Please wait a minute...
心理学报
  论文 本期目录 | 过刊浏览 | 高级检索 |
科学发明问题解决的脑机制再探
李文福1;童丹丹2;邱江2;张庆林2
(1济宁医学院精神卫生学院, 山东济宁 272067)
(2西南大学心理学部, 认知与人格教育部重点实验室, 重庆北碚 400715)
The neural basis of scientific innovation problems solving
LI WenFu1; TONG DanDan2; QIU Jiang2; ZHANG QingLin2
(1 Department of Mental Health, Jining Medical University, Jining 272067, China)
(2
Department of Psychology, Southwest University, Chongqing 400715, China)
全文: PDF(2835 KB)   评审附件 (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 

选取高生态学效度的科学发明问题作为实验材料, 采用“学习−测试”的两阶段实验范式, 利用静息态功能磁共振成像技术, 基于局部一致性(ReHo)和低频振幅(ALFF)的分析方法, 研究科学发明问题解决的神经机制。在控制被试性别、年龄和常规性问题解决能力后, 结果发现左侧前扣带回(Anterior Cingulate Cortex, ACC)的ReHo值和个体科学发明问题解决的正确率显著正相关, ALFF的结果同样印证了这一发现。结果强调了ACC在科学发明问题解决过程中的重要作用。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李文福
童丹丹
邱江
张庆林
关键词 创造性科学发明问题解决静息态核磁共振前扣带回    
Abstract

Creativity involved every aspect of social life. Numerous brain imaging researchers had explored the activation in the brain using a myriad of creative tasks, such as divergent thinking tasks, verbal and figural creative tasks, mental imagery, the generation of creative stories and paintings. Scientific innovation was one of the most important forms of creative thinking. The cases of creation and innovation happened in the real world had been used to study the mechanism behind creativity. However, the functions of implicated brain regions remained poorly understood. The present study employed resting-state functional magnetic resonance imaging (rs-fMRI) to investigate the neural substrates for the process of the scientific innovation problem solving.

In the present study, 65 scientific innovation problems were selected from the real world and divided into novel scientific innovation (NSI) problems and old scientific innovation (OSI) problems (36 NSI problems and 29 OSI problems). Each problem consisted of two parts: heuristic prototype and the corresponding question. Numerous studies showed that the heuristic prototype inspired the solution of insightful problems. The modified “learning-test two-phase” paradigm was used. Specifically, we asked the subjects to learn all the heuristic prototypes one day before the experiment, and then resolve the corresponding problems randomly in the test phase of the experiment. 16 undergraduates (mean age = 21.19 ± 1.76) were enrolled in the experiment. The rs-fMRI data was acquired using Echo Planar Imaging (EPI) sequence from a 3-T Siemens Magnetom Trio scanner (Siemens Medical, Erlangen, Germany) with a 12-channel phased-array head coil housed at MRI center of Southwest University. This scanning acquired 242 volumes in 8 min and 8 sec. Brain imaging data was processed and analyzed using the REST (Resting-State fMRI Data Analysis Toolkit) toolbox to calculate ReHo (Regional Homogeneity) and ALFF (Amplitude of Low Frequency Fluctuation). We used both ReHo and ALFF to measure the local properties of rs-fMRI signals, and then investigated the relationship between ReHo/ALFF and individual differences in creativity, as measured by the NSI problem solving. The multiple comparisons correction was calculated using the AlphaSim program in REST software.

After controlling for the age, gender and the accuracy rate of OSI problem solving, the results of multiple regression analysis showed that the ReHo of the anterior cingulate cortex (ACC) was positively correlated with creativity as measured by the accuracy rate of NSI problem solving. The results of the analysis of ALFF were consistent with that of ReHo.

The result of both ReHo and ALFF implied that the ACC was played an important role in the process of scientific innovation problem solving. We discussed the role of the ACC from two aspects: one involved in breaking the thinking set and forming the novel association, another involved in the demand of information processing.

Key wordscreativity    scientific innovation problem solving    resting-state fMRI    anterior cingulate cortex
收稿日期: 2014-11-07      出版日期: 2016-04-25
基金资助:

国家自然科学基金项目(31470981), 济宁医学院博士启动基金项目(JY2015BS03)资助。

通讯作者: 张庆林, E-mail: zhangql@swu.edu.cn   
引用本文:   
李文福;童丹丹;邱江;张庆林. 科学发明问题解决的脑机制再探[J]. 心理学报, 10.3724/SP.J.1041.2016.00331.
LI WenFu; TONG DanDan; QIU Jiang; ZHANG QingLin. The neural basis of scientific innovation problems solving. Acta Psychologica Sinica, 2016, 48(4): 331-342.
链接本文:  
http://journal.psych.ac.cn/xlxb/CN/10.3724/SP.J.1041.2016.00331      或      http://journal.psych.ac.cn/xlxb/CN/Y2016/V48/I4/331
[1] 赵庆柏;柯娓;童彪;周治金; 周宗奎. 网络语言的创造性加工过程:新颖N400与LPC[J]. 心理学报, 2017, 49(2): 143-154.
[2] 谷传华;王亚丽;吴财付;谢祥龙;崔承珠;王亚娴;王婉贞;胡碧颖;周宗奎. 社会创造性的脑机制:状态与特质的EEG α波活动特点[J]. 心理学报, 2015, 47(6): 765-773.
[3] 范亮艳;范晓芳;罗位超;吴功航;严序;尹大志;吕岳;朱君明;徐冬溶. 艺术设计中创造性思维的fMRI研究:一项基于智能CAD的探索[J]. 心理学报, 2014, 46(4): 427-436 .
[4] 袁水霞,徐晖,李霞,顾凯,左洋凡,卢钦钦,代淑芬,于萍. 氟哌啶醇干扰决策过程中前扣带回神经元的放电活动[J]. , 2012, 44(3): 338-353.
[5] 王永丽;张智宇;何颖. 工作-家庭支持对员工创造力的影响探讨[J]. 心理学报, 2012, 44(12): 1651-1662.
[6] 田燕,罗俊龙,李文福,邱江,张庆林. 原型表征对创造性问题解决过程中的启发效应的影响[J]. , 2011, 43(06): 619-628.
[7] 杜旌,王丹妮. 匹配对创造性的影响: 集体主义的调节作用[J]. , 2009, 41(10): 980-988.
[8] 朱湘茹,刘昌. 空间-数字反应编码联合效应下冲突适应过程的ERP研究[J]. , 2008, 40(03): 283-290.
[9] 徐 ,岚. 顾客为什么参与创造? 
——消费者参与创造的动机研究
[J]. , 2007, 39(02): 343-354.
[10] 卢家楣,贺雯,刘伟,卢盛华. 焦虑对学生创造性的影响[J]. , 2005, 37(06): 791-796.
[11] 李金珍,王文忠,施建农. 儿童实用创造力发展及其与家庭环境的关系[J]. , 2004, 36(06): 732-737.
[12] 卢家楣,刘伟,贺雯,卢盛华. 情绪状态对学生创造性的影响[J]. , 2002, 34(04): 51-56.
[13] 施建农,徐凡. 超常与常态儿童的兴趣、动机与创造性思维的比较研究[J]. , 1997, 29(03): 271-277.
[14] 许尚侠. 动作的创造性操作与原型效应[J]. , 1995, 27(04): 379-385.
[15] 许政援,郭小朝. 11—14个月儿童的语言获得——成人的言语教授和儿童的模仿学习[J]. , 1992, 24(02): 38-47.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《心理学报》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn