Please wait a minute...
Advances in Psychological Science    2019, Vol. 27 Issue (6) : 1036-1043     DOI: 10.3724/SP.J.1042.2019.01036
Regular Articles |
The effect of music training on pre-attentive processing of the brain
CHEN Yahong,WANG Jinyan()
Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
Download: PDF(936 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     Supporting Info
Guide   
Abstract  

Pre-attentive processing is a cognitive process that takes place before attention and is independent of consciousness. It reflects the unconscious, automatic aspects of brain processing. Mismatch negativity (MMN) is the most commonly used indicator of pre-attentive processing. MMN amplitude reduction has emerged as one of the important clinical indices for psychiatric diseases such as schizophrenia and depression. The main research paradigms of MMN include oddball paradigm and multi-feature paradigm. Music training has dramatic effects on the structure and function of human brains, such as increasing grey matter volume and improving attention and memory functions. Music training also has a significant impact on MMN, which is reflected in the paradigms constructed by different acoustic features. Future research should compare the impacts of oriental music and western music on MMN, explore a more ecologically valid research paradigm, and reveal the impact and mechanism of music training on MMN in the elderly.

Keywords music training      pre-attentive processing      MMN     
ZTFLH:  B842: B845  
Corresponding Authors: Jinyan WANG     E-mail: wangjy@psych.ac.cn
Issue Date: 22 April 2019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yahong CHEN
Jinyan WANG
Cite this article:   
Yahong CHEN,Jinyan WANG. The effect of music training on pre-attentive processing of the brain[J]. Advances in Psychological Science, 2019, 27(6): 1036-1043.
URL:  
http://journal.psych.ac.cn/xlkxjz/EN/10.3724/SP.J.1042.2019.01036     OR     http://journal.psych.ac.cn/xlkxjz/EN/Y2019/V27/I6/1036
  
  
1 Bhattacharya J., Petsche H., Feldmann U., & Rescher B . ( 2001). EEG gamma-band phase synchronization between posterior and frontal cortex during mental rotation in humans. Neuroscience Letters, 311( 1), 29-32.
url: https://linkinghub.elsevier.com/retrieve/pii/S0304394001021334
2 Brattico E., Pallesen K. J., Varyagina O., Bailey C., Anourova I., Järvenpää M., .. Tervaniemi M . ( 2009). Neural discrimination of nonprototypical chords in music experts and laymen: A MEG Study. Journal of Cognitive Neuroscience, 21( 11), 2230-2244.
url: http://www.mitpressjournals.org/doi/10.1162/jocn.2008.21144
3 Chen C. Y., Sung J. Y., & Cheng Y. W . ( 2016). Neural dynamics of emotional salience processing in response to voices during the stages of sleep. Frontiers in Behavioral Neuroscience, 10, 117.
4 Cooray G., Garrido M. I., Hyllienmark L., & Brismar T . ( 2014). A mechanistic model of mismatch negativity in the ageing brain. Clinical Neurophysiology, 125( 9), 1774-1782.
url: https://linkinghub.elsevier.com/retrieve/pii/S1388245714000510
5 Di Mauro M., Toffalini E., Grassi M., & Petrini K . ( 2018). Effect of long-term music training on emotion perception from drumming improvisation. Frontiers in Psychology, 9, 16.
url: http://journal.frontiersin.org/article/10.3389/fpsyg.2018.00016/full
6 Fujioka T., Trainor L. J., Ross B., Kakigi R., & Pantev C . ( 2004). Musical training enhances automatic encoding of melodic contour and interval structure. Journal of Cognitive Neuroscience, 16( 6), 1010-1021.
url: http://www.mitpressjournals.org/doi/10.1162/0898929041502706
7 Gaser, C., & Schlaug, G . ( 2003). Brain structures differ between musicians and non-musicians. Journal of Neuroscience, 23( 27), 9240-9245.
url: http://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.23-27-09240.2003
8 Geiser E., Sandmann P., Jäncke L., & Meyer M . ( 2010). Refinement of metre perception-training increases hierarchical metre processing. European Journal of Neuroscience, 32( 11), 1979-1985.
url: http://doi.wiley.com/10.1111/ejn.2010.32.issue-11
9 Grady C. L., Yu H., & Alain C . ( 2008). Age-related differences in brain activity underlying working memory for spatial and nonspatial auditory information. Cerebral Cortex, 18( 1), 189-199.
url: https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhm045
10 Hyde K. L., Lerch J., Norton A., Forgeard M., Winner E., Evans A. C., & Schlaug G . ( 2009). Musical training shapes structural brain development. Journal of Neuroscience, 29( 10), 3019-3025.
url: http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.5118-08.2009
11 Juan E., Nguissi N. A. N., Tzovara A., Viceic D., Rusca M., Oddo M., .. De Lucia M . ( 2016). Evidence of trace conditioning in comatose patients revealed by the reactivation of EEG responses to alerting sounds. Neuroimage, 141, 530-541.
url: https://linkinghub.elsevier.com/retrieve/pii/S1053811916303469
12 Koelsch S., Schröger E., & Tervaniemi M . ( 1999). Superior pre-attentive auditory processing in musicians. Neuroreport, 10( 6), 1309-1313.
url: https://insights.ovid.com/crossref?an=00001756-199904260-00029
13 Kraus N., Slater J., Thompson E. C., Hornickel J., Strait D. L., Nicol T., & White-Schwoch T . ( 2014). Music enrichment programs improve the neural encoding of speech in at-risk children. Journal of Neuroscience, 34( 36), 11913-11918.
url: http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.1881-14.2014
14 Lappe C., Herholz S. C., Trainor L. J., & Pantev C . ( 2008). Cortical plasticity induced by short-term unimodal and multimodal musical training. Journal of Neuroscience, 28( 39), 9632-9639.
url: http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.2254-08.2008
15 Logan, G. D . ( 1992). Attention and preattention in theories of automaticity. The American Journal of Psychology, 105( 2), 317-339.
url: https://www.jstor.org/stable/1423031?origin=crossref
16 Luo C., Guo Z. W., Lai Y. X., Liao W., Liu Q., Kendrick K. M., .. Li H . ( 2012). Musical training induces functional plasticity in perceptual and motor networks: Insights from resting-state fMRI. PloS One, 7( 5), e36568.
url: https://dx.plos.org/10.1371/journal.pone.0036568
17 May P., Tiitinen H., Ilmoniemi R. J., Nyman G., Taylor J. G., & Näätänen R . ( 1999). Frequency change detection in human auditory cortex. Journal of Computational Neuroscience, 6( 2), 99-120.
url: http://link.springer.com/10.1023/A:1008896417606
18 Meyer M., Elmer S., Ringli M., Oechslin M. S., Baumann S., & Jancke L . ( 2011). Long-term exposure to music enhances the sensitivity of the auditory system in children. European Journal of Neuroscience, 34( 5), 755-765.
url: http://doi.wiley.com/10.1111/j.1460-9568.2011.07795.x
19 Näätänen R., Gaillard A. W. K., & Mäntysalo S . ( 1978). Early selective-attention effect on evoked potential reinterpreted. Acta Psychologica, 42( 4), 313-329.
url: https://linkinghub.elsevier.com/retrieve/pii/0001691878900069
20 Näätänen R., Kujala T., Escera C., Baldeweg T., Kreegipuu K., Carlson S., & Ponton C . ( 2012). The mismatch negativity (MMN) - A unique window to disturbed central auditory processing in ageing and different clinical conditions. Clinical Neurophysiology, 123( 3), 424-458.
url: https://linkinghub.elsevier.com/retrieve/pii/S1388245711006882
21 Näätänen R., Pakarinen S., Rinne T., & Takegata R . ( 2004). The mismatch negativity (MMN): Towards the optimal paradigm. Clinical Neurophysiology, 115( 1), 140-144.
url: https://linkinghub.elsevier.com/retrieve/pii/S1388245703003687
22 Näätänen R., Schröger E., Karakas S., Tervaniemi M., & Paavilainen P . ( 1993). Development of a memory trace for a complex sound in the human brain. Neuroreport, 4( 5), 503-506.
url: https://insights.ovid.com/crossref?an=00001756-199305000-00010
23 Näätänen R., Tervaniemi M., Sussman E., Paavilainen P., & Winkler I . ( 2001). 'Primitive intelligence' in the auditory cortex. Trends in Neurosciences, 24( 5), 283-288.
url: https://linkinghub.elsevier.com/retrieve/pii/S0166223600017902
24 Nan Y., Liu L., Geiser E., Shu H., Gong C. C., Dong Q., .. Desimone R . ( 2018). Piano training enhances the neural processing of pitch and improves speech perception in Mandarin-speaking children. Proceedings of the National Academy of Sciences of the United States of America, 115( 28), E6630-E6639.
url: http://www.pnas.org/lookup/doi/10.1073/pnas.1808412115
25 Nikjeh D. A., Lister J. J., & Frisch S. A . ( 2009). Preattentive cortical-evoked responses to pure tones, harmonic tones, and speech: Influence of music training. Ear and Hearing, 30( 4), 432-446.
url: https://insights.ovid.com/crossref?an=00003446-200908000-00006
26 Norton A., Winner E., Cronin K., Overy K., Lee D. J., & Schlaug G . ( 2005). Are there pre-existing neural, cognitive, or motoric markers for musical ability? Brain and Cognition, 59( 2), 124-134.
url: https://linkinghub.elsevier.com/retrieve/pii/S0278262605000898
27 Pantev C., Ross B., Fujioka T., Trainor L. J., Schulte M., & Schulz M . ( 2003). Music and learning-induced cortical plasticity. Annals of the New York Academy of Sciences, 999( 1), 438-450.
url: http://doi.wiley.com/10.1196/annals.1284.054
28 Putkinen V., Tervaniemi M., Saarikivi K., Ojala P., & Huotilainen M . ( 2014). Enhanced development of auditory change detection in musically trained school- aged children: A longitudinal event-related potential study. Developmental Science, 17( 2), 282-297.
url: http://doi.wiley.com/10.1111/desc.2014.17.issue-2
29 Ruzzoli M., Pirulli C., Brignani D., Maioli C., & Miniussi C . ( 2012). Sensory memory during physiological aging indexed by mismatch negativity (MMN). Neurobiology of Aging, 33( 3), 625.e21- 625. e30.
30 Sams M., Paavilainen P., Alho K., & Näätänen R . ( 1985). Auditory frequency discrimination and event-related potentials Discrimination de fréquences auditives et potentiels liés à l'événement. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, 62( 6), 437-448.
url: https://linkinghub.elsevier.com/retrieve/pii/0168559785900541
31 Schneider P., Scherg M., Dosch H. G., Specht H. J., Gutschalk A., & Rupp A . ( 2002). Morphology of Heschl's gyrus reflects enhanced activation in the auditory cortex of musicians. Nature Neuroscience, 5( 7), 688-694.
url: http://dx.doi.org/10.1038/nn871
32 Tervaniemi M., Castaneda A., Knoll M., & Uther M . ( 2006). Sound processing in amateur musicians and nonmusicians: Event-related potential and behavioral indices. Neuroreport, 17( 11), 1225-1228.
url: https://insights.ovid.com/crossref?an=00001756-200607310-00029
33 Tervaniemi M., Just V., Koelsch S., Widmann A., & Schröger E . ( 2005). Pitch discrimination accuracy in musicians vs nonmusicians: An event-related potential and behavioral study. Experimental Brain Research, 161( 1), 1-10.
url: http://link.springer.com/10.1007/s00221-004-2044-5
34 Tervaniemi M., Rytkönen M., Schröger E., Ilmoniemi R. J., & Näätänen R . ( 2001). Superior formation of cortical memory traces for melodic patterns in musicians. Learning & Memory, 8( 5), 295-300.
url: http://dx.doi.org/ing
35 Tervaniemi M., Sannemann C., Nöyränen M., Salonen J., & Pihko E . ( 2011). Importance of the left auditory areas in chord discrimination in music experts as demonstrated by MEG. European Journal of Neuroscience, 34( 3), 517-523.
url: http://doi.wiley.com/10.1111/ejn.2011.34.issue-3
36 Virtala P., Huotilainen M., Partanen E., & Tervaniemi M . ( 2014). Musicianship facilitates the processing of Western music chords-An ERP and behavioral study. Neuropsychologia, 61, 247-258.
url: https://linkinghub.elsevier.com/retrieve/pii/S0028393214002097
37 Virtala P., Huotilainen M., Putkinen V., Makkonen T., & Tervaniemi M . ( 2012). Musical training facilitates the neural discrimination of major versus minor chords in 13- year-old children. Psychophysiology, 49( 8), 1125-1132.
38 Vuust P., Brattico E., Glerean E., Seppänen M., Pakarinen S., Tervaniemi M., & Näätänen R . ( 2011). New fast mismatch negativity paradigm for determining the neural prerequisites for musical ability. Cortex, 47( 9), 1091-1098.
url: https://linkinghub.elsevier.com/retrieve/pii/S0010945211001407
39 Vuust P., Brattico E., Seppänen M., Näätänen R., & Tervaniemi M . ( 2012 a). The sound of music: Differentiating musicians using a fast, musical multi-feature mismatch negativity paradigm. Neuropsychologia, 50( 7), 1432-1443.
url: https://linkinghub.elsevier.com/retrieve/pii/S002839321200098X
40 Vuust P., Brattico E., Seppänen M., Näätänen R., Tervaniemi M., & Annals, N. Y. A. S . ( 2012 b). Practiced musical style shapes auditory skills. Neurosciences and Music Iv: Learning and Memory, 1252( 1), 139-146.
41 Vuust P., Liikala L., Näätänen R., Brattico P., & Brattico E . ( 2016). Comprehensive auditory discrimination profiles recorded with a fast parametric musical multi-feature mismatch negativity paradigm. Clinical Neurophysiology, 127( 4), 2065-2077.
url: https://linkinghub.elsevier.com/retrieve/pii/S1388245715010858
42 Vuust P., Ostergaard L., Pallesen K. J., Bailey C., & Roepstorff A . ( 2009). Predictive coding of music-Brain responses to rhythmic incongruity. Cortex, 45( 1), 80-92.
url: https://linkinghub.elsevier.com/retrieve/pii/S0010945208002499
43 Wang X. Y., Fu R., Xia X. Y., Chen X. L., Wu H., Landi N., .. Cong F. Y . ( 2018). Spatial Properties of Mismatch Negativity in Patients with Disorders of Consciousness. Neuroscience Bulletin, 34( 4), 700-708.
url: http://dx.doi.org/10.1007/s12264-018-0260-4
44 Zhao, T. C., & Kuhl, P. K . ( 2016). Musical intervention enhances infants' neural processing of temporal structure in music and speech. Procedings of the National Academy of Sciences of the United States of America, 113( 19), 5212-5217.
url: http://www.pnas.org/lookup/doi/10.1073/pnas.1603984113
45 Zhao T. C., Lam H. T. G., Sohi H., & Kuhl P. K . ( 2017). Neural processing of musical meter in musicians and non-musicians. Neuropsychologia, 106, 289-297.
url: https://linkinghub.elsevier.com/retrieve/pii/S0028393217303767
46 Zinke K., Thöne L., Bolinger E. M., & Born J . ( 2018). Dissociating long and short-term memory in three-month-old infants using the mismatch response to voice stimuli. Frontiers in Psychology, 9, 8.
url: http://journal.frontiersin.org/article/10.3389/fpsyg.2018.00008/full
[1] XIN Xin; REN Gui-Qin; LI Jin-Cai; TANG Xiao-Yu. The characteristics and mechanisms of audiovisual integration: Evidence from mismatch negativity[J]. Advances in Psychological Science, 2017, 25(5): 757-768.
[2] WANG Hang; JIANG Jun; JIANG Cunmei. The Effects of Music Training on Cognitive Abilities[J]. Advances in Psychological Science, 2015, 23(3): 419-429.
[3] HE Jin-Bo;LI Bing-Bing;ZHOU Zong-Kui. Effects of Alcohol on Pre-attentive Processing: Evidence from Mismatch Negativity[J]. , 2011, 19(11): 1645-1650.
[4] YIN Hua-Zhan;HUANG Xi-Ting. The Electrophysiological Index for the Automatic and Control Processing of Temporal Information[J]. , 2009, 17(04): 678-682.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Advances in Psychological Science
Support by Beijing Magtech