplementary Table 4 Paired samples t-test for ROI in control group (n = 10)
Pre-test | Post-test | t | p | Cohen’s d | |
---|---|---|---|---|---|
Left superior temporal gyrus | 0.25 ± 0.48 | 0.37 ± 0.52 | ?0.57 | 0.580 | ?0.18 |
Left precuneus | ?0.59 ± 0.65 | ?0.53 ± 0.63 | ?0.28 | 0.786 | ?0.09 |
Supplementary Figure 1. Differences in motor imagery time (A) and actual execution time (B) at different times (2, 8 and 14 weeks) Note: ** represents p < 0.01, and the error line indicates standard error (SE) of the mean, with Bonferroni correction for post-hoc multiple comparisons.
[1] |
Abreu, A. M., Macaluso, E., Azevedo, R. T., Cesari, P., Urgesi, C., & Aglioti, S. M. (2012). Action anticipation beyond the action observation network: A functional magnetic resonance imaging study in expert basketball players. The European Journal of Neuroscience, 35(10), 1646-1654.
doi: 10.1111/ejn.2012.35.issue-10 URL |
[2] |
Bachrach, A., Jola, C., & Pallier, C. (2016). Neuronal bases of structural coherence in contemporary dance observation. NeuroImage, 124, 464-472.
doi: S1053-8119(15)00793-4 pmid: 26348557 |
[3] |
Bai, X., Zhang, Q., Zhang, P., Zhou, S., Liu, Y., Song, X., & Peng, G. (2016). Comparison of motor execution and motor imagery brain activation patterns: A fNIRS Study. Acta Psychologica Sinica, 48(5), 495-508.
doi: 10.3724/SP.J.1041.2016.00495 |
[4] | Bishop, D. T., Wright, M. J., Jackson, R. C., & Abernethy, B. (2013). Neural bases for anticipation skill in soccer: An fMRI study. Journal of Sport & Exercise Psychology, 35(1), 98-109. |
[5] | Chen, Q., & Liu, R. D. (Eds). (2019). Contemporary psychology of education (third edition). Beijing: Beijing Normal University Press. |
[6] |
Chiacchiero, M., Cagliostro, P., Degenaro, J., Giannina, C., & Rabinovich, Y. (2015). Motor imagery improves balance in older adults. Topics in Geriatric Rehabilitation, 31(2), 159-163.
doi: 10.1097/TGR.0000000000000063 URL |
[7] |
Collet, C., Guillot, A., Lebon, F., MacIntyre, T., & Moran, A. (2011). Measuring motor imagery using psychometric, behavioral, and psychophysiological tools. Exercise and Sport Sciences Reviews, 39(2), 85-92.
doi: 10.1097/JES.0b013e31820ac5e0 pmid: 21206282 |
[8] |
Cui, L., Yin, H., Lyu, S., Shen, Q., Wang, Y., Li, X., ... Zhu, L. (2019). Tai Chi Chuan vs general aerobic exercise in brain plasticity: A multimodal MRI study. Scientific Reports, 9(1), 17264-17267.
doi: 10.1038/s41598-019-53731-z pmid: 31754170 |
[9] |
Di, X., Zhu, S., Jin, H., Wang, P., Ye, Z., Zhou, k., ... Rao, H. (2012). Altered resting brain function and structure in professional badminton players. Brain Connectivity, 2(4), 225-233.
doi: 10.1089/brain.2011.0050 pmid: 22840241 |
[10] |
Faul, F., Erdfelder, E., Buchner, A., & Lang, A.-G. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41(4), 1149-1160.
doi: 10.3758/BRM.41.4.1149 pmid: 19897823 |
[11] |
Feltz, D. L., & Landers, D. M. (1983). The effects of mental practice on motor skill learning and performance: A meta-analysis. Journal of Sport Psychology, 5(1), 25-57.
doi: 10.1123/jsp.5.1.25 URL |
[12] |
Fogassi, L., Ferrari, P. F., Gesierich, B., Rozzi, S., Chersi, F., & Rizzolatti, G. (2005). Parietal lobe: From action organization to intention understanding. Science, 308(5722), 662-667.
doi: 10.1126/science.1106138 pmid: 15860620 |
[13] |
Grèzes, J., Frith, C., & Passingham, R. E. (2004). Brain mechanisms for inferring deceit in the actions of others. The Journal of Neuroscience, 24(24), 5500-5505.
doi: 10.1523/JNEUROSCI.0219-04.2004 URL |
[14] |
Guillot, A., Collet, C., Nguyen, V. A., Malouin, F., Richards, C., & Doyon, J. (2008). Functional neuroanatomical networks associated with expertise in motor imagery. NeuroImage, 41(4), 1471-1483.
doi: 10.1016/j.neuroimage.2008.03.042 pmid: 18479943 |
[15] |
Guillot, A., Hoyek, N., Louis, M., & Collet, C. (2012). Understanding the timing of motor imagery: Recent findings and future directions. International Review of Sport and Exercise Psychology, 5(1), 3-22.
doi: 10.1080/1750984X.2011.623787 URL |
[16] |
Guo, Z., Li, A., & Yu, L. (2017). "Neural efficiency" of athletes’ brain during visuo-spatial task: An fMRI study on table tennis players. Frontiers in Behavioral Neuroscience, 11, 72.
doi: 10.3389/fnbeh.2017.00072 URL |
[17] |
Hanakawa, T., Immisch, I., Toma, K., Dimyan, M. A., van Gelderen, P., & Hallett, M. (2003). Functional properties of brain areas associated with motor execution and imagery. Journal of Neurophysiology, 89(2), 989-1002.
doi: 10.1152/jn.00132.2002 pmid: 12574475 |
[18] |
Holmes, P. S., & Collins, D. J. (2001). The PETTLEP approach to motor imagery: A functional equivalence model for sport psychologists. Journal of Applied Sport Psychology, 13(1), 60-83.
doi: 10.1080/10413200109339004 URL |
[19] |
Ives-Deliperi, V. L., Solms, M., & Meintjes, E. M. (2011). The neural substrates of mindfulness: An fMRI investigation. Social Neuroscience, 6(3), 231-242.
doi: 10.1080/17470919.2010.513495 pmid: 20835972 |
[20] | Jerde, T. A., & Curtis, C. E. (2013). Maps of space in human frontoparietal cortex. Journal of Physiology, Journal of Physiology-Paris, 107(6), 510-516. |
[21] |
Kolb, B., & Gibb, R. (2014). Searching for the principles of brain plasticity and behavior. Cortex, 58, 251-260.
doi: 10.1016/j.cortex.2013.11.012 pmid: 24457097 |
[22] |
Lafleur, M. F., Jackson, P. L., Malouin, F., Richards, C. L., Evans, A. C., & Doyon, J. (2002). Motor learning produces parallel dynamic functional changes during the execution and imagination of sequential foot movements. NeuroImage, 16(1), 142-157.
doi: 10.1006/nimg.2001.1048 pmid: 11969325 |
[23] | Lou, H., & Liu, P. (2020). The influence of sports training on the brain plasticity of athletes: An ALE analysis of fMRI studies. China Sport Science, 40(7), 65-71. |
[24] |
Malouin, F. P., Richards, C. L. P., Durand, A. P., & Doyon, J. P. (2008). Reliability of mental chronometry for assessing motor imagery ability after stroke. Archives of Physical Medicine and Rehabilitation, 89(2), 311-319.
doi: 10.1016/j.apmr.2007.11.006 pmid: 18226656 |
[25] |
Marchand, W. R., Lee, J. N., Suchy, Y., Garn, C., Chelune, G., Johnson, S., & Wood, N. (2013). Functional architecture of the cortico-basal ganglia circuitry during motor task execution: Correlations of strength of functional connectivity with neuropsychological task performance among female subjects. Human Brain Mapping, 34(5), 1194-1207.
doi: 10.1002/hbm.21505 pmid: 22287185 |
[26] | Nakano, H., Murata, S., Shiraiwa, K., & Nonaka, K. (2020). Increased time difference between imagined and physical walking in older adults at a high risk of falling. Brain Sciences, 10(6), 332. |
[27] |
Oshio, R., Tanaka, S., Sadato, N., Sokabe, M., Hanakawa, T., & Honda, M. (2010). Differential effect of double-pulse TMS applied to dorsal premotor cortex and precuneus during internal operation of visuospatial information. NeuroImage, 49(1), 1108-1115.
doi: 10.1016/j.neuroimage.2009.07.034 pmid: 19632337 |
[28] |
Park, J.-W., Kim, Y.-H., Jang, S. H., Chang, W. H., Park, C.-H., & Kim, S. T. (2010). Dynamic changes in the cortico-subcortical network during early motor learning. NeuroRehabilitation, 26(2), 95-103.
doi: 10.3233/NRE-2010-0540 URL |
[29] |
Port, A. P., Santaella, D. F., Lacerda, S. S., Speciali, D. S., Balardin, J. B., Lopes, P. B., ... Kozasa, E. H. (2018). Cognition and brain function in elderly Tai Chi practitioners: A case-control study. Explore. 14(5), 352-356.
doi: 10.1016/j.explore.2018.04.007 URL |
[30] | Ren, Z., Hu, L., Zhang, Y., Xu, M., Li, L., Xia, F., & Huang, R. (2019). A review of brain plasticity of motor skill experts: Evidence from magnetic resonance imaging. China Sport Science and Technology, 55(2), 3-18. |
[31] | Ross, J. S., Tkach, J., Ruggieri, P. M., Lieber, M., & Lapresto, E. (2003). The mind’s eye: Functional MR imaging evaluation of golf motor imagery. American Journal of Neuroradiology. 24(6), 1036-1044. |
[32] |
Sale, A., Berardi, N., & Maffei, L. (2014). Environment and brain plasticity: Towards an endogenous pharmacotherapy. Physiological Reviews, 94(1), 189-234.
doi: 10.1152/physrev.00036.2012 pmid: 24382886 |
[33] | Shen, C., Wu, Y., Zhang, L., Zhu, H., Dai, W., Li, X., ... Tan, X. (2016). The effect of different proprioception input on motor imagery of complex movement: A fMRI study. Journal of Tianjin University of Sport, 31(3), 227-232. |
[34] |
Shmuelof, L., Krakauer, J. W., & Mazzoni, P. (2012). How is a motor skill learned? Change and invariance at the levels of task success and trajectory control. Journal of Neurophysiology, 108(2), 578-594.
doi: 10.1152/jn.00856.2011 pmid: 22514286 |
[35] |
Tamè, L., Braun, C., Holmes, N. P., Farnè, A., & Pavani, F. (2016). Bilateral representations of touch in the primary somatosensory cortex. Cognitive Neuropsychology, 33(1-2), 48-66.
doi: 10.1080/02643294.2016.1159547 pmid: 27314449 |
[36] |
Tao, J., Liu, J., Egorova, N., Chen, X., Sun, S., Xue, X., ... Kong, J. (2016). Increased hippocampus-medial prefrontal cortex resting-state functional connectivity and memory function after Tai Chi Chuan practice in elder adults. Frontiers in Aging Neuroscience, 8, 25.
doi: 10.3389/fnagi.2016.00025 pmid: 26909038 |
[37] |
Tkach, D., Reimer, J., & Hatsopoulos, N. G. (2007). Congruent activity during action and action observation in motor cortex. The Journal of Neuroscience, 27(48), 13241-13250.
doi: 10.1523/JNEUROSCI.2895-07.2007 URL |
[38] |
Tomasino, B., Maieron, M., Guatto, E., Fabbro, F., & Rumiati, R. I. (2013). How are the motor system activity and functional connectivity between the cognitive and sensorimotor systems modulated by athletic expertise? Brain Research, 1540, 21-41.
doi: 10.1016/j.brainres.2013.09.048 pmid: 24099840 |
[39] |
Utevsky, A. V., Smith, D. V., & Huettel, S. A. (2014). Precuneus is a functional core of the default-mode network. The Journal of Neuroscience, 34(3), 932-940.
doi: 10.1523/JNEUROSCI.4227-13.2014 URL |
[40] |
Wang, H., Xu, G., Wang, X., Sun, C., Zhu, B., Fan, M., ... Sun, L. (2019). The reorganization of resting-state brain networks associated with motor imagery training in chronic stroke patients. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 27(10), 2237-2245.
doi: 10.1109/TNSRE.2019.2940980 pmid: 31536007 |
[41] |
Wei, G., & Luo, J. (2009). Sport expert’s motor imagery: Functional imaging of professional motor skills and simple motor skills. Brain Research, 1341, 52-62.
doi: 10.1016/j.brainres.2009.08.014 URL |
[42] | Wei, G.-X., Dong, H.-M., Yang, Z., Luo, J., & Zuo, X.-N. (2014). Tai Chi Chuan optimizes the functional organization of the intrinsic human brain architecture in older adults. Frontiers in Aging Neuroscience, 6, 74. |
[43] | Williams, S., Cumming, J., Ntoumanis, N., Nordin-Bates, S. M., Ramsey, R., & Hall, C. (2012). Further validation and development of the movement imagery questionnaire. Journal of Sport & Exercise Psychology, 34(5), 621-646. |
[44] |
Wu, M.-T., Tang, P.-F., Goh, J. O. S., Chou, T.-L., Chang, Y.-K., Hsu, Y.-C., ... Lan, C. (2018). Task-switching performance improvements after Tai Chi Chuan training are associated with greater prefrontal activation in older adults. Frontiers in Aging Neuroscience, 10, 280.
doi: 10.3389/fnagi.2018.00280 URL |
[45] |
Yamashita, M., Suzuki, M., Kawagoe, T., Asano, K., Futada, M., Nakai, R., ... Sekiyama, K. (2021). Impact of early-commenced and continued sports training on the precuneus in older athletes. Frontiers in Human Neuroscience, 15, 766935-766935.
doi: 10.3389/fnhum.2021.766935 URL |
[46] | Yang, J. (2015). The influence of motor expertise on the brain activity of motor task performance: A meta-analysis of functional magnetic resonance imaging studies. Cognitive, Affective, & Behavioral Neuroscience, 15(2), 381-394. |
[47] | You, M., Liu, L., Fan, R., & Tong, J. (2020). Design and effect evaluation of the performance of specific imagery training program: A case study of free throw. Journal of Shanghai University of Sport, 44(11), 28-37. |
[48] |
Yue, C., Yu, Q., Zhang, Y., Herold, F., Mei, J., Kong, Z., ... Zou, L. (2020). Regular Tai Chi practice is associated with improved memory as well as structural and functional alterations of the hippocampus in the elderly. Frontiers in Aging Neuroscience, 12, 586770.
doi: 10.3389/fnagi.2020.586770 URL |
[49] |
Zhang, L., Shen, C., Zhu, H., Li, X., Dai, W., Wu, Y., & Zhang, J. (2017). The effects of motor skill level and somatosensory input on motor imagery: An fMRI study on basketball free shot. Acta Psychologica Sinica, 49(3), 307-316.
doi: 10.3724/SP.J.1041.2017.00307 |
[50] |
Zhang, L.-L., Pi, Y.-L., Shen, C., Zhu, H., Li, X.-P., Ni, Z., ... Wu, Y. (2018). Expertise-level-dependent functionally plastic changes during motor imagery in basketball players. Neuroscience, 380, 78-89.
doi: 10.1016/j.neuroscience.2018.03.050 URL |
[51] | Zhang, L. W., & Mao., Z. X. (Eds). (2018). Sports psychology (second edition). Shanghai: East China Normal University Press. |
[52] | Zhang, M., Huang, Y., Gao, Q., & Chen, H. (2020). Brain plasticity of table tennis athletes based on dynamic amplitude of low-frequency fluctuation method. Journal of Shanghai University of Sport, 44(6), 62-69. |
[53] | Zhao, Q., Lu, Y., Wang, Y., & Zhou, C. (2017). The optimization in sensorimotor system in dancers: Evidences from resting state fMRI. Chinese Journal of Sports Medicine, 36(12), 1081-1086. |
[54] | Zhong, X., & Ke, M. (2011). Experimental study of internal and external imagery training on table tennis skill learning. Journal of Capital University of Physical Education and Sports, 23(2), 165-168. |
[1] | JIN Hua, JIA Lina, YIN Xiaojuan, YAN Shizhen, WEI Shilin, CHEN Juntao. The neural basis of the continued influence effect of misinformation [J]. Acta Psychologica Sinica, 2022, 54(4): 343-354. |
[2] | JIN Hua, LIANG Ziping, ZHU Ziliang, YAN Shizhen, LIN Lin, AISIKAER Aikedan, YIN Jianzhong, JIANG Yunpeng, TIAN Xin. Aging of global motion perception is accompanied by the changes of resting-state functional activity in the middle temporal gyrus [J]. Acta Psychologica Sinica, 2021, 53(1): 38-54. |
[3] | CUI Fang, YANG Jiamiao, GU Ruolei, LIU Jie. Functional connectivities of the right temporoparietal junction and moral network predict social framing effect: Evidence from resting-state fMRI [J]. Acta Psychologica Sinica, 2021, 53(1): 55-66. |
[4] | ZHOU Heng, HE Hua, YU Wei, WANG Aijun, ZHANG Ming. Sound-induced flash illusion in older adults: Evidence from low-frequency fluctuation amplitudes in resting-state fMRI [J]. Acta Psychologica Sinica, 2020, 52(7): 823-834. |
[5] | Qi JIANG, Lulu HOU, Jiang QIU, Changran LI, Huanzhen WANG. The relationship between the caudate nucleus-orbitomedial prefrontal cortex connectivity and reactive aggression: A resting-state fMRI study [J]. Acta Psychologica Sinica, 2018, 50(6): 655-666. |
[6] | ZHANG Lanlan, SHEN Cheng, ZHU Hua, LI Xuepei, DAI Wen, WU Yin, ZHANG Jian. The effects of motor skill level and somatosensory input on motor imagery: An fMRI study on basketball free shot [J]. Acta Psychologica Sinica, 2017, 49(3): 307-316. |
[7] | LIU Lulu, XIAO Jing, ZHOU Jianshe, LU Jiamei, LUO Jing. Bitterness followed by happiness: A fMRI study on English lovers [J]. Acta Psychologica Sinica, 2017, 49(11): 1414-1427. |
[8] | BAI Xuejun, ZHANG Qihan, ZHANG Peng, ZHOU Song, LIU Ying, SONG Xing, PENG Guohui. Comparison of motor execution and motor imagery brain activation patterns: A fNIRS Study [J]. Acta Psychologica Sinica, 2016, 48(5): 495-508. |
[9] | LI WenFu, TONG DanDan, QIU Jiang, ZHANG QingLin. The neural basis of scientific innovation problems solving [J]. Acta Psychologica Sinica, 2016, 48(4): 331-342. |
[10] | LAI Han;XU Miao;SONG Yiying;LIU Jia. Distinct and Shared Neural Basis Underlying Music and Language: A Perspective from Meta-analysis [J]. Acta Psychologica Sinica, 2014, 46(3): 285-297. |
[11] | TONG Dandan;DAI Tianen;LI Wenfu;QIU Jiang;ZHANG Qinglin. An fMRI Study for Problem-Finding in Scientific Inventional Situation [J]. Acta Psychologica Sinica, 2013, 45(7): 740-751 . |
[12] | LAI Han;XU Miao;SONY Yiying;LIU Jia. The Neural Mechanism underlying Music Perception: A Meta-analysis of fMRI Studies [J]. Acta Psychologica Sinica, 2013, 45(5): 491-507. |
[13] | WANG Yu-Han;LI Hong;MO Lei;JIN Hua;CHEN Lin;QIAO Jia-Jia. Brain Activations of the Inference Processing in Familiar Topics Expository Text Comprehension [J]. Acta Psychologica Sinica, 2012, 44(11): 1443-1453. |
[14] | NI Chuan-Bin,LU Guang-Ming,ZHANG Zhi-Qiang,WANG Zhong-Qiu,XU Xiao-Dong,ZHANG Zhi-Yi. Brain Areas Activated and Cognitive Approaches Adopted in L2 Phonological Process [J]. , 2010, 42(12): 1156-1165. |
[15] |
MEI Yang,LIANG Pei-Peng,LU Sheng-Fu,ZHONG Ning,LI Kun-Cheng,YANG Yan-Hui . Neural Mechanism of Figural Inductive Reasoning: An fMRI Study [J]. , 2010, 42(04): 496-506. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||