Please wait a minute...
心理学报  2018, Vol. 50 Issue (7): 727-738    DOI: 10.3724/SP.J.1041.2018.00727
     研究报告 本期目录 | 过刊浏览 | 高级检索 |
右侧背外侧前额叶在视觉工作记忆中的因果性作用
王思思,库逸轩()
华东师范大学心理与认知科学学院, 上海 200062
The causal role of right dorsolateral prefrontal cortex in visual working memory
Sisi WANG,Yixuan KU()
School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
全文: PDF(898 KB)   HTML 评审附件 (1 KB) 
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 

以往的影像学研究表明右侧背外侧前额叶皮层(DLPFC)在视觉工作记忆中发挥重要作用, 然而缺乏因果性的证据。本研究旨在考察右侧DLPFC的激活与视觉工作记忆容量的因果关系, 并探讨这一关系受到记忆负荷的调节及其神经机制。被试接受经颅直流电刺激之后完成视觉工作记忆变化检测任务, 根据被试在虚假刺激情况下从负荷4到负荷6任务记忆容量的增量将被试分为低记忆增长潜力组(简称低潜力组)和高记忆增长潜力组(简称高潜力组), 结果发现正性电刺激右侧DLPFC相对于虚假电刺激显著提升了高潜力组被试在低记忆负荷(负荷4)下的记忆容量及其对应的提取阶段的脑电指标SPCN成分。表明右侧DLPFC在视觉工作记忆的提取阶段发挥重要的因果性作用; 正性经颅直流电刺激右侧DLPFC可使工作记忆容量高潜力被试获得更多的脑活动增益, 并导致更好的行为提升效果。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王思思
库逸轩
关键词 视觉工作记忆经颅直流电刺激右侧背外侧前额叶皮层SPCN记忆潜力    
Abstract

The right dorsolateral prefrontal cortex (DLPFC) plays an important role in working memory. Previous neuroimaging and neurophysiological studies have found sustained and elevated DLPFC activity during working memory delay period. Meanwhile, the right DLPFC has been suggested to be more dominant in visuospatial than verbal working memory. While the causal evidence for the relationship between the right DLPFC and visual working memory is still rare.

Transcranial direct current stimulation (tDCS) and EEG were combined to investigate the causal relationship between the right DLPFC and processes of visual working memory. Forty participants performed a color change detection task with memory load of 4 items (load-4) or 6 items (load-6) while their electroencephalography (EEG) was recorded. Before they performed the tasks, either 15 min of 1.5 mA transcranial direct current stimulation (tDCS) or 30 s of 1.5 mA sham stimulation (SHAM) was applied over the right DLPFC. The participants were divided into two groups according to their working memory capacity increment from load-4 to load-6 in the sham condition, the group who gained more increment (the high potential group) under the sham condition also benefit more from the anodal tDCS over the right DLPFC, while the other group (the low potential group) did not show such effects.

To further explore the neural mechanisms, N2pc and SPCN were compared between different conditions. N2pc did not show any stimulating effects or load effects for both low and high potential groups. In contrast, although SPCN did not show significant main effects of load or stimulation, or their interaction for the low potential group, SPCN did show main effects of stimulation for high potential group. The amplitude of SPCN after tDCS over the right DLPFC was significantly larger than that after the sham stimulation under load-4 condition, which coincided with the behavioral findings, and further suggested the role of the right DLPFC in representing the memory information during retrieval.

In sum, anodal tDCS over the right DLPFC promoted visual working memory capacity of those who had more cognitive potential from easier task (load-4) to harder task (load-6). The present study confirmed the causal role of the right DLPFC in representing the visual working memory information during the retrieval period.

Key wordsvisual working memory    tDCS    right DLPFC    SPCN    working memory potential
收稿日期: 2017-07-03      出版日期: 2018-05-29
ZTFLH:  B842  
  B845  
基金资助:* 国家社会科学基金重大项目(17ZDA323);上海市浦江人才计划(16PJC022);华东师范大学人文社会科学青年预研究项(2017ECNU-YYJ050)
引用本文:   
王思思,库逸轩. 右侧背外侧前额叶在视觉工作记忆中的因果性作用[J]. 心理学报, 2018, 50(7): 727-738.
Sisi WANG,Yixuan KU. The causal role of right dorsolateral prefrontal cortex in visual working memory. Acta Psychologica Sinica, 2018, 50(7): 727-738.
链接本文:  
http://journal.psych.ac.cn/xlxb/CN/10.3724/SP.J.1041.2018.00727      或      http://journal.psych.ac.cn/xlxb/CN/Y2018/V50/I7/727
  负荷4和负荷6变化检测任务实验流程 注:上图和下图分别为负荷4任务和负荷6任务, 箭头指向一侧屏幕上色块颜色发生变化。彩图见电子版
  高低潜力组行为表现 注:大括号表示在两种刺激情况下负荷4和负荷6的工作记忆表现差异分别显著, 小括号表示负荷4情况下电刺激右侧DLPFC和虚假刺激后工作记忆表现的差异显著。*p < 0.05, Errorbar代表均值的标准误。
  记忆增长潜力和正性电刺激右侧DLPFC效果的相关 注:每个黑点代表一个被试。
  所有被试以及高低潜力组被试在示例序列出现后的ERP成分 注:灰色虚线和实线框包住的分别是N2pc和SPCN成分。黑色实线表示虚假刺激负荷4情况, 黑色虚线表示电刺激右侧DLPFC负荷4情况, 灰色实线表示虚假刺激负荷6情况, 灰色虚线表示电刺激右侧DLPFC负荷6情况。所有ERP均为CP5/6, P7/8, O1/2三对电极对侧电极减同侧电极波幅差值的均值。
  所有被试以及高低潜力组被试在探测序列出现后的ERP成分 注:灰色虚线和实线框包住的分别是N2pc和SPCN成分, 高潜力组SPCN下方加粗黑线部分表示电刺激负荷4和虚假刺激负荷4差异显著区域。黑色实线表示虚假刺激负荷4情况, 黑色虚线表示电刺激右侧DLPFC负荷4情况, 灰色实线表示虚假刺激负荷6情况, 灰色虚线表示电刺激右侧DLPFC负荷6情况。所有ERP均为CP5/6, P7/8, O1/2三对电极对侧电极减同侧电极波幅差值的均值。
  所有被试、高低潜力组被试探测序列出现后N2pc (250~320 ms)和SPCN (350~600 ms)的均值 注:*p < 0.05, Errorbar代表均值的标准误。
  被试的记忆增长潜力与正性电刺激右侧DLPFC在SPCN幅值上效果的皮尔逊相关
[1] Alloway, T.P., &Alloway R.G . ( 2010). Investigating the predictive roles of working memory and IQ in academic attainment. Journal of Experimental Child Psychology, 106( 1), 20-29.
pmid: 20018296
[2] Anderson M. C., Ochsner K. N., Kuhl B., Cooper J., Robertson E., Gabrieli S. W., .. Gabrieli ,J. D. E. ( 2004). Neural systems underlying the suppression of unwanted memories. Science, 303( 5655), 232-235.
pmid: 14716015
[3] Andrews S. C., Hoy K. E., Enticott P. G., Daskalakis Z. J., & Fitzgerald P. B . ( 2011). Improving working memory: The effect of combining cognitive activity and anodal transcranial direct current stimulation to the left dorsolateral prefrontal cortex. Brain Stimulation, 4( 2), 84-89.
pmid: 21511208
[4] Baddeley, A.D., &Hitch G.J . ( 1974). Working memory. Psychology of Learning and Motivation,8, 47-89.
[5] Berryhill, M.E., &Jones K.T . ( 2012). tDCS selectively improves working memory in older adults with more education. Neuroscience Letters, 521( 2), 148-151.
pmid: 22684095
[6] Coffman B. A., Clark V. P., & Parasuraman R . ( 2014). Battery powered thought: Enhancement of attention, learning, and memory in healthy adults using transcranial direct current stimulation. NeuroImage, 85, 895-908.
pmid: 23933040
[7] Courtney S. M., Petit L., Maisog J. M., Ungerleider L. G., & Haxby J. V . ( 1998). An area specialized for spatial working memory in human frontal cortex. Science, 279( 5355), 1347-1351.
pmid: 9478894
[8] Cowan ,N. ( 2001). Metatheory of storage capacity limits. Behavioral and Brain Sciences, 24( 1), 154-176.
[9] Curtis,C.E . ( 2006). Prefrontal and parietal contributions to spatial working memory. Neuroscience, 139( 1), 173-180.
[10] Dedoncker J., Brunoni A. R., Baeken C., & Vanderhasselt M. A . ( 2016). A systematic review and meta-analysis of the effects of transcranial direct current stimulation (tDCS) over the dorsolateral prefrontal cortex in healthy and neuropsychiatric samples: Influence of stimulation parameters. Brain Stimulation, 9( 4), 501-517.
[11] D'Esposito M., Postle B. R., Ballard D., & Lease J . ( 1999). Maintenance versus manipulation of information held in working memory: An event-related fMRI study. Brain and Cognition, 1( 1), 66-86.
[12] Druzgal, T.J., &D'Esposito M. , ( 2003). Dissecting contributions of prefrontal cortex and fusiform face area to face working memory. Journal of Cognitive Neuroscience, 15( 6), 771-784.
pmid: 14511531
[13] Eimer, M. ( 1996). The N2pc component as an indicator of attentional selectivity. Electroencephalography and Clinical Neurophysiology, 99( 3), 225-234.
[14] Eimer, M. &Kiss M. , ( 2010). An electrophysiological measure of access to representations in visual working memory. Psychophysiology, 47( 1), 197-200.
pmid: 2860638
[15] Fregni F., Boggio P. S., Nitsche M., Bermpohl F., Antal A., Feredoes E., .. Pascual-Leone A . ( 2005). Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Experimental Brain Research, 166( 1), 23-30.
pmid: 15999258
[16] Fukuda K., Vogel E., Mayr U., & Awh E . ( 2010). Quantity, not quality: The relationship between fluid intelligence and working memory capacity. Psychonomic Bulletin & Review, 17( 5), 673-679.
pmid: 21037165
[17] Funahashi S., Bruce C. J., & Goldman-Rakic P. S . ( 1989). Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex. Journal of Neurophysiology, 61( 2), 331-349.
[18] Fuster,J.M., &AlexanderG.E . ( 1971). Neuron activity related to short-term memory. Science, 173( 3997), 652-654.
[19] Giglia G., Brighina F., Rizzo S., Puma A., Indovino S., Maccora S., .. Fierro B . ( 2014). Anodal transcranial direct current stimulation of the right dorsolateral prefrontal cortex enhances memory-guided responses in a visuospatial working memory task. Functional Neurology, 29( 3), 189-193.
pmid: 25473739
[20] Hopf J. M., Boelmans K., Schoenfeld M. A., Luck S. J., & Heinze H. J . ( 2004). Attention to features precedes attention to locations in visual search: Evidence from electromagnetic brain responses in humans. Journal of Neuroscience, 24( 8), 1822-1832.
pmid: 14985422
[21] Jacobson L., Koslowsky M., & Lavidor M . ( 2012). tDCS polarity effects in motor and cognitive domains: A meta- analytical review. Experimental Brain Research, 216( 1), 1-10.
pmid: 21989847
[22] Jolic?ur P., Brisson B., & Robitaille N . ( 2008). Dissociation of the N2pc and sustained posterior contralateral negativity in a choice response task. Brain Research, 1215, 160-172.
[23] Jolic?ur P., Sessa P., Dell’Acqua R., & Robitaille N . ( 2006). On the control of visual spatial attention: Evidence from human electrophysiology. Psychological Research, 70( 6), 414-424.
pmid: 16184394
[24] Jones, K.T., &Berryhill M.E . ( 2012). Parietal contributions to visual working memory depend on task difficulty. Frontiers in Psychiatry, 3, 81.
pmid: 3437464
[25] Klaver P., Talsma D., Wijers A. A., Heinze H. J., & Mulder G . ( 1999). An event-related brain potential correlate of visual short-term memory. NeuroReport, 10( 10), 2001-2005.
pmid: 10424664
[26] Kubota, K., &Niki H. , ( 1971). Prefrontal cortical unit activity and delayed alternation performance in monkeys. Journal of Neurophysiology, 34( 3), 337-347.
pmid: 4997822
[27] Li S. Y., Cai Y., Liu J., Li D. W., Feng Z. F., Chen C. S., & Xue G . ( 2017). Dissociated roles of the parietal and frontal cortices in the scope and control of attention during visual working memory. NeuroImage, 149, 210-219.
pmid: 28131893
[28] Luck, S.J., &Hillyard S.A . ( 1994 a). Spatial filtering during visual search: Evidence from human electrophysiology. Journal of Experimental Psychology: Human Perception and Performance, 20( 5), 1000-1014.
pmid: 7964526
[29] Luck, S.J., &Hillyard S.A . ( 1994 b). Electrophysiological correlates of feature analysis during visual search. Psychophysiology, 31( 3), 291-308.
pmid: 8008793
[30] Luck, S.J., &Vogel E.K . ( 1997). The capacity of visual working memory for features and conjunctions. Nature, 390( 6657), 279-281.
[31] Mazza, V., &Caramazza A. , ( 2012). Perceptual grouping and visual enumeration. PLoS One, 7( 11), e50862.
pmid: 23226408
[32] Meiron, O. , &Lavidor M. , ( 2013). Unilateral prefrontal direct current stimulation effects are modulated by working memory load and gender. Brain Stimulation, 6( 3), 440-447.
pmid: 22743075
[33] Nitsche, M.A., &Paulus W. , ( 2001). Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology, 57( 10), 1899-1901.
pmid: 10990547
[34] Nitsche M. A., Fricke K., Henschke U., Schlitterlau A., Liebetanz D., Lang N., .. Paulus W . ( 2003). Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. The Journal of Physiology, 553( 1), 293-301.
pmid: 12949224
[35] Nitsche M. A., Liebetanz D., Lang N., Antal A., Tergau F., & Paulus W . ( 2003). Safety criteria for transcranial direct current stimulation (tDCS) in humans. Clinical Neurophysiology, 114( 11), 2220-2222.
pmid: 14580622
[36] Ohn S. H., Park C. I., Yoo W. K., Ko M. H., Choi K. P., Kim G. M., .. Kim Y. H . ( 2008). Time-dependent effect of transcranial direct current stimulation on the enhancement of working memory. NeuroReport, 19( 1), 43-47.
pmid: 18281890
[37] Priori, A. ( 2003). Brain polarization in humans: A reappraisal of an old tool for prolonged non-invasive modulation of brain excitability. Clinical Neurophysiology, 114( 4), 589-595.
pmid: 12686266
[38] Robitaille N., Marois R., Todd J., Grimault S., Cheyne D., &Jolic?ur P . ( 2010). Distinguishing between lateralized and nonlateralized brain activity associated with visual short-term memory: fMRI, MEG, and EEG evidence from the same observers. NeuroImage, 53( 4), 1334-1345.
pmid: 20643214
[39] Rypma B., Berger J. S., & D'Esposito M . ( 2002). The influence of working-memory demand and subject performance on prefrontal cortical activity. Journal of Cognitive Neuroscience, 14( 5), 721-731.
[40] Smith E. E., Jonides J., & Koeppe R. A . ( 1996). Dissociating verbal and spatial working memory using PET. Cerebral Cortex, 6( 1), 11-20.
pmid: 8670634
[41] Todd, J.J., &Marois R. , ( 2004). Capacity limit of visual short-term memory in human posterior parietal cortex. Nature, 428( 6984), 751-754.
[42] Toepper M., Gebhardt H., Beblo T., Thomas C., Driessen M., Bischoff M., .. & Sammer G . ( 2010). Functional correlates of distractor suppression during spatial working memory encoding. Neuroscience, 165( 4), 1244-1253.
pmid: 19925856
[43] Tseng P., Hsu T. Y., Chang C. F., Tzeng O. J. L., Hung D. L., Muggleton N. G ..&Juan , C. H. ., ( 2012). Unleashing potential: Transcranial direct current stimulation over the right posterior parietal cortex improves change detection in low-performing individuals. Journal of Neuroscience, 32( 31), 10554-10561.
pmid: 22855805
[44] Vanderhasselt M. A., De Raedt R., & Baeken C . ( 2009). Dorsolateral prefrontal cortex and Stroop performance: Tackling the lateralization. Psychonomic Bulletin & Review, 16( 3), 609-612.
pmid: 19451392
[45] Vogel, E.K., &Machizawa M.G . ( 2004). Neural activity predicts individual differences in visual working memory capacity. Nature, 428( 6984), 748-751.
[46] Vogel E. K., McCollough A. W., & Machizawa M. G . ( 2005). Neural measures reveal individual differences in controlling access to working memory. Nature, 438( 7067), 500-503.
pmid: 16306992
[47] Walter H., Bretschneider V., Grön G., Zurowski B., Wunderlich A. P., Tomczak R., & Spitzer M . ( 2003). Evidence for quantitative domain dominance for verbal and spatial working memory in frontal and parietal cortex. Cortex, 39( 4-5), 897-911.
pmid: 14584558
[48] Woodman, G.F . ( 2010). A brief introduction to the use of event-related potentials in studies of perception and attention. Attention, Perception, & Psychophysics, 72( 8), 2031-2046.
pmid: 3816929
[49] Woodman G. F., Arita J. T., & Luck S. J . ( 2009). A cuing study of the N2pc component: An index of attentional deployment to objects rather than spatial locations. Brain Research,1297, 101-111.
pmid: 2758329
[50] Woodman, G.F., &Luck S.J . ( 2003). Serial deployment of attention during visual search. Journal of Experimental Psychology: Human Perception and Performance, 29( 1), 121-138.
pmid: 12669752
[51] Wu Y. J., Tseng P., Chang C. F., Pai M. C., Hsu K. S., Lin C. C., & Juan C. H . ( 2014). Modulating the interference effect on spatial working memory by applying transcranial direct current stimulation over the right dorsolateral prefrontal cortex. Brain and Cognition, 91, 87-94.
pmid: 25265321
[1] 王慧慧, 罗玉丹, 石冰, 余凤琼, 汪凯. 经颅直流电刺激对健康大学生反应抑制的影响[J]. 心理学报, 2018, 50(6): 647-654.
[2] 王静, 薛成波, 刘强.  客体同维度特征的视觉工作记忆存储机制[J]. 心理学报, 2018, 50(2): 176-185.
[3] 甘甜, 石睿, 刘超, 罗跃嘉.  经颅直流电刺激右侧颞顶联合区 对助人意图加工的影响[J]. 心理学报, 2018, 50(1): 36-46.
[4] 李腾飞, 马 楠, 胡中华, 刘 强.  空间距离对视觉工作记忆巩固的影响[J]. 心理学报, 2017, 49(6): 711-722.
[5] 罗俊; 叶航;郑昊力;贾拥民;陈姝; 黄达强. 左右侧颞顶联合区对道德意图信息加工能力的共同作用——基于经颅直流电刺激技术[J]. 心理学报, 2017, 49(2): 228-240.
[6] 薛成波;叶超雄;张引;刘强. 视觉工作记忆中特征绑定关系的记忆机制[J]. 心理学报, 2015, 47(7): 851-858.
[7] 黎翠红;何旭;郭春彦. 多特征刺激在视觉工作记忆中的存储模式[J]. 心理学报, 2015, 47(6): 734-745.
[8] 张微;周兵平;臧玲;莫书亮. 网络成瘾倾向者在视觉工作记忆引导下的注意捕获[J]. 心理学报, 2015, 47(10): 1223-1234.
[9] 甘甜;李万清;唐红红;陆夏平;李小俚;刘超;罗跃嘉. 经颅直流电刺激右侧颞顶联合区对道德意图加工的影响[J]. 心理学报, 2013, 45(9): 1004-1014.
[10] 白学军,尹莎莎,杨海波,吕勇,胡伟,罗跃. 视觉工作记忆内容对自上而下注意控制的影响:一项ERP研究[J]. 心理学报, 2011, 43(10): 1103-1113.
[11] 张豹,金志成,陈彩琦. 视觉工作记忆对前注意阶段注意定向的调节[J]. 心理学报, 2008, 40(05): 552-561.
[12] 沈模卫,李杰,郎学明,高涛,高在峰,水仁德. 客体在视觉工作记忆中的存储机制[J]. 心理学报, 2007, 39(05): 761-767.
[13] 陈彩琦,付桂芳, ,金志成. 注意水平对视觉工作记忆客体表征的影响[J]. 心理学报, 2003, 35(05): 591-597.
[14] 刘晓平,王兆新, ,陈湘川, ,张达人. 视觉工作记忆中的子系统[J]. 心理学报, 2003, 35(05): 598-603.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《心理学报》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn