Acta Psychologica Sinica ›› 2021, Vol. 53 ›› Issue (11): 1189-1202.doi: 10.3724/SP.J.1041.2021.01189
• Reports of Empirical Studies • Previous Articles Next Articles
SUN Yanliang1, SONG Jiaru1, XIN Xiaowen2, DING Xiaowei3(), LI Shouxin1()
Received:
2020-10-15
Published:
2021-11-25
Online:
2021-09-23
Contact:
DING Xiaowei,LI Shouxin
E-mail:dingxw3@mail.sysu.edu.cn;shouxinli@sdnu.edu.cn
Supported by:
SUN Yanliang, SONG Jiaru, XIN Xiaowen, DING Xiaowei, LI Shouxin. (2021). Same-category advantage on the capacity of visual working memory. Acta Psychologica Sinica, 53(11), 1189-1202.
Figure 1. Twelve examples of animal silhouettes in a basic category. These animal silhouettes are from an open copyright website (https://Pixabay.com ) and only for demonstration.
Posture similarity | Load 2 | Load 4 | ||
---|---|---|---|---|
Same category | Different category | Same category | Different category | |
High similarity posture | 1.63 ± 0.20 | 1.34 ± 0.16 | 3.09 ± 0.45 | 1.83 ± 0.69 |
Low similarity posture | 1.59 ± 0.25 | 1.59 ± 0.22 | 2.50 ± 0.78 | 1.80 ± 0.60 |
Table 1 K (M ± SD) under eight conditions in Experiment 1
Posture similarity | Load 2 | Load 4 | ||
---|---|---|---|---|
Same category | Different category | Same category | Different category | |
High similarity posture | 1.63 ± 0.20 | 1.34 ± 0.16 | 3.09 ± 0.45 | 1.83 ± 0.69 |
Low similarity posture | 1.59 ± 0.25 | 1.59 ± 0.22 | 2.50 ± 0.78 | 1.80 ± 0.60 |
Figure 3. Results of Experiment 1: estimated memory capacity as a function of memory load (a) or posture (b) for same- or different-category trials, and as a function of memory load for high similarity or low similarity trials (c). Error bars represent within-subject 95% confidence intervals. * p < 0.05, ** p < 0.01.
Posture similarity | Load 2 | Load 4 | ||
---|---|---|---|---|
Same category | Different category | Same category | Different category | |
High similarity posture | 1.53 ± 0.27 | 1.31 ± 0.34 | 2.78 ± 0.51 | 1.79 ± 0.46 |
Low similarity posture | 1.53 ± 0.27 | 1.46 ± 0.30 | 2.48 ± 0.48 | 1.46 ± 0.75 |
Table 2 K (M ± SD) under eight conditions in Experiment 2
Posture similarity | Load 2 | Load 4 | ||
---|---|---|---|---|
Same category | Different category | Same category | Different category | |
High similarity posture | 1.53 ± 0.27 | 1.31 ± 0.34 | 2.78 ± 0.51 | 1.79 ± 0.46 |
Low similarity posture | 1.53 ± 0.27 | 1.46 ± 0.30 | 2.48 ± 0.48 | 1.46 ± 0.75 |
Figure 4. Results of Experiment 2: estimated memory capacity as a function of memory load (a) and posture (b) for same- or different- category trials, and as a function of memory load for high similarity or low similarity posture trials (c). Error bars represent within-subject 95% confidence intervals. * p < 0.05, ** p < 0.01.
Categories | Load 2 | Load 4 |
---|---|---|
Same category | 0.97 ± 0.23 | 1.95 ± 0.41 |
Different category | 0.86 ± 0.24 | 1.08 ± 0.40 |
Table 3 The K (M ± SD) under four conditions in Experiment 3
Categories | Load 2 | Load 4 |
---|---|---|
Same category | 0.97 ± 0.23 | 1.95 ± 0.41 |
Different category | 0.86 ± 0.24 | 1.08 ± 0.40 |
Figure 6. Behavioral results in Experiment 3, estimated memory capacity as a function of memory load for same- or different-category trials. Error bars represent within-subject 95% confidence intervals. ** p < 0.01.
Figure 7. Contralateral-minus-ipsilateral waveforms (a) and mean contralateral delay activity (CDA) amplitudes (b) for the four conditions in the parietal (P8/P7, P6/P5, and P4/P3) and parieto-occipital (PO8/PO7, PO6/PO5, and PO4/PO3) regions of the brain. The CDA is measured from 400 ms after offset of the memory items until the probe appears. The gray shaded line represents the duration of the memory-item display. The gray shaded rectangle represents the time window of CDA. Error bars represent within-subject 95% confidence intervals. * p < 0.05, ** p < 0.01.
[1] |
Allen, R. J., Baddeley, A. D., & Hitch, G. J. (2006). Is the binding of visual features in working memory resource-demanding? Journal of Experimental Psychology: General, 135(2), 298-313. https://doi.org/10.1037/0096-3445.135.2.298
doi: 10.1037/0096-3445.135.2.298 URL |
[2] |
Alvarez, G. A., & Cavanagh, P. (2004). The capacity of visual short-term memory is set both by visual information load and by number of objects. Psychological Science, 15(2), 106-111. https://doi.org/10.1111/j.0963-7214.2004.01502006.x
URL pmid: 14738517 |
[3] |
Atkinson, A. L., Berry, E. D., Waterman, A. H., Baddeley, A. D., Hitch, G. J., & Allen, R. J. (2018). Are there multiple ways to direct attention in working memory? Annals of the New York Academy of Sciences, 1424(1), 115-126. https://doi.org/10.1111/nyas.13634
doi: 10.1111/nyas.13634 URL pmid: 29635690 |
[4] |
Awh, E., Barton, B., & Vogel, E. K. (2007). Visual working memory represents a fixed number of items regardless of complexity. Psychological Science, 18(7), 622-628. https://doi.org/10.1111/j.1467-9280.2007.01949.x
doi: 10.1111/j.1467-9280.2007.01949.x URL |
[5] |
Bays, P. M., & Husain, M. (2008). Dynamic shifts of limited working memory resources in human vision. Science (New York, N.Y.), 321(5890), 851-854. https://doi.org/10.1126/science.1158023
doi: 10.1126/science.1158023 URL |
[6] |
Brady, T. F., & Alvarez, G. A. (2015). No evidence for a fixed object limit in working memory: Spatial ensemble representations inflate estimates of working memory capacity for complex objects. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41(3),921-929. https://doi.org/10.1037/xlm0000075
doi: 10.1037/xlm0000075 URL |
[7] |
Brady, T. F., Konkle, T., & Alvarez, G. A. (2009). Compression in visual working memory: Using statistical regularities to form more efficient memory representations. Journal of Experimental Psychology: General, 138(4)487-502. https://doi.org/10.1037/a0016797
doi: 10.1037/a0016797 URL |
[8] | Brady, T. F., Konkle, T., & Alvarez, G. A. (2011). A review of visual memory capacity: Beyond individual items and toward structured representations. Journal of Vision, 11(5)1-34. https://doi.org/10.1167/11.5.4 |
[9] | Brady, T. F., Störmer, V. S., & Alvarez, G. A. (2016). Working memory is not fixed-capacity: More active storage capacity for real-world objects than for simple stimuli. Proceedings of the National Academy of Sciences of the United States of America, 113(27)7459-7464. https://doi.org/10.1073/pnas.1520027113 |
[10] |
Brady, T. F., & Tenenbaum, J. B. (2013). A probabilistic model of visual working memory: Incorporating higher order regularities into working memory capacity estimates. Psychological Review, 120(1)85-109. https://doi.org/10.1037/a0030779
doi: 10.1037/a0030779 URL |
[11] | Cohen, M. A., Konkle, T., Rhee, J. Y., Nakayama, K., & Alvarez, G. A. (2014). Processing multiple visual objects is limited by overlap in neural channels. Proceedings of the National Academy of Sciences of the United States of America, 111(24),8955-8960. https://doi.org/10.1073/pnas.1317860111 |
[12] |
Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24(1), 87-114. https://doi.org/10.1017/S0140525X01003922
URL pmid: 11515286 |
[13] |
Curby, K. M., & Gauthier, I. (2007). A visual short-term memory advantage for faces. Psychonomic Bulletin & Review, 14(4), 620-628. https://doi.org/10.3758/BF03196811
doi: 10.3758/BF03196811 URL |
[14] |
Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9-21. https://doi.org/10.1016/j.jneumeth.2003.10.009
URL pmid: 15102499 |
[15] |
Ding, X., Zhao, Y., Wu, F., Lu, X., Gao, Z., & Shen, M. (2015). Binding biological motion and visual features in working memory. Journal of Experimental Psychology: Human Perception and Performance, 41(3), 850-865. https://doi.org/10.1037/xhp0000061
doi: 10.1037/xhp0000061 URL |
[16] |
Gao, Z., Gao, Q., Tang, N., Shui, R., & Shen, M. (2016). Organization principles in visual working memory: Evidence from sequential stimulus display. Cognition, 146, 277-288. https://doi.org/10.1016/j.cognition.2015.10.005
doi: 10.1016/j.cognition.2015.10.005 URL |
[17] | Gao, Z., Li, J., Liang, J., Chen, H., Yin, J., & Shen, M. (2009). Storing fine detailed information in visual working memory--evidence from event-related potentials. Journal of Vision, 9(7), 17. https://doi.org/10.1167/9.7.17 |
[18] |
Gao, Z., Xu, X., Chen, Z., Yin, J., Shen, M., & Shui, R. (2011). Contralateral delay activity tracks object identity information in visual short term memory. Brain Research, 1406, 30-42. https://doi.org/10.1016/j.brainres.2011.06.049
doi: 10.1016/j.brainres.2011.06.049 URL |
[19] |
Jiang, Y. V., Lee, H. J., Asaad, A., & Remington, R. (2016). Similarity effects in visual working memory. Psychonomic Bulletin & Review, 23(2), 476-482. https://doi.org/10.3758/s13423-015-0905-5
doi: 10.3758/s13423-015-0905-5 URL |
[20] |
Jiang, Y. V., Remington, R. W., Asaad, A., Lee, H. J., & Mikkalson, T. C. (2016). Remembering faces and scenes: The mixed-category advantage in visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 42(9), 1399-1411. https://doi.org/10.1037/xhp0000228
doi: 10.1037/xhp0000228 URL |
[21] | Kaiser, D., Stein, T., & Peelen, M. V. (2014). Object grouping based on real-world regularities facilitates perception by reducing competitive interactions in visual cortex. Proceedings of the National Academy of Sciences of the United States of America, 111(30), 11217-11222. https://doi.org/10.1073/pnas.1400559111 |
[22] |
Kaiser, D., Stein, T., & Peelen, M. V. (2015). Real-world spatial regularities affect visual working memory for objects. Psychonomic Bulletin & Review, 22(6), 1784-1790. https://doi.org/10.3758/s13423-015-0833-4
doi: 10.3758/s13423-015-0833-4 URL |
[23] |
Kang, M.-S., & Woodman, G. F. (2014). The neurophysiological index of visual working memory maintenance is not due to load dependent eye movements. Neuropsychologia, 56, 63-72. https://doi.org/10.1016/j.neuropsychologia.2013.12.028
doi: 10.1016/j.neuropsychologia.2013.12.028 URL |
[24] |
Lin, P.-H., & Luck, S. J. (2009). The influence of similarity on visual working memory representations. Visual Cognition, 17(3), 356-372. https://doi.org/10.1080/13506280701766313
doi: 10.1080/13506280701766313 URL |
[25] | Lopez-Calderon, J., & Luck, S. J. (2014). ERPLAB: An open-source toolbox for the analysis of event-related potentials. Frontiers in Human Neuroscience, 8(213), https://doi.org/10.3389/fnhum.2014.00213 |
[26] |
Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390(6657), 279-281. https://doi.org/10.1038/36846
doi: 10.1038/36846 URL |
[27] |
Luck, S. J., & Vogel, E. K. (2013). Visual working memory capacity: From psychophysics and neurobiology to individual differences. Trends in Cognitive Sciences, 17(8), 391-400. https://doi.org/10.1016/j.tics.2013.06.006
doi: 10.1016/j.tics.2013.06.006 URL |
[28] |
Luria, R., Balaban, H., Awh, E., & Vogel, E. K. (2016). The contralateral delay activity as a neural measure of visual working memory. Neuroscience and Biobehavioral Reviews, 62, 100-108. https://doi.org/10.1016/j.neubiorev.2016.01.003
doi: 10.1016/j.neubiorev.2016.01.003 URL pmid: 26802451 |
[29] |
Luria, R., Sessa, P., Gotler, A., Jolicoeur, P., & Dell'Acqua, R. (2010). Visual short-term memory capacity for simple and complex objects. Journal of Cognitive Neuroscience, 22(3), 496-512. https://doi.org/10.1162/jocn.2009.21214
doi: 10.1162/jocn.2009.21214 URL pmid: 19301998 |
[30] |
Luria, R., & Vogel, E. K. (2014). Come together, right now: Dynamic overwriting of an object's history through common fate. Journal of Cognitive Neuroscience, 26(8), 1819-1828. https://doi.org/10.1162/jocn_a_00584
doi: 10.1162/jocn_a_00584 URL pmid: 24564468 |
[31] |
Mate, J., & Baqués, J. (2009). Short article: Visual similarity at encoding and retrieval in an item recognition task. Quarterly Journal of Experimental Psychology 62(7), 1277-1284. https://doi.org/10.1080/17470210802680769
doi: 10.1080/17470210802680769 URL |
[32] |
McCollough, A. W., Machizawa, M. G., & Vogel, E. K. (2007). Electrophysiological measures of maintaining representations in visual working memory. Cortex, 43(1), 77-94. https://doi.org/10.1016/S0010-9452(08)70447-7
URL pmid: 17334209 |
[33] |
O'Donnell, R. E., Clement, A., & Brockmole, J. R. (2018). Semantic and functional relationships among objects increase the capacity of visual working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 44(7), 1151-1158. https://doi.org/10.1037/xlm0000508
doi: 10.1037/xlm0000508 URL |
[34] |
Peirce, J. W. (2007). PsychoPy--Psychophysics software in Python. Journal of Neuroscience Methods, 162(1-2), 8-13. https://doi.org/10.1016/j.jneumeth.2006.11.017
doi: 10.1016/j.jneumeth.2006.11.017 URL |
[35] |
Peterson, D. J., Gözenman, F., Arciniega, H., & Berryhill, M. E. (2015). Contralateral delay activity tracks the influence of Gestalt grouping principles on active visual working memory representations. Attention, Perception & Psychophysics, 77(7), 2270-2283. https://doi.org/10.3758/s13414-015-0929-y
doi: 10.3758/s13414-015-0929-y URL |
[36] | Qi, S., Ding, C., & Li, H. (2014). Neural correlates of inefficient filtering of emotionally neutral distractors from working memory in trait anxiety. Cognitive, Affective & Behavioral Neuroscience, 14(1), 253-265. https://doi.org/10.3758/s13415-013-0203-5 |
[37] |
Quinlan, P. T., & Cohen, D. J. (2016). The precategorical nature of visual short-term memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 42(11), 1694-1712. https://doi.org/10.1037/xlm0000274
doi: 10.1037/xlm0000274 URL |
[38] |
Rudner, M., Orfanidou, E., Cardin, V., Capek, C. M., Woll, B., & Rönnberg, J. (2016). Preexisting semantic representation improves working memory performance in the visuospatial domain. Memory & Cognition, 44(4), 608-620. https://doi.org/10.3758/s13421-016-0585-z
doi: 10.3758/s13421-016-0585-z URL |
[39] |
Sims, C. R., Jacobs, R. A., & Knill, D. C. (2012). An ideal observer analysis of visual working memory. Psychological Review, 119(4), 807-830. https://doi.org/10.1037/a0029856
doi: 10.1037/a0029856 URL |
[40] |
Son, G., Oh, B.-I., Kang, M.-S., & Chong, S. C. (2020). Similarity-based clusters are representational units of visual working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 46(1), 46-59. https://doi.org/10.1037/xlm0000722
doi: 10.1037/xlm0000722 URL |
[41] |
Song, J.-H., & Jiang, Y. (2006). Visual working memory for simple and complex features: An fMRI study. NeuroImage, 30(3), 963-972. https://doi.org/10.1016/j.neuroimage.2005.10.006
doi: 10.1016/j.neuroimage.2005.10.006 URL |
[42] |
Vogel, E. K., & Machizawa, M. G. (2004). Neural activity predicts individual differences in visual working memory capacity. Nature, 428(6984), 748-751. https://doi.org/10.1038/nature02447
doi: 10.1038/nature02447 URL |
[43] |
Vogel, E. K., McCollough, A. W., & Machizawa, M. G. (2005). Neural measures reveal individual differences in controlling access to working memory. Nature, 438(7067), 500-503. https://doi.org/10.1038/nature04171
doi: 10.1038/nature04171 URL |
[44] |
Vogel, E. K., Woodman, G. F., & Luck, S. J. (2001). Storage of features, conjunctions, and objects in visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 27(1), 92-114. https://doi.org/10.1037//0096-1523.27.1.92
doi: 10.1037/0096-1523.27.1.92 URL |
[45] | Westfall, J. (2015). PANGEA: Power analysis for general ANOVA designs. Unpublished manuscript. Retrieved from http://jakewestfall.org/publications/pangea.pdf |
[46] |
Williams, M., & Woodman, G. F. (2012). Directed forgetting and directed remembering in visual working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38(5), 1206-1220. https://doi.org/10.1037/a0027389
doi: 10.1037/a0027389 URL |
[47] |
Wong, J. H., Peterson, M. S., & Thompson, J. C. (2008). Visual working memory capacity for objects from different categories: A face- specific maintenance effect. Cognition, 108(3), 719-731. https://doi.org/10.1016/j.cognition.2008.06.006
doi: 10.1016/j.cognition.2008.06.006 URL |
[48] |
Zhang, Q., Li, S., Wang, X., & Che, X. (2015). The effects of direction similarity in visual working memory: behavioural and event-related potential studies. Quarterly Journal of Experimental Psychology, 69(9), 1812-1830. https://doi.org/10.1080/17470218.2015.1100206
doi: 10.1080/17470218.2015.1100206 URL |
[1] | YE Chaoxiong,HU Zhonghua,LIANG Tengfei,ZHANG Jiafeng,XU Qianru,LIU Qiang. The mechanism of retro-cue effect in visual working memory: Cognitive phase separation [J]. Acta Psychologica Sinica, 2020, 52(4): 399-413. |
[2] | ZHANG Di, HAO Renning, LIU Qiang. The effects of the attention resource allocation on visual working memory consolidation process [J]. Acta Psychologica Sinica, 2019, 51(7): 772-780. |
[3] | LI Shouxin, CHE Xiaowei, LI Yanjiao, WANG Li, CHEN Kaisheng. The effects of capacity load and resolution load on visual selective attention during visual working memory [J]. Acta Psychologica Sinica, 2019, 51(5): 527-542. |
[4] | Sisi WANG, Yixuan KU. The causal role of right dorsolateral prefrontal cortex in visual working memory [J]. Acta Psychologica Sinica, 2018, 50(7): 727-738. |
[5] | WANG Jing, XUE Chengbo, LIU Qiang. Storage mechanism of same-dimension features in visual working memory [J]. Acta Psychologica Sinica, 2018, 50(2): 176-185. |
[6] | Yushang HUANG, Liren CAO. Effect of spatial position based configuration on visual working memory performance [J]. Acta Psychologica Sinica, 2018, 50(11): 1222-1234. |
[7] | XUE ChengBo, YE ChaoXiong, ZHANG Yin, LIU Qiang. Memory Mechanism of Feature Binding in Visual Working Memory [J]. Acta Psychologica Sinica, 2015, 47(7): 851-858. |
[8] | LI Cuihong, HE Xu, GUO Chunyan. The Storage Mechanism of Multi-feature Objects in Visual Working Memory [J]. Acta Psychologica Sinica, 2015, 47(6): 734-745. |
[9] | ZHANG Wei, ZHOU Bingping, ZANG Ling, MO Shuliang. The Attentional Capture of Internet Addicts under the Guidance of Visual Working Memory [J]. Acta Psychologica Sinica, 2015, 47(10): 1223-1234. |
[10] | BAI Xue-Jun,YIN Sha-Sha,YANG Hai-Bo,LV Yong,HU Wei,LUO Yue-Jia. The Influence of Visual Working Memory Contents on Top-down Attentional Control: An ERP Study [J]. , 2011, 43(10): 1103-1113. |
[11] | ZHANG Bao,JIN Zhi-Cheng,CHEN Cai-Qi. Visual Working Memory Modulates Attentional Orienting at Preattention Stage [J]. , 2008, 40(05): 552-561. |
[12] |
Shen Mowei,Li Jie,Lang Xueming,Gao Tao,Gao Zaifeng,Shui Rende . The Storage Mechanism of Objects in Visual Working Memory [J]. , 2007, 39(05): 761-767. |
[13] | Chen-Caiqi,Fu-Guifang,Jin-Zhicheng. EFFECT OF ATTENTIONAL LEVEL ON REPRESENTATION OF OBJECTS IN VISUAL WORKING MEMORY [J]. , 2003, 35(05): 591-597. |
[14] | Liu-Xiaoping,Wang-Zhaoxin,Chen-Xiangchuan,Zhang-Daren. SUBSYSTEMS IN VISUAL WORKING MEMORY [J]. , 2003, 35(05): 598-603. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||