Acta Psychologica Sinica ›› 2021, Vol. 53 ›› Issue (11): 1203-1214.doi: 10.3724/SP.J.1041.2021.01203
• Reports of Empirical Studies • Previous Articles Next Articles
SUN Lin1,2, DUAN Tao1, LIU Wei1(), CHEN Ning1()
Received:
2021-02-04
Published:
2021-11-25
Online:
2021-09-23
Contact:
LIU Wei,CHEN Ning
E-mail:liuwei@shnu.edu.cn;chenning@shnu.edu.cn
Supported by:
SUN Lin, DUAN Tao, LIU Wei, CHEN Ning. (2021). The influence of dispositional mindfulness on the academic affective forecasting biases of middle school students. Acta Psychologica Sinica, 53(11), 1203-1214.
Situation | dispositional mindfulness grouping | Emotion prediction | Emotional experience | Relative bias | Absolute bias |
---|---|---|---|---|---|
Goal achievement group | Low dispositional mindfulness group (n = 61) | 3.79 ± 1.11 | 3.13 ± 1.35 | -0.66 ± 1.31 | 1.16 ± 0.89 |
High dispositional mindfulness group (n = 61) | 3.93 ± 1.09 | 3.35 ± 1.20 | -0.58 ± 0.93 | 0.82 ± 0.73 | |
Goal non-achievement group | Low dispositional mindfulness group (n = 72) | 3.18 ± 1.25 | 2.72 ± 1.21 | -0.46 ± 1.42 | 1.10 ± 1.00 |
High dispositional mindfulness group (n = 73) | 2.92 ± 1.10 | 2.84 ± 1.17 | -0.08 ± 1.05 | 0.74 ± 0.74 |
Table 1 The descriptive statistics (M ± SD) in Study 1
Situation | dispositional mindfulness grouping | Emotion prediction | Emotional experience | Relative bias | Absolute bias |
---|---|---|---|---|---|
Goal achievement group | Low dispositional mindfulness group (n = 61) | 3.79 ± 1.11 | 3.13 ± 1.35 | -0.66 ± 1.31 | 1.16 ± 0.89 |
High dispositional mindfulness group (n = 61) | 3.93 ± 1.09 | 3.35 ± 1.20 | -0.58 ± 0.93 | 0.82 ± 0.73 | |
Goal non-achievement group | Low dispositional mindfulness group (n = 72) | 3.18 ± 1.25 | 2.72 ± 1.21 | -0.46 ± 1.42 | 1.10 ± 1.00 |
High dispositional mindfulness group (n = 73) | 2.92 ± 1.10 | 2.84 ± 1.17 | -0.08 ± 1.05 | 0.74 ± 0.74 |
Situation | dispositional mindfulness grouping | Emotion prediction | Emotional experience | Relative bias | Absolute bias |
---|---|---|---|---|---|
Success feedback | Low dispositional mindfulness group (n = 36) | 3.07 ± 1.02 | 3.27 ± 1.05 | 0.19 ± 1.13 | 0.90 ± 0.70 |
High dispositional mindfulness group (n = 34) | 3.44 ± 1.00 | 3.50 ± 1.10 | 0.06 ± 0.76 | 0.57 ± 0.50 | |
Failure feedback | Low dispositional mindfulness group (n = 36) | 2.93 ± 1.17 | 2.58 ± 1.29 | -0.69 ± 1.52 | 1.33 ± 0.99 |
High dispositional mindfulness group (n = 34) | 2.10 ± 1.19 | 2.76 ± 1.20 | -0.74 ± 0.91 | 0.91 ± 0.73 |
Table 2 The descriptive statistics (M ± SD) in Study 2
Situation | dispositional mindfulness grouping | Emotion prediction | Emotional experience | Relative bias | Absolute bias |
---|---|---|---|---|---|
Success feedback | Low dispositional mindfulness group (n = 36) | 3.07 ± 1.02 | 3.27 ± 1.05 | 0.19 ± 1.13 | 0.90 ± 0.70 |
High dispositional mindfulness group (n = 34) | 3.44 ± 1.00 | 3.50 ± 1.10 | 0.06 ± 0.76 | 0.57 ± 0.50 | |
Failure feedback | Low dispositional mindfulness group (n = 36) | 2.93 ± 1.17 | 2.58 ± 1.29 | -0.69 ± 1.52 | 1.33 ± 0.99 |
High dispositional mindfulness group (n = 34) | 2.10 ± 1.19 | 2.76 ± 1.20 | -0.74 ± 0.91 | 0.91 ± 0.73 |
Situation | Dispositional mindfulness grouping | Emotion prediction | Emotional experience | Relative bias | Absolute bias |
---|---|---|---|---|---|
Succeed in the challenge | Low dispositional mindfulness group (n = 32) | 4.05 ± 0.46 | 3.80 ± 0.62 | -0.26 ± 0.57 | 0.46 ± 0.41 |
High dispositional mindfulness group (n = 39) | 4.11 ± 0.57 | 4.08 ± 0.63 | -0.03 ± 0.31 | 0.21 ± 0.24 | |
Fail in the challenge | Low dispositional mindfulness group (n = 33) | 2.21 ± 0.87 | 2.83 ± 0.78 | 0.62 ± 1.02 | 0.83 ± 0.85 |
High dispositional mindfulness group (n = 32) | 2.14 ± 0.74 | 2.41 ± 0.89 | 0.27 ± 0.78 | 0.55 ± 0.61 |
Table 3 The descriptive statistics (M ± SD) in Study 3
Situation | Dispositional mindfulness grouping | Emotion prediction | Emotional experience | Relative bias | Absolute bias |
---|---|---|---|---|---|
Succeed in the challenge | Low dispositional mindfulness group (n = 32) | 4.05 ± 0.46 | 3.80 ± 0.62 | -0.26 ± 0.57 | 0.46 ± 0.41 |
High dispositional mindfulness group (n = 39) | 4.11 ± 0.57 | 4.08 ± 0.63 | -0.03 ± 0.31 | 0.21 ± 0.24 | |
Fail in the challenge | Low dispositional mindfulness group (n = 33) | 2.21 ± 0.87 | 2.83 ± 0.78 | 0.62 ± 1.02 | 0.83 ± 0.85 |
High dispositional mindfulness group (n = 32) | 2.14 ± 0.74 | 2.41 ± 0.89 | 0.27 ± 0.78 | 0.55 ± 0.61 |
Regression equation (n = 136) | Fit Index | Coefficient significance | |||||
---|---|---|---|---|---|---|---|
Result variable | Predictive variable | R | R2 | F | β | t | p |
Absolute bias | 0.24 | 0.06 | 8.13 | ||||
Dispositional mindfulness | -0.29 | -2.85 | 0.005 | ||||
Attentional focus | 0.28 | 0.08 | 11.76 | ||||
Dispositional mindfulness | 0.46 | 3.43 | 0.001 | ||||
Absolute bias | 0.33 | 0.11 | 8.10 | ||||
Dispositional mindfulness | -0.21 | -2.01 | 0.046 | ||||
Attentional focus | -0.18 | -2.77 | 0.006 |
Table 4 Mediation model test of attentional focus
Regression equation (n = 136) | Fit Index | Coefficient significance | |||||
---|---|---|---|---|---|---|---|
Result variable | Predictive variable | R | R2 | F | β | t | p |
Absolute bias | 0.24 | 0.06 | 8.13 | ||||
Dispositional mindfulness | -0.29 | -2.85 | 0.005 | ||||
Attentional focus | 0.28 | 0.08 | 11.76 | ||||
Dispositional mindfulness | 0.46 | 3.43 | 0.001 | ||||
Absolute bias | 0.33 | 0.11 | 8.10 | ||||
Dispositional mindfulness | -0.21 | -2.01 | 0.046 | ||||
Attentional focus | -0.18 | -2.77 | 0.006 |
Effect | Effect value | Boot standard error | BootCI lower limit | BootCI upper limit | Effect ratio |
---|---|---|---|---|---|
Total effect | -0.29 | 0.10 | -0.49 | -0.09 | |
Direct effect | -0.21 | 0.10 | -0.41 | -0.004 | 72.41% |
Indirect effect | -0.08 | 0.04 | -0.17 | -0.02 | 27.59% |
Table 5 Decomposition Table of total effect, direct effect and intermediate effect of attention focus
Effect | Effect value | Boot standard error | BootCI lower limit | BootCI upper limit | Effect ratio |
---|---|---|---|---|---|
Total effect | -0.29 | 0.10 | -0.49 | -0.09 | |
Direct effect | -0.21 | 0.10 | -0.41 | -0.004 | 72.41% |
Indirect effect | -0.08 | 0.04 | -0.17 | -0.02 | 27.59% |
[1] |
Adam, W. H. (2016). The mindful personality: Associations between dispositional mindfulness and the Five Factor Model of personality. Personality and Individual Differences, 91, 154-158.
doi: 10.1016/j.paid.2015.11.054 URL |
[2] |
Baer, R. A., Smith, G. T., Hopkins, J., Krietemeyer, J., & Toney, L. (2006). Using self-report assessment methods to explore facets of mindfulness. Assessment, 13(1), 27-45.
doi: 10.1177/1073191105283504 URL |
[3] |
Barsics, C., van der Linden, M., & D'Argembeau, A. (2016). Frequency, characteristics, and perceived functions of emotional future thinking in daily life. The Quarterly Journal of Experimental Psychology, 69(2), 217-233.
doi: 10.1080/17470218.2015.1051560 URL |
[4] |
Bishop, S. R., Lau, M., Shapiro, S., Carlson, L., Anderson, N. D., Carmody, J., … Devins, D. (2004). Mindfulness: A proposed operational definition. Clinical Psychology: Science and Practice, 11(3), 230-241.
doi: 10.1093/clipsy.bph077 URL |
[5] |
Brenner, C. J., & Ben-Zeev, D. (2014). Affective forecasting in schizophrenia: Comparing predictions to real-time Ecological Momentary Assessment (EMA) ratings. Psychiatric Rehabilitation Journal, 37(4), 316-320.
doi: 10.1037/prj0000105 URL |
[6] |
Brown, K. W., Ryan, R. M., & Creswell, J. D. (2007). Mindfulness: Theoretical foundations and evidence for its salutary effects. Psychological Inquiry, 18(4), 211-237.
doi: 10.1080/10478400701598298 URL |
[7] | Chen, N. (2014). On teachers’ emotional forecasting accuiacy and influencing factors. (Unpublished doctorial dissertation). Shanghai Normal University. |
[8] |
Chen, N., Lu, J. M., & Wang, H. B. (2013). Interpersonal empathy gap can be overcome: Taking teachers forecasting students’ emotion as an example. Acta Psychologica Sinica, 45(12), 1368-1380.
doi: 10.3724/SP.J.1041.2013.01368 URL |
[9] | Chen, N., Lu, J. M., & Wang, H. B. (2014). The example anchoring effect in the process of interpersonal emotional forecasting. Journal of Psychological Science, 37(4), 930-935. |
[10] | Chen, Y., Zhao, X., Huang, J. H., Chen, S. Y., & Zhou, R. L. (2011). Effects of mindfulness meditation on emotion regulation: Theories and neural mechanismse. Advances in Psychological Science, 19(10), 1502-1510. |
[11] |
Cordonnier, A., Barnier, A. J., & Sutton, J. (2016). Scripts and information units in future planning: Interactions between a past and a future planning task. The Quarterly Journal of Experimental Psychology, 69(2), 324-338.
doi: 10.1080/17470218.2015.1085587 URL |
[12] | Deng, Y. Q. (2009). Effect of mental awareness training on mental health of college students. (Unpublished master’s thesis). Capital Normal University, Beijing. |
[13] | Dong, Y., & Yu, G. L. (2007). The development and application of an academic emotions questionnaire. Acta Psychologica Sinica, 39(5), 852-860. |
[14] |
Dore, B. P., Meksin, R., Mather, M., Hirst, W., & Ochsner, K. N. (2016). Highly accurate prediction of emotions surrounding the attacks of September 11, 2001 over 1-, 2-, and 7-year prediction intervals. Journal of Experimental Psychology: General, 145(6), 788-795.
doi: 10.1037/xge0000168 URL |
[15] |
Dunn, E. W., Brackett, M. A., Ashton-James, C., Schneiderman, E., & Salovey, P. (2007). On emotionally intelligent time travel: Individual differences in affective forecasting ability. Personality and Social Psychology Bulletin, 33(1), 85-93.
doi: 10.1177/0146167206294201 URL |
[16] |
Elwyn, G., Stiel, M., Durand, M.-A., & Boivin, J. (2011). The design of patient decision support interventions: Addressing the theory- practice gap. Journal of Evaluation in Clinical Practice, 17(4), 565-574.
doi: 10.1111/j.1365-2753.2010.01517.x pmid: 20698918 |
[17] |
Emanuel, A. S., Updegraff, J. A., Kalmbach, D. A., & Ciesla, J. A. (2010). The role of mindfulness facets in affective forecasting. Personality and Individual Differences, 49(7), 815-818.
doi: 10.1016/j.paid.2010.06.012 URL |
[18] |
Gautam, S., Bulley, A., von Hippel, W., & Suddendorf, T. (2017). Affective forecasting bias in preschool children. Journal of Experimental Child Psychology, 159, 175-184.
doi: 10.1016/j.jecp.2017.02.005 URL |
[19] | Geng, X. W., Fan, L. L., & Zhao, L. N. (2019). The influence of learning agency beliefs on affective forecasting bias in middle school students’ learning behavior. Journal of Psychological Science, 42(1), 56-61. |
[20] |
Geng, X. W., & Jiang, H. Y. (2017). Influence of regulatory focus and regulatory fit on impact biases in affective forecast. Acta Psychologica Sinica, 49(12), 1537-1547.
doi: 10.3724/SP.J.1041.2017.01537 URL |
[21] |
Geng, X. W., Liu, D., & Niu, Y. H. (2020). Analytical thinking reduces impact bias in affective forecast. Acta Psychologica Sinica, 52(10), 1168-1177.
doi: 10.3724/SP.J.1041.2020.01168 URL |
[22] | Geng, X. W., & Zhang, F. (2015). The impact bias in affective forecasting: Focalism or unforeseen adaptation? Journal of Psychological Science, 38(5), 1201-1206. |
[23] |
Gilbert, D. T., & Wilson, T. D. (2009). Why the brain talks to itself: Sources of error in emotional prediction. Philosophical Transactions of the Royal Society B, 364(1521), 1335-1341.
doi: 10.1098/rstb.2008.0305 URL |
[24] |
Green, J. D., Davis, J. L., Luchies, L. B., Coy, A. E., van Tongeren, D. R., Reid, C. A., & Finkel, E. J. (2013). Victims versus perpetrators: Affective and empathic forecasting regarding transgressions in romantic relationships. Journal of Experimental Social Psychology, 49(3), 329-333.
doi: 10.1016/j.jesp.2012.12.004 URL |
[25] | Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate Data Analysis: A global perspective. Englewood Cliffs, NJ: Prentice Hall. |
[26] | Hayes, A. F. (2013). Introduction to mediation, moderation, and conditional process analysis: A regression-based approach. New York: Guilford. |
[27] |
Hezel, D. M., Stewart, S. E., Riemann, B. C., & McNally, R. J. (2019). Affective forecasting accuracy in obsessive compulsive disorder. Behavioural and Cognitive Psychotherapy, 47(5), 573-584.
doi: 10.1017/S1352465819000134 URL |
[28] |
Hill, C. L., & Updegraff, J. A. (2012). Mindfulness and its relationship to emotional regulation. Emotion, 12(1), 81-0.
doi: 10.1037/a0026355 URL |
[29] |
Hoerger, M., Chapman, B., & Duberstein, P. (2016). Realistic affective forecasting: The role of personality. Cognition and Emotion, 30(7), 1304-1316.
doi: 10.1080/02699931.2015.1061481 URL |
[30] |
Hoerger, M., Chapman, B. P., Epstein, R. M., & Duberstein, P. R. (2012). Emotional intelligence: A theoretical framework for individual differences in affective forecasting. Emotion, 12(4), 716-725.
doi: 10.1037/a0026724 URL |
[31] |
Hoerger, M., & Quirk, S. W. (2010). Affective forecasting and the Big Five. Personality and Individual Differences, 49(8), 972-976.
doi: 10.1016/j.paid.2010.08.007 URL |
[32] |
Hoerger, M., Scherer, L. D., & Fagerlin, A. (2016). Affective forecasting and medication decision making in breast-cancer prevention. Health Psychology, 35(6), 594-603.
doi: 10.1037/hea0000324 URL |
[33] |
Hong, P. Y., Lishner, D. A., Vogels, E. A., & Ebert, A. R. (2016). The effect of a mindfulness practice and dispositional mindfulness on affective forecasting. Basic and Applied Social Psychology, 38(3), 153-165.
doi: 10.1080/01973533.2016.1182533 URL |
[34] |
Kabat-Zinn, J. (2003). Mindfulness-based interventions in context: Past, present, and future. Clinical Psychology: Science and Practice, 10(2), 144-156.
doi: 10.1093/clipsy.bpg016 URL |
[35] |
Kong, D. T. (2015). The role of mindfulness and neuroticism in predicting acculturative anxiety forecasting error. Mindfulness, 6, 1387-1400.
doi: 10.1007/s12671-015-0409-4 URL |
[36] |
Kopp, L., Atance, C. M., & Pearce, S. (2017). “Things aren’t so bad!”: Preschoolers overpredict the emotional intensity of negative outcomes. British Journal of Developmental Psychology, 35, 623-627.
doi: 10.1111/bjdp.12210 URL |
[37] |
Kumar, A., & Epley, N. (2018). Undervaluing gratitude: Expressers misunderstand the consequences of showing appreciation. Psychological Science, 29(9), 1423-1435.
doi: 10.1177/0956797618772506 pmid: 29949445 |
[38] | Lau, T., Morewedge, C. K., & Cikara, M. (2016). Overcorrection for Social-Categorization Information Moderates Impact Bias in Affective Forecasting. Psycholical Science, 27(10), 1340-1351. |
[39] |
Lench, H. C., Levine, L. J., Perez, K., Carpenter, Z. K., Carlson, S. J., Bench, S. W., & Wan, Y. (2019). When and why people misestimate future feelings: Identifying strengths and weaknesses in affective forecasting. Journal of Personality and Social Psychology, 116(5), 724-742.
doi: 10.1037/pspa0000143 URL |
[40] |
Lench, H. C., Safer, M. A., & Levine, L. J. (2011). Focalism and the underestimation of future emotion: When it’s worse than imagine. Emotion, 11(2), 278-285.
doi: 10.1037/a0022792 URL |
[41] |
Levine, E. E., & Cohen, T. R. (2018). You can handle the truth: Mispredicting the consequences of honest communication. Journal of Experimental Psychology: General, 147(9), 1400-1429.
doi: 10.1037/xge0000488 URL |
[42] |
Loehr, V. G., & Baldwin, A. S. (2014). Affective forecasting error in exercise: Differences between physically active and inactive individuals. Sport, Exercise, and Performance Psychology, 3(3), 177-183.
doi: 10.1037/spy0000006 URL |
[43] |
Luo, H. B., Xu, F. M., Guo, Y. Y., Zheng, Q. Q., Li, B., & Zhang, H. (2013). Focusing illusion in affective forecasting. Advances in Psychological Science, 21(8), 1482-1492.
doi: 10.3724/SP.J.1042.2013.01482 URL |
[44] | Mata, A., & Simão, C. (2019). Karmic forecasts: The role of justice in forecasts about self and others. Motivation Science, Online First Publication, December 19. |
[45] |
Miloyan, B., & Suddendorf, T. (2015). Feelings of the future. Trends in Cognitive Sciences, 19(4), 196-200.
doi: 10.1016/j.tics.2015.01.008 pmid: 25726365 |
[46] |
Pauketat, J. V. T., Moons, W. G., Chen, J. M., Mackie, D. M., & Sherman, D. K. (2016). Self-affirmation and affective forecasting: Affirmation reduces the anticipated impact of negative events. Motivation and Emotion, 40(5), 750-759.
doi: 10.1007/s11031-016-9562-x URL |
[47] | Peng, Y. Q., & Ju, M. Z. (2013). The “heart” of the working mechanism of mindfulness: Attention or attitude? Journal of Psychological Science, 36(4), 1009-1013. |
[48] |
Pollmann, M. M. H., & Finkenauer, C. (2009). Empathic forecasting: How do we predict other people’s feelings? Cognition and Emotion, 23(5), 978-1001.
doi: 10.1080/02699930802264895 URL |
[49] |
Rasmussen, K. W., & Berntsen, D. (2014). “I can see clearly now”: The effect of cue imageability on mental time travel. Memory and Cognition, 42(7), 1063-1075.
doi: 10.3758/s13421-014-0414-1 pmid: 24874508 |
[50] |
Robins, C. J., Keng, S-L., Ekblad, A. G., & Brantley, J. G. (2012). Effects of mindfulness-based stress reduction on emotional experience and expression: A randomized controlled trial. Journal of Clinical Psychology, 68(1), 117-131.
doi: 10.1002/jclp.20857 pmid: 22144347 |
[51] |
Ruby, M. B., Dunn, E. W., Perrino, A., Gillis, R., & Viel, S. (2011). The invisible benefits of exercise. Health Psychology, 30, 67-74.
doi: 10.1037/a0021859 URL |
[52] |
Sevdalis, N., & Harvey, N. (2007). Biased forecasting of postdecisional affect. Psychological Science, 18(8), 678-681.
pmid: 17680936 |
[53] |
Shapiro, S. L., Carlson, L. E., Astin, J. A., & Freedman, B. (2006). Mechanisms of mindfulness. Journal of Clinical Psychology, 62(3), 373-386.
pmid: 16385481 |
[54] |
Sun, L., Duan, T., & Chen, N. (2020). On the causes and interventions of affective forecasting bias. Advances in Psychological Science, 28(12), 2018-2026.
doi: 10.3724/SP.J.1042.2020.02018 URL |
[55] |
Teper, R., Segal, Z. V., & Inzlicht, M. (2013). Inside the mindful mind: How mindfulness enhances emotion regulation through improvements in executive control. Current Directions in Psychological Science, 22(6), 449-454.
doi: 10.1177/0963721413495869 URL |
[56] |
Thompson, R. J., Spectre, A., Insel, P. S., Mennin, D., Gotlib, I. H., & Gruber, J. (2017). Positive and negative affective forecasting in remitted individuals with bipolar I disorder, and major depressive disorder, and healthy controls. Cognitive Therapy and Research, 41(5), 673-685.
doi: 10.1007/s10608-017-9840-2 URL |
[57] |
Watson, D., Clark, L. A., & Tellegen, A. (1988). Development and validation of brief measures of positive and negative affect: The PANAS scales. Journal of Personality and Social Psychology, 54, 1063-1070.
doi: 10.1037/0022-3514.54.6.1063 URL pmid: 3397865 |
[58] | Wilson, T. D., & Gilbert, D. T. (2003). Affective forecasting. In P. Z. Mark (Ed.), Advances in experimental social psychology (Vol. 35, pp. 345-411). San Diego, CA: Academic Press. |
[59] |
Wilson, T. D., & Gilbert, D. T. (2005). Affective forecasting:Knowing what to want. Current Directions in Psychological Science, 14(3), 131-134.
doi: 10.1111/j.0963-7214.2005.00355.x URL |
[60] |
Wilson, T. D., Meyers, J., & Gilbert, D. T. (2001). Lessons from the past: Do people learn from experience that emotional reactions are short-lived? Personality and Social Psychology Bulletin, 27(12), 1648-1661.
doi: 10.1177/01461672012712008 URL |
[61] |
Wilson, T. D., Wheatley, T., Meyers, J. M., Gilbert, D. T., & Axsom, D. (2000). Focalism: A source of durability bias in affective forecasting. Journal of Personality and Social Psychology, 78, 821-836.
pmid: 10821192 |
[62] |
Zelenski, J. M., Whelan, D. C., Nealis, L. J., Besner, C. M., Santoro, M. S., & Wynn, J. E. (2013). Personality and affective forecasting: Trait introverts underpredict the hedonic benefits of acting extraverted. Journal of Personality and Social Psychology, 104(6), 1092-1108.
doi: 10.1037/a0032281 pmid: 23586413 |
[63] | Zhang, P., Lu, J. M., & Zhang, M. (2012). The effect of mood on the probability judgment of future events. Journal of Psychological Science, 35(1), 100-104. |
[64] | Zhu, P. Y. (2010). An experimental study on emotional states affecting high school students’ remote association (Unpublished master’s thesis). Anhui Normal University, China. |
[1] | ZHANG Mengke, LI Qing, YIN Shouhang, CHEN Antao. Changes in the level of conflict trigger conflict adaptation [J]. Acta Psychologica Sinica, 2021, 53(2): 128-138. |
[2] | KE Xiaoxiao, QI Huizi, LIANG Jiahui, JIN Xinyuan, GAO Jie, ZHANG Mingxia, WANG Yamin. Situational assessment method of the Chinese people’s holistic thinking characteristics and their application [J]. Acta Psychologica Sinica, 2021, 53(12): 1299-1309. |
[3] | Xiaojun YUAN, Xiaoxia CUI, Zhengcao CAO, Hong KAN, Xiao WANG, Yamin WANG. Attentional bias towards threatening visual stimuli in a virtual reality-based visual search task [J]. Acta Psychologica Sinica, 2018, 50(6): 622-636. |
[4] | LIU Lulu, XIAO Jing, ZHOU Jianshe, LU Jiamei, LUO Jing. Bitterness followed by happiness: A fMRI study on English lovers [J]. Acta Psychologica Sinica, 2017, 49(11): 1414-1427. |
[5] | Dong Yan,Yu Guoliang. The Development and Application of An Academic Emotions Questionnaire [J]. , 2007, 39(05): 852-860. |
[6] | Lu-Jiamei,-He-Wen,-Liu-Wei,-Lu-Shenghua. The Influence of the Students’ Anxiety on Their Creativity [J]. , 2005, 37(06): 791-796. |
[7] | Lu Jiamei, Liu Wei, He Wen, Lu Shenghua (Education Science College, Shanghai Teachers University, Shanghai 200234). THE INFLUENCE OF THE STUDENTS MOOD ON THEIR CREATIVITY [J]. , 2002, 34(04): 51-56. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||