Please wait a minute...
Advances in Psychological Science    2020, Vol. 28 Issue (6) : 883-892     DOI: 10.3724/SP.J.1042.2020.00883
Conceptual Framework |
The cognitive mechanism of music syntactic processing and the influence of music structure on its processing
ZHANG Jingjing1,LIANG Xiaoyue2,CHEN Yidi2,CHEN Qingrong1()
1 School of Psychology, Nanjing Normal University, Nanjing 210097, China
2 Conservatory of Music, Nanjing Normal University, Nanjing 210097, China
Download: PDF(642 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Music and language are the two most important sign systems for human beings. Similar to language, music is also constructed on certain syntactic rules. Although evidence has shown that listeners are sensitive to musical syntax, the underlying cognitive mechanism and its influencing factors are still unknown. Therefore, we intend to further explore the role of prediction and integration in musical syntactic processing, as well as the impact of musical hierarchical and temporal structures on musical syntactic processing. We expect the proposed studies to further reveal the nature of musical syntactic processing, and to provide empirical evidence for the comparison between music and language and the exploration of human general communication mechanism.

Keywords musical syntax      hierarchical structures      temporal structures      cognitive mechanism      neural mechanisms     
PACS:  B842  
Corresponding Authors: Qingrong CHEN     E-mail: jscqr80@sina.com
Issue Date: 22 April 2020
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jingjing ZHANG
Xiaoyue LIANG
Yidi CHEN
Qingrong CHEN
Cite this article:   
Jingjing ZHANG,Xiaoyue LIANG,Yidi CHEN, et al. The cognitive mechanism of music syntactic processing and the influence of music structure on its processing[J]. Advances in Psychological Science, 2020, 28(6): 883-892.
URL:  
http://journal.psych.ac.cn/xlkxjz/EN/10.3724/SP.J.1042.2020.00883     OR     http://journal.psych.ac.cn/xlkxjz/EN/Y2020/V28/I6/883
[1] 江俊, 王梓梦, 万璇, 蒋存梅 . (2014). 音乐时间加工的影响因素. 心理科学进展, 22(4), 650-658.
[2] 马谐, 杨玉芳, 张秋月 . (2016). 音乐句法的加工. 科学通报, 61(10), 1099-1111.
[3] 叶铮, 周晓林 . (2006). 音乐之脑. 心理科学进展, 14(5), 641-647.
[4] 张晶晶, 杨玉芳 . (2017). 音乐句法加工的影响因素. 心理科学进展, 25(11), 1823-1830.
[5] 周临舒, 蒋存梅, 杨玉芳 . (2012). 音乐和语言句法认知的比较. 科学通报, 57(28), 2674-2685.
[6] Arai, M., & Keller, F . (2013). The use of verb-specific information for prediction in sentence processing. Language and Cognitive Processes, 28(4), 525-560.
[7] Bengtsson, S. L., & Ullén, F . (2006). Dissociation between melodic and rhythmic processing during piano performance from musical scores. NeuroImage, 30(1), 272-284.
[8] Bharucha, J. J., & Stoeckig, K . (1987). Priming of chords: Spreading activation or overlapping frequency spectra? Perception & Psychophysics, 41(6), 519-524.
[9] Bigand, E., & Pineau, M . (1997). Global context effects on musical expectancy. Perception & Psychophysics, 59(7), 1098-1107.
[10] Bigand, E., Tillmann, B., Poulin, B., D'Adamo, D. A., & Madurell, F . (2001). The effect of harmonic context on phoneme monitoring in vocal music. Cognition, 81(1), B11-B20.
[11] Brown, R. M., Chen, J. L., Hollinger, A., Penhune, V. B., Palmer, C., & Zatorre, R. J . (2013). Repetition suppression in auditory-motor regions to pitch and temporal structure in music. Journal of Cognitive Neuroscience, 25(2), 313-328.
[12] Carey, D., Rosen, S., Krishnan, S., Pearce, M. T., Shepherd, A., Aydelott, J., & Dick, F . (2015). Generality and specificity in the effects of musical expertise on perception and cognition. Cognition, 137, 81-105.
[13] Chen, Q., Zhang, J., Xu, X., Scheepers, C., Yang, Y., & Tanenhaus, M. K . (2016). Prosodic expectations in silent reading: ERP evidence from rhyme scheme and semantic congruence in classic Chinese poems. Cognition, 154, 11-21.
[14] Christiansen, M. H., & Chater, N . (2016). The now-or-never bottleneck: A fundamental constraint on language. Behavioral and Brain Sciences, 39, 1-72.
[15] DeLong, K. A., Urbach, T. P., & Kutas, M . (2005). Probabilistic word pre-activation during language comprehension inferred from electrical brain activity. Nature Neuroscience, 8(8), 1117-1121.
[16] Du, Y., & Zatorre, R. J . (2017). Musical training sharpens and bonds ears and tongue to hear speech better. Proceedings of the National Academy of Sciences, 114(51), 13579-13584.
[17] Eitan, Z., & Granot, R. Y . (2008). Growing oranges on Mozart's apple tree: "Inner form" and aesthetic judgment. Music Perception, 25(5), 397-418.
[18] Farbood, M. M., Heeger, D. J., Marcus, G., Hasson, U., & Lerner, Y . (2015). The neural processing of hierarchical structure in music and speech at different timescales. Frontiers in Neuroscience, 9, 157.
[19] Fitch, W. T . (2013). Rhythmic cognition in humans and animals: Distinguishing meter and pulse perception. Frontiers in systems neuroscience, 7, 68.
[20] Friston, K., & Buzsáki, G . (2016). The functional anatomy of time: What and when in the brain. Trends in Cognitive Sciences, 20(7), 500-511.
[21] Geiser, E., Ziegler, E., Jancke, L., & Meyer, M . (2009). Early electrophysiological correlates of meter and rhythm processing in music perception. Cortex, 45(1), 93-102.
[22] Granot, R. Y., & Jacoby, N . (2011). Musically puzzling I: Sensitivity to overall structure in the sonata form? Musicae Scientiae, 15(3), 365-386.
[23] Hasson, U., Chen, J., & Honey, C. J . (2015). Hierarchical process memory: Memory as an integral component of information processing. Trends in Cognitive Sciences, 19(6), 304-313.
[24] Huron, D. B . (2006). Sweet anticipation: Music and the psychology of expectation. Cambridge, MA: MIT press.
[25] Ito, A., Corley, M., Pickering, M. J., Martin, A. E., & Nieuwland, M. S . (2016). Predicting form and meaning: Evidence from brain potentials. Journal of Memory and Language, 86, 157-171.
[26] Ito, A., Pickering, M. J., & Corley, M . (2018). Investigating the time-course of phonological prediction in native and non-native speakers of English: A visual world eye-t racking study. Journal of Memory and Language, 98, 1-11.
[27] Jentschke, S., Friederici, A. D., & Koelsch, S . (2014). Neural correlates of music-syntactic processing in two-year old children. Developmental Cognitive Neuroscience, 9, 200-208.
[28] Jones, M. R., & Boltz, M . (1989). Dynamic attending and responses to time. Psychological Review, 96(3), 459-491.
[29] Jones, M. R., Moynihan, H., MacKenzie, N., & Puente, J . (2002). Temporal aspects of stimulus-driven attending in dynamic arrays. Psychological Science, 13(4), 313-319.
[30] Kamide, Y . (2012). Learning individual talkers’ structural preferences. Cognition, 124(1), 66-71.
[31] Kintsch, W . (1988). The role of knowledge in discourse comprehension: A construction-integration model. Psychological Review, 95(2), 163-182.
[32] Koelsch, S . (2014). Brain correlates of music-evoked emotions. Nature Reviews Neuroscience, 15(3), 170-180.
[33] Koelsch, S., Gunter, T., Friederici, A. D., & Schröger, E . (2000). Brain indices of music processing: “nonmusicians” are musical. Journal of Cognitive Neuroscience, 12(3), 520-541.
[34] Koelsch, S., Jentschke, S., Sammler, D., & Mietchen, D . (2007). Untangling syntactic and sensory processing: An ERP study of music perception. Psychophysiology, 44(3), 476-490.
[35] Koelsch, S., Rohrmeier, M., Torrecuso, R., & Jentschke, S . (2013). Processing of hierarchical syntactic structure in music. Proceedings of the National Academy of Sciences, 110(38), 15443-15448.
[36] Koelsch, S., Schmidt, B.-H., & Kansok, J . (2002). Effects of musical expertise on the early right anterior negativity: An event-related brain potential study. Psychophysiology, 39(5), 657-663.
[37] Koelsch, S., Vuust, P., & Friston, K . (2019). Predictive processes and the peculiar case of music. Trends in Cognitive Sciences, 23(1), 63-77.
[38] Kuperberg, G. R., & Jaeger, T. F . (2016). What do we mean by prediction in language comprehension? Language, Cognition and Neuroscience, 31(1), 32-59.
[39] Lagrois, M.-é., Peretz, I., & Zendel, B. R . (2018). Neurophysiological and behavioral differences between older and younger adults when processing violations of tonal structure in music. Frontiers in Neuroscience, 12, 54.
[40] Lau, E., Stroud, C., Plesch, S., & Phillips, C . (2006). The role of structural prediction in rapid syntactic analysis. Brain and language, 98(1), 74-88.
[41] Lebrun-Guillaud, G., Tillmann, B., & Justus, T . (2008). Perception of tonal and temporal structures in chord sequences by patients with cerebellar damage. Music Perception, 25(4), 271-283.
[42] Lerdahl, F., & Jackendoff, R. S . (1983). A generative theory of tonal music. Cambridge, MA: MIT press.
[43] Lerner, Y., Honey, C. J., Silbert, L. J., & Hasson, U . (2011). Topographic mapping of a hierarchy of temporal receptive windows using a narrated story. Journal of Neuroscience, 31(8), 2906-2915.
[44] Li, X., Zhang, Y., Xia, J., & Swaab, T. Y . (2017). Internal mechanisms underlying anticipatory language processing: Evidence from event-related-potentials and neural oscillations. Neuropsychologia, 102, 70-81.
[45] Ma, X., Ding, N., Tao, Y., & Yang, Y. F . (2018a). Differences in neurocognitive mechanisms underlying the processing of center-embedded and non-embedded musical structures. Frontiers in Human Neuroscience, 12, 425.
[46] Ma, X., Ding, N., Tao, Y., & Yang, Y. F . (2018b). Syntactic complexity and musical proficiency modulate neural processing of non-native music. Neuropsychologia, 121, 164-174.
[47] Maess, B., Koelsch, S., Gunter, T. C., & Friederici, A. D . (2001). Musical syntax is processed in Broca's area: An MEG study. Nature Neuroscience, 4(5), 540-545.
[48] Maess, B., Mamashli, F., Obleser, J., Helle, L., & Friederici, A. D . (2016). Prediction signatures in the brain: Semantic pre-activation during language comprehension. Frontiers in Human Neuroscience, 10, 591.
[49] Margulis, E. H . (2005). A model of melodic expectation. Music Perception, 22(4), 663-714.
[50] Meyer, L. B. (2008). Emotion and meaning in music. Chicago, IL: University of chicago Press.
[51] Müller, M., Höfel, L., Brattico, E., & Jacobsen, T . (2010). Aesthetic judgments of music in experts and laypersons— An ERP study. International Journal of Psychophysiology, 76(1), 40-51.
[52] Nan, Y., Liu, L., Geiser, E., Shu, H., Gong, C. C., Dong, Q., ... & Desimone, R . (2018). Piano training enhances the neural processing of pitch and improves speech perception in Mandarin-speaking children. Proceedings of the National Academy of Sciences, 115(28), E6630-E6639.
[53] Otten, M., Nieuwland, M. S., & van Berkum, J. J . (2007). Great expectations: Specific lexical anticipation influences the processing of spoken language. BMC neuroscience, 8(1), 89.
[54] Otten, M., & van Berkum, J. J . (2008). Discourse-based word anticipation during language processing: Prediction or priming? Discourse Processes, 45(6), 464-496.
[55] Palmer, C., & Krumhansl, C. L . (1987). Independent temporal and pitch structures in determination of musical phrases. Journal of Experimental Psychology: Human Perception and Performance, 13(1), 116-126.
[56] Patel, A. D . (2010). Music, language, and the brain. Oxford: Oxford university press.
[57] Patel, A. D., Gibson, E., Ratner, J., Besson, M., & Holcomb, P. J . (1998). Processing syntactic relations in language and music: An event-related potential study. Journal of Cognitive Neuroscience, 10(6), 717-733.
[58] Peretz, I . (1990). Processing of local and global musical information by unilateral brain-damaged patients. Brain, 113(4), 1185-1205.
[59] Peretz, I . (1996). Can we lose memory for music? A case of music agnosia in a nonmusician. Journal of Cognitive Neuroscience, 8(6), 481-496.
[60] Peretz, I., & Coltheart, M . (2003). Modularity of music processing. Nature Neuroscience, 6(7), 688-691.
[61] Peretz, I., & Kolinsky, R . (1993). Boundaries of separability between melody and rhythm in music discrimination: A neuropsychological perspective. The Quarterly Journal of Experimental Psychology, 46(2), 301-325.
[62] Poulin-Charronnat, B., Bigand, E., & Koelsch, S . (2006). Processing of musical syntax tonic versus subdominant: An event-related potential study. Journal of Cognitive Neuroscience, 18(9), 1545-1554.
[63] Ruiz, M. H., Koelsch, S., & Bhattacharya, J . (2009). Decrease in early right alpha band phase synchronization and late gamma band oscillations in processing syntax in music. Human Brain Mapping, 30(4), 1207-1225.
[64] Schmuckler, M. A., & Boltz, M. G . (1994). Harmonic and rhythmic influences on musical expectancy. Perception & Psychophysics, 56(3), 313-325.
[65] Sun, L., Liu, F., Zhou, L., & Jiang, C . (2018). Musical training modulates the early but not the late stage of rhythmic syntactic processing. Psychophysiology, 55(2), e12983.
[66] Tanenhaus, M. K., Spivey-Knowlton, M. J., Eberhard, K. M., & Sedivy, J. C . (1995). Integration of visual and linguistic information in spoken language comprehension. Science, 268(5217), 1632-1634.
[67] Tillmann, B., & Bigand, E . (1998). Influence of global structure on musical target detection and recognition. International Journal of Psychology, 33(2), 107-122.
[68] Tillmann, B., Bigand, E., & Pineau, M . (1998). Effects of global and local contexts on harmonic expectancy. Music Perception, 16(1), 99-117.
[69] Tillmann, B., Janata, P., & Bharucha, J. J . (2003). Activation of the inferior frontal cortex in musical priming. Cognitive Brain Research, 16(2), 145-161.
[70] Tillmann, B., & Lebrun-Guillaud, G . (2006). Influence of tonal and temporal expectations on chord processing and on completion judgments of chord sequences. Psychological Research, 70(5), 345-358.
[71] Treisman, A. M., & Gelade, G . (1980). A feature-integration theory of attention. Cognitive Psychology, 12(1), 97-136.
[72] van Berkum,, J. J. A., Brown, C. M., Zwitserlood, P., Kooijman, V., & Hagoort, P . (2005). Anticipating upcoming words in discourse: Evidence from ERPs and reading times. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31(3), 443-467.
[73] van Petten, C., & Luka, B. J . (2012). Prediction during language comprehension: Benefits, costs, and ERP components. International Journal of Psychophysiology, 83(2), 176-190.
[74] Zhang, J., Che, X., & Yang, Y . (2019). Event-related brain potentials suggest a late interaction of pitch and time in music perception. Neuropsychologia, 132, 107118.
[75] Zhang, J., Jiang, C., Zhou, L., & Yang, Y . (2016). Perception of hierarchical boundaries in music and its modulation by expertise. Neuropsychologia, 91, 490-498.
[76] Zhang, J., Zhou, X., Chang, R., & Yang, Y . (2018). Effects of global and local contexts on chord processing: An ERP study. Neuropsychologia, 109, 149-154.
[77] Zhou, L., Liu, F., Jiang, J., Jiang, H., & Jiang, C . (2019). Abnormal neural responses to harmonic syntactic structures in congenital amusia. Psychophysiology, e13394.
[1] YANG Xiaomeng,WANG Fuxing,WANG Yanqing,ZHAO Tingting,GAO Chunying,HU Xiangen. Are pupils the window of our mind? Pupil-related application in psychology and pupillometry[J]. Advances in Psychological Science, 2020, 28(7): 1029-1041.
[2] WANG Xin,HANG Mingli,LIANG Dandan. The cognitive neural mechanisms of verb argument structure complexity processing[J]. Advances in Psychological Science, 2020, 28(1): 62-74.
[3] WEI Tongqi,CAO Hui,BI Hong-Yan,YANG Yang. Writing deficits in developmental dyslexia and its neural mechanisms[J]. Advances in Psychological Science, 2020, 28(1): 75-84.
[4] CHEN Xiaowen,CAI Wenshu,XIE Tong,FU Shimin. The characteristics and neural mechanisms of visual orienting and visual search in autism spectrum disorders[J]. Advances in Psychological Science, 2020, 28(1): 98-109.
[5] CHEN Lin,TIAN Xiaoming,DUAN Jinyun. The cognitive mechanism of advice taking[J]. Advances in Psychological Science, 2019, 27(1): 149-159.
[6] Huan HUANG,Bo LIU,Chenchen ZHOU,Ming JI. Mechanisms of commission errors in aftereffects of completed intentions[J]. Advances in Psychological Science, 2018, 26(9): 1600-1607.
[7] Yifan ZHANG,Xingliang QI,Houde CAI. Neural mechanisms underlying dynamic changes of active maternal behavior in rodents[J]. Advances in Psychological Science, 2018, 26(8): 1417-1428.
[8] Xiaoqian REN,Xian FANG,Xue SUI,Yan WU. Characteristics and neural mechanisms of handwritten character recognition[J]. Advances in Psychological Science, 2018, 26(7): 1174-1185.
[9] DENG Jue, YE Yiduo, CHEN Yanfang. Implicit acquisition of musical syntax and its influence on schema expectation[J]. Advances in Psychological Science, 2018, 26(6): 1012-1018.
[10] LIN Yuting, ZHANG Delong, LIU Ming.  The system of visual imagery generation and its effect factors[J]. Advances in Psychological Science, 2018, 26(4): 636-644.
[11] Weiwei DU,Ting SONG,Fuhong LI. Bivalency effect and its cognitive mechanism[J]. Advances in Psychological Science, 2018, 26(11): 1969-1975.
[12] WU Qian, WANG Yunjia.  Categorical perception of lexical tone and the neural mechanisms[J]. Advances in Psychological Science, 2018, 26(1): 62-71.
[13] FAN Wei, YANG Bo, LIU Juan, FU Xiaolan.  Self-deception: For adjusting individual psychological states[J]. Advances in Psychological Science, 2017, 25(8): 1349-1359.
[14] JIN Yuchang, DING Meiyue.  Predictive factors and the neurophysiological mechanism of postpartum depression[J]. Advances in Psychological Science, 2017, 25(7): 1145-1161.
[15] GUO Xiuyan, ZHENG Li, CHENG Xuemei, LIU Yingjie, LI Lin.  The cognitive and neural mechanisms of perception of unfairness and related decision-making process[J]. Advances in Psychological Science, 2017, 25(6): 903-911.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Advances in Psychological Science
Support by Beijing Magtech