Please wait a minute...
Advances in Psychological Science    2018, Vol. 26 Issue (8) : 1349-1364     DOI: 10.3724/SP.J.1042.2018.1349
Research Method |
Application of time-frequency analysis in investigating non-phase locked components of EEG
Xia WU1,Chupeng ZHONG1,Yulong DING1,Zhe QU1()
1 Department of psychology, Sun Yat-sen University, Guangzhou 510006, China
Download: PDF(5045 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     Supporting Info
Guide   
Abstract  

Since the introduction of the time-frequency analysis technique into the field of EEG data in the 1980’s, researchers can excavate non-phase locked components in EEG signals, overcoming the previous shortcomings of traditional ERP methods. In the field of psychology, the two most commonly used time-frequency analysis methods are wavelet transform and Hilbert transform. Power, phase locking index (PLI), and coherence are three important indices of time-frequency analysis. Power in different frequency band is typically considered to reflect different mental processes. For example, α power is frequently related to selective attention, while γ energy is often associated with feature binding. Researchers use PLI to investigate the mechanism generated by an ERP component. Coherence indicates the exchange of information between long-distance brain regions and cognitive control of higher-level brain regions in the low-level brain regions, which show different patterns in various complex cognitive tasks.

Keywords time-frequency analysis      wavelet transform      Hilbert transform      power      PLI      coherence     
ZTFLH:  B845  
Corresponding Authors: Zhe QU     E-mail: quzhe@mail.sysu.edu.cn
Online First Date: 02 July 2018    Issue Date: 02 July 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xia WU
Chupeng ZHONG
Yulong DING
Zhe QU
Cite this article:   
Xia WU,Chupeng ZHONG,Yulong DING, et al. Application of time-frequency analysis in investigating non-phase locked components of EEG[J]. Advances in Psychological Science, 2018, 26(8): 1349-1364.
URL:  
http://journal.psych.ac.cn/xlkxjz/EN/10.3724/SP.J.1042.2018.1349     OR     http://journal.psych.ac.cn/xlkxjz/EN/Y2018/V26/I8/1349
  
  
  
  
  
  
  
  
  
1 Allen, J. B . ( 1977). Short term spectral analysis, synthesis, and modification by discrete fourier transform. IEEE Transactions on Acoustics, Speech, and Signal Processing, ASSP-25( 3), 235-238.
url: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1162950
2 Anguera J. A., Boccanfuso J., Rintoul J. L., Al-Hashimi O., Faraji F., Janowich J., .. Gazzaley A . ( 2013). Video game training enhances cognitive control in older adults. Nature, 501( 7465), 97-101.
pmid: 24005416 url: http://www.nature.com/articles/nature12486
3 Axmacher N., Henseler M. M., Jensen O., Weinreich I., Elger C. E., & Fell J . ( 2010). Cross-frequency coupling supports multi-item working memory in the human hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 107( 7), 3228-3233.
url: http://www.pnas.org/cgi/doi/10.1073/pnas.0911531107
4 Bai O., Lin P., Vorbach S., Floeter M. K., Hattori N., & Hallett M . ( 2008). A high performance sensorimotor beta rhythm-based brain-computer interface associated with human natural motor behavior. Journal of Neural Engineering, 5( 1), 24-35.
url: http://stacks.iop.org/1741-2552/5/i=1/a=003?key=crossref.83351ad2bf7fe2c91bd882a153a57c90
5 Barnes J. J., Nobre A. C., Woolrich M. W., Baker K., & Astle D. E . ( 2016). Training working memory in childhood enhances coupling between frontoparietal control network and task-related regions. Journal of Neuroscience, 36( 34), 9001-9011.
url: http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.0101-16.2016
6 Bastiaansen M., Mazaheri A., & Jensen, O .( 2012). Beyond ERPs: Oscillatory neuronal dynamics. In S J Luck & E S Kappenman (Eds), The Oxford handbook of event-related potential components (pp 31-50). New York: NY: Oxford University Press.
url: http://psycnet.apa.org/record/2013-01016-002
7 Becker R., Ritter P., & Villringer A . ( 2008). Influence of ongoing alpha rhythm on the visual evoked potential. Neuroimage, 39( 2), 707-716.
pmid: 17977023 url: http://linkinghub.elsevier.com/retrieve/pii/S1053811907007975
8 Berger, H . ( 1929). über das Elektrenkephalogramm des Menschen. Archiv für Psychiatrie und Nervenkrankheiten, 87, 527-570.
url: http://link.springer.com/10.1007/BF01797193
9 Bernardino, A., & Santos-Victor, J . ( 2005). A real-time gabor primal sketch for visual attention. In J. S. Marques, N. Pérez de la Blanca, & P. Pina (Eds.), Pattern recognition and image analysis. IbPRIA 2005. Lecture notes in computer science, vol 3522( pp. 335-342). Berlin, Heidelberg: Springer.
10 Bonnefond, M., & Jensen, O . ( 2015). Gamma activity coupled to alpha phase as a mechanism for top-down controlled gating. PLoS One, 10( 6), e0128667.
pmid: 26039691 url: http://dx.plos.org/10.1371/journal.pone.0128667
11 Bowyer, S. M . ( 2016). Coherence a measure of the brain networks: Past and present. Neuropsychiatric Electrophysiology, 2, 1.
url: http://npepjournal.biomedcentral.com/articles/10.1186/s40810-015-0015-7
12 Bruns, A . ( 2004). Fourier-, Hilbert- and wavelet-based signal analysis: Are they really different approaches? Journal of Neuroscience Methods, 137( 2), 321-332.
pmid: 15262077 url: http://linkinghub.elsevier.com/retrieve/pii/S0165027004001098
13 Busch N. A., Dubois, J. & VanRullen, R .( 2009). The phase of ongoing EEG oscillations predicts visual perception. Journal of Neuroscience, 29( 24), 7869-7876.
url: http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.0113-09.2009
14 Busch N. A., Herrmann C. S., Müller M. M., Lenz D., & Gruber T . ( 2006). A cross-laboratory study of event- related gamma activity in a standard object recognition paradigm. Neuroimage, 33( 4), 1169-1177.
url: http://linkinghub.elsevier.com/retrieve/pii/S1053811906007452
15 Cabral J., Kringelbach M. L., & Deco G . ( 2014). Exploring the network dynamics underlying brain activity during rest. Progress in Neurobiology, 114, 102-131.
pmid: 24389385 url: http://linkinghub.elsevier.com/retrieve/pii/S0301008213001457
16 Canolty R. T., Edwards E., Dalal S. S., Soltani M., Nagarajan S. S., Kirsch H. E., .. Knight R. T . ( 2006). High gamma power is phase-locked to theta oscillations in human neocortex. Science, 313( 5793), 1626-1628.
pmid: 16973878 url: http://www.sciencemag.org/cgi/doi/10.1126/science.1128115
17 Canolty, R. T., & Knight, R. T . ( 2010). The functional role of cross-frequency coupling. Trends in Cognitive Sciences, 14( 11), 506-515.
pmid: 20932795 url: http://linkinghub.elsevier.com/retrieve/pii/S1364661310002068
18 Capilla A., Schoffelen J. M., Paterson G., Thut G., & Gross J . ( 2014). Dissociated α-band modulations in the dorsal and ventral visual pathways in visuospatial attention and perception. Cerebral Cortex, 24, 550-561.
url: https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhs343
19 Castelhano J., Rebola J., Leitão B., Rodriguez E., & Castelo-Branco M . ( 2013). To perceive or not perceive: The role of gamma-band activity in signaling object percepts. PLoS One, 8( 6), e66363.
pmid: 23785494 url: http://dx.plos.org/10.1371/journal.pone.0066363
20 Cavanagh J. F., Cohen M. X., & Allen, J. J. B . ( 2009). Prelude to and resolution of an error: EEG phase synchrony reveals cognitive control dynamics during action monitoring. Journal of Neuroscience, 29( 1), 98-105.
url: http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.4137-08.2009
21 Cavanagh J. F., Frank M. J., Klein T. J., & Allen, J. J. B . ( 2010). Frontal theta links prediction errors to behavioral adaptation in reinforcement learning. NeuroImage, 49( 4), 3198-3209.
pmid: 19969093 url: http://linkinghub.elsevier.com/retrieve/pii/S105381190901266X
22 Daume J., Gruber T., Engel A. K., & Friese U . ( 2017). Phase-amplitude coupling and long-range phase synchronization reveal frontotemporal interactions during visual working memory. Journal of Neuroscience, 37( 2), 313-322.
url: http://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.2130-16.2016
23 de Lange F. P., Jensen O., Bauer M., & Toni I . ( 2008). Interactions between posterior gamma and frontal alpha/beta oscillations during imagined actions. Frontiers in Human Neuroscience, 2, 7.
24 Deiber M. P., Ibañez V., Missonnier P., Rodriguez C., & Giannakopoulos P . ( 2013). Age-associated modulations of cerebral oscillatory patterns related to attention control. NeuroImage, 82, 531-546.
pmid: 23777759 url: http://linkinghub.elsevier.com/retrieve/pii/S1053811913006745
25 Doesburg S. M., Roggeveen A. B., Kitajo K., & Ward L. M . ( 2008). Large-scale gamma-band phase synchronization and selective attention. Cerebral Cortex, 18( 2), 386-396.
pmid: 17556771 url: https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhm073
26 Engel, A. K., & Fries, P . ( 2010). Beta-band oscillations--signalling the status quo? Current Opinion in Neurobiology, 20( 2), 156-165.
url: http://linkinghub.elsevier.com/retrieve/pii/S0959438810000395
27 Fell, J . ( 2007). Cognitive neurophysiology: Beyond averaging. NeuroImage, 37( 4), 1069-1072.
url: http://linkinghub.elsevier.com/retrieve/pii/S1053811907006805
28 Finger, H., & önig, P . ( 2014). Phase synchrony facilitates binding and segmentation of natural images in a coupled neural oscillator network. Frontiers in Computational Neuroscience, 7, 195.
29 Franaszczuk, P. J., & Bergey, G. K . ( 1999). An autoregressive method for the measurement of synchronization of interictal and ictal EEG signals. Biological Cybernetics, 81, 3-9.
url: http://link.springer.com/10.1007/s004220050540
30 Friese U., öster M., Hassler U., Martens U., Trujillo- Barreto N., & Gruber T . ( 2013). Successful memory encoding is associated with increased cross-frequency coupling between frontal theta and posterior gamma oscillations in human scalp-recorded EEG. NeuroImage, 66, 642-647.
url: http://linkinghub.elsevier.com/retrieve/pii/S105381191201097X
31 Fu K.-M. G., Foxe J. J., Murray M. M., Higgins B. A., Javitt D. C., & Schroeder C. E . ( 2001). Attention- dependent suppression of distracter visual input can be cross-modally cued as indexed by anticipatory parieto- occipital alpha-band oscillations. Cognitive Brain Research, 12, 145-152.
url: http://linkinghub.elsevier.com/retrieve/pii/S0926641001000349
32 Goffaux V., Mouraux A., Desmet S., & Rossion B . ( 2004). Human non-phase-locked gamma oscillations in experience- based perception of visual scenes. Neuroscience Letters, 354( 1), 14-17.
pmid: 14698471 url: http://linkinghub.elsevier.com/retrieve/pii/S030439400301111X
33 Gola M., Magnuski M., Szumska I., & Wróbel A . ( 2013). EEG beta band activity is related to attention and attentional deficits in the visual performance of elderly subjects. International Journal of Psychophysiology, 89( 3), 334-341.
url: http://linkinghub.elsevier.com/retrieve/pii/S016787601300130X
34 Greenblatt R. E., Pflieger M. E., & Ossadtchi A. E . ( 2012). Connectivity measures applied to human brain electrophysiological data. Journal of Neuroscience Methods, 207( 1), 1-16.
pmid: 22426415 url: http://linkinghub.elsevier.com/retrieve/pii/S0165027012000817
35 Gruber, T., & Müller, M. M . ( 2005). Oscillatory brain activity dissociates between associative stimulus content in a repetition priming task in the human EEG. Cerebral Cortex, 15( 1), 109-116.
36 Gruber T., Trujillo-Barreto N. J., Giabbiconi C. M., Valdés-Sosa P. A., & Müller M. M . ( 2006). Brain electrical tomography (BET) analysis of induced gamma band responses during a simple object recognition task. NeuroImage, 29( 3), 888-900.
url: http://linkinghub.elsevier.com/retrieve/pii/S1053811905007068
37 Händel B. F., Haarmeier T., & Jensen O . ( 2011). Alpha oscillations correlate with the successful inhibition of unattended stimuli. Journal of Cognitive Neuroscience, 23, 2494-2502.
url: http://www.mitpressjournals.org/doi/10.1162/jocn.2010.21557
38 Hanslmayr S., Gross J., Klimesch W., & Shapiro K. L . ( 2011). The role of alpha oscillations in temporal attention. Brain Research Reviews, 67, 331-343.
pmid: 21592583 url: http://linkinghub.elsevier.com/retrieve/pii/S0165017311000233
39 Hassler U., Barreto N. T., & Gruber T . ( 2011). Induced gamma band responses in human EEG after the control of miniature saccadic artifacts. NeuroImage, 57( 4), 1411-1421.
pmid: 21645624 url: http://linkinghub.elsevier.com/retrieve/pii/S1053811911005702
40 Hassler U., Friese U., Martens U., Trujillo-Barreto N., & Gruber T . ( 2013). Repetition priming effects dissociate between miniature eye movements and induced gamma- band responses in the human electroencephalogram. European Journal of Neuroscience, 38( 3), 2425-2433.
url: http://doi.wiley.com/10.1111/ejn.12244
41 Hebert R., Lehmann D., Tan G., Travis F., & Arenander A . ( 2005). Enhanced EEG alpha time-domain phase synchrony during Transcendental Meditation: Implications for cortical integration theory. Signal Processing, 85( 11), 2213-2232.
url: http://linkinghub.elsevier.com/retrieve/pii/S0165168405002100
42 Helfrich R. F., & Knight, R. T . ( 2016). Oscillatory dynamics of prefrontal cognitive control. Trends in Cognitive Sciences, 20( 12), 916-930.
pmid: 5127407 url: http://linkinghub.elsevier.com/retrieve/pii/S136466131630153X
43 Helfrich R. F., Mander B. A., Jagust W. J., Knight R. T., & Walker M. P . ( 2018). Old brains come uncoupled in sleep: Slow wave-spindle synchrony, brain atrophy, and forgetting. Neuron, 97( 1), 221-230. e4.
pmid: 29249289 url: http://linkinghub.elsevier.com/retrieve/pii/S0896627317310735
44 Huang N. E., Shen Z., Long S. R., Wu M. C., Shin H. H., Zheng Q., .. Liu H. H . ( 1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 454, 903-995.
url: http://rspa.royalsocietypublishing.org/cgi/doi/10.1098/rspa.1998.0193
45 Ijspeert, A. J . ( 2008). Central pattern generators for locomotion control in animals and robots: A review. Neural Networks, 21( 4), 642-653.
pmid: 18555958 url: http://linkinghub.elsevier.com/retrieve/pii/S0893608008000804
46 Jensen O., Bonnefond M., & VanRullen R . ( 2012). An oscillatory mechanism for prioritizing salient unattended stimuli. Trends in Cognitive Sciences, 16( 4), 200-206.
pmid: 22436764 url: http://linkinghub.elsevier.com/retrieve/pii/S1364661312000575
47 Kelly S. P., Gomez-Ramirez M., & Foxe J. J . ( 2009). The strength of anticipatory spatial biasing predicts target discrimination at attended locations: A high-density EEG study. European Journal of Neuroscience, 30, 2224-2234.
url: http://blackwell-synergy.com/doi/abs/10.1111/ejn.2009.30.issue-11
48 Kelly S. P., Lalor E. C., Reilly R. B., & Foxe J. J . ( 2006). Increases in alpha oscillatory power reflect an active retinotopic mechanism for distracter suppression during sustained visuospatial attention. Journal of Neurophysiology, 95( 6), 3844-3851.
url: http://www.physiology.org/doi/10.1152/jn.01234.2005
49 Keren A. S., Yuval-Greenberg S., & Deouell L. Y . ( 2010). Saccadic spike potentials in gamma-band EEG: Characterization, detection and suppression. NeuroImage, 49( 3), 2248-2263.
pmid: 19874901 url: http://linkinghub.elsevier.com/retrieve/pii/S1053811909011288
50 Kharate G. K., Patil V. H., & Bhale N. L . ( 2007). Selection of mother wavelet for image compression on basis of nature of image. Journal of Multimedia, 2( 6), 44-51.
51 Kleen J. K., Testorf M. E., Roberts D. W., Scott R. C., Jobst B. J., Holmes G. L., & Lenck-Santini P.-P . ( 2016). Oscillation phase locking and late ERP components of intracranial hippocampal recordings correlate to patient performance in a working memory task. Frontiers in Human Neuroscience, 10, 287.
52 Klimesch, W . ( 1999). EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Research Reviews, 29( 2-3), 169-195.
url: http://linkinghub.elsevier.com/retrieve/pii/S0165017398000563
53 Klimesch, W . ( 2012). alpha-band oscillations, attention, and controlled access to stored information. Trends in Cognitive Sciences, 16( 12), 606-617.
pmid: 23141428 url: http://linkinghub.elsevier.com/retrieve/pii/S1364661312002434
54 Klimesch W., Schack B., Schabus M., Doppelmayr M., Gruber W., & Sauseng P . ( 2004). Phase-locked alpha and theta oscillations generate the P1-N1 complex and are related to memory performance. Cognitive Brain Research, 19( 3), 302-316.
url: http://linkinghub.elsevier.com/retrieve/pii/S0926641004000308
55 Knakker B., Weiss B., & Vidnyánszky Z . ( 2015). Object- based attentional selection modulates anticipatory alpha oscillations. Frontiers in Human Neuroscience, 8, 1048.
pmid: 4290602 url: http://europepmc.org/articles/PMC4290602
56 Kwon G., Kim M.-Y., Lim S., Kwon H., Lee Y.-H., Kim K., .. Suh M . ( 2015). Frontoparietal EEG alpha-phase synchrony reflects differential attentional demands during word recall and oculomotor dual-tasks. NeuroReport, 26( 18), 1161-1167.
url: http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00001756-201512020-00014
57 Lachaux J. P., Rodriguez E., Martinerie J., & Varela F. J . ( 1999). Measuring phase synchrony in brain signals. Human Brain Mapping, 8( 4), 194-208.
pmid: 10619414 url: http://doi.wiley.com/10.1002/%28ISSN%291097-0193
58 Lee, D. T. L., & Yamamoto, A . ( 1994). Wavelet analysis: Theory and applications. Hewlett-Packard Journal, 45, 44-54.
url: http://www.researchgate.net/publication/283431823_Wavelet_analysis_theory_and_applications
59 Lieuw, I . ( 2015). Time frequency analysis of neural oscillations in multi-attribute decision-making. Scripps senior theses, Paper 556.
url: http://scholarship.claremont.edu/scripps_theses/556
60 Luck S. J. ( 2005). An introduction to the event-related potential technique. Cambridge: MIT Press.
61 Makeig S., Westerfield M., Jung T. P., Enghoff S., Townsend J., Courchesne E., & Sejnowski T. J . ( 2002). Dynamic brain sources of visual evoked responses. Science, 295( 5555), 690-694.
pmid: 11809976 url: http://www.sciencemag.org/cgi/doi/10.1126/science.1066168
62 Makin A. D. J., Ackerley R., Wild K., Poliakoff E., Gowen E., & El-Deredy W . ( 2011). Coherent illusory contours reduce microsaccade frequency. Neuropsychologia, 49( 9), 2798-2801.
pmid: 21683722 url: http://linkinghub.elsevier.com/retrieve/pii/S0028393211002752
63 Mäkinen V., Tiitinen H., & May P . ( 2005). Auditory event-related responses are generated independently of ongoing brain activity. NeuroImage, 24( 4), 961-968.
pmid: 15670673 url: http://linkinghub.elsevier.com/retrieve/pii/S1053811904006275
64 Marshall T. R., O'Shea J., Jensen O., & Bergmann T. O . ( 2015). Frontal eye fields control attentional modulation of alpha and gamma oscillations in contralateral occipitoparietal cortex. Journal of Neuroscience, 35, 1638-1647.
url: http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.3116-14.2015
65 Martinovic J., Gruber T., & Müller M. M . ( 2007). Induced gamma band responses predict recognition delays during object identification. Journal of Cognitive Neuroscience, 19( 6), 921-934.
pmid: 17536963 url: http://www.mitpressjournals.org/doi/10.1162/jocn.2007.19.6.921
66 Mathewson K. E., Gratton G., Fabiani M., Beck D. M., & Ro T . ( 2009). To see or not to see: Prestimulus α phase predicts visual awareness. Journal of Neuroscience, 29( 9), 2725-2732.
pmid: 19261866 url: http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.3963-08.2009
67 Mazaheri, A., & Jensen, O . ( 2006). Posterior α activity is not phase-reset by visual stimuli. Proceedings of the National Academy of Sciences of the United States of America, 103( 8), 2948-2952.
url: http://www.pnas.org/cgi/doi/10.1073/pnas.0505785103
68 Mazaheri, A., & Picton, T. W . ( 2005). EEG spectral dynamics during discrimination of auditory and visual targets. Cognitive Brain Research, 24( 1), 81-96.
pmid: 15922161 url: http://linkinghub.elsevier.com/retrieve/pii/S0926641004003519
69 Mishra J., Martínez A., Schroeder C. E., & Hillyard S. A . ( 2012). Spatial attention boosts short-latency neural responses in human visual cortex. NeuroImage, 59( 2), 1968-1978.
pmid: 21983181 url: http://linkinghub.elsevier.com/retrieve/pii/S1053811911010767
70 Morgan H. M., Muthukumaraswamy S. D., Hibbs C. S., Shapiro K. L., Bracewell R. M., Singh K. D., & Linden, D. E. J . ( 2011). Feature integration in visual working memory: Parietal gamma activity is related to cognitive coordination. Journal of Neurophysiology, 106( 6), 3185-3194.
url: http://www.physiology.org/doi/10.1152/jn.00246.2011
71 Muthukumaraswamy, S. D . ( 2013). High-frequency brain activity and muscle artifacts in MEG/EEG: A review and recommendations. Frontiers in Human Neuroscience, 7, 138.
72 Neural oscillation . ( 2018, January 5). In Wikipedia, the free encyclopedia. Retrieved January 24, 2018, from
url: https://en.wikipedia.org/wiki/Neural_oscillation
73 Ngui W. K., Leong M. S., Hee L. M., & Abdelrhman A. M . ( 2013). Wavelet analysis: Mother wavelet selection methods. Applied Mechanics and Materials, 393, 953-958.
url: https://www.scientific.net/AMM.393
74 Nobach H., Tropea C., Cordier L., Bonnet J.-P., Delville J., Lewalle J., .. Adrian R . ( 2007). Review of some fundamentals of data processing. In C. Tropea, A. L. Yarin, & J. F. Foss (Eds.), Springer handbook of experimental fluid mechanics( pp. 1337-1398). Berlin, Heidelberg: Springer.
url: http://link.springer.com/10.1007/978-3-540-30299-5_23
75 Norcia A. M., Appelbaum L. G., Ales J. M., Cottereau B. R., & Rossion B . ( 2015). The steady-state visual evoked potential in vision research: A review. Journal of Vision, 15( 6), 4.
pmid: 4581566 url: http://www.ncbi.nlm.nih.gov/pubmed/26024451
76 Palva, S., & Palva, J. M . ( 2011). Functional roles of alpha-band phase synchronization in local and large-scale cortical networks. Frontiers in Psychology, 2, 204.
77 Pampu, N. C . ( 2011). Study of effects of the short time fourier transform configuration on EEG spectral estimates. Acta Technica Napocensis: Electronics and Telecommunications, 52, 26-29.
url: http://www.researchgate.net/publication/284699069_Study_of_effects_of_the_short_time_Fourier_transform_configuration_on_eeg_spectral_estimates
78 Penny W. D., Duzel E., Miller K. J., & Ojemann J. G . ( 2008). Testing for nested oscillation. Journal of Neuroscience Methods, 174( 1), 50-61.
url: http://linkinghub.elsevier.com/retrieve/pii/S0165027008003816
79 Pockett S., Bold G. E. J., & Freeman W. J . ( 2009). EEG synchrony during a perceptual-cognitive task: Widespread phase synchrony at all frequencies. Clinical Neurophysiology, 120( 4), 695-708.
pmid: 19250863 url: http://linkinghub.elsevier.com/retrieve/pii/S1388245709000273
80 Regan, D . ( 1966). Some characteristics of average steady-state and transient responses evoked by modulated light. Electroencephalography and Clinical Neurophysiology, 20( 3), 238-248.
pmid: 4160391 url: http://linkinghub.elsevier.com/retrieve/pii/0013469466900885
81 Rihs T. A., Michel C. M., & Thut G . ( 2007). Mechanisms of selective inhibition in visual spatial attention are indexed by α-band EEG synchronization. European Journal of Neuroscience, 25( 2), 603-610.
url: http://www.blackwell-synergy.com/toc/ejn/25/2
82 Roach, B. J., & Mathalon, D. H . ( 2008). Event-related EEG time-frequency analysis: An overview of measures and an analysis of early gamma band phase locking in schizophrenia. Schizophrenia Bulletin, 34( 5), 907-926.
url: https://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbn093
83 Rose M., Sommer T., & Büchel C . ( 2006). Integration of local features to a global percept by neural coupling. Cerebral Cortex, 16( 10), 1522-1528.
pmid: 16339083 url: http://academic.oup.com/cercor/article/16/10/1522/354005/Integration-of-Local-Features-to-a-Global-Percept
84 Rossion B., Prieto E. A., Boremanse A., Kuefner D., & van Belle G . ( 2012). A steady-state visual evoked potential approach to individual face perception: Effect of inversion, contrast-reversal and temporal dynamics. NeuroImage, 63( 3), 1585-1600.
url: http://linkinghub.elsevier.com/retrieve/pii/S1053811912008312
85 Samiee, S., & Baillet, S . ( 2017). Time-resolved phase- amplitude coupling in neural oscillations. NeuroImage, 159, 270-279.
pmid: 28757194 url: http://linkinghub.elsevier.com/retrieve/pii/S1053811917306195
86 Sauseng P., Klimesch W., Stadler W., Schabus M., Doppelmayr M., Hanslmayr S., .. Birbaumer N . ( 2005). A shift of visual spatial attention is selectively associated with human EEG alpha activity. European Journal of Neuroscience, 22( 11), 2917-2926.
pmid: 16324126 url: http://blackwell-synergy.com/doi/abs/10.1111/ejn.2005.22.issue-11
87 Selesnick, I. W . ( 2011). Wavelet transform with tunable Q-factor. IEEE Transactions on Signal Processing, 59( 8), 3560-3575.
url: http://ieeexplore.ieee.org/document/5752263/
88 Sharma, A., & Singh, M . ( 2015). Assessing alpha activity in attention and relaxed state: An EEG analysis. In 2015 1st international conference on next generation computing technologies ( pp. 508-513). Dehradun: IEEE.
url: http://ieeexplore.ieee.org/document/7375171/
89 Siegel M., Donner T. H., Oostenveld R., Fries P., & Engel A. K . ( 2008). Neuronal synchronization along the dorsal visual pathway reflects the focus of spatial attention. Neuron, 60( 4), 709-719.
url: http://linkinghub.elsevier.com/retrieve/pii/S0896627308007575
90 Snyder, A. C., & Foxe, J. J . ( 2010). Anticipatory attentional suppression of visual features indexed by oscillatory alpha-band power increases: A high-density electrical mapping study. Journal of Neuroscience, 30( 11), 4024-4032.
url: http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.5684-09.2010
91 Song K., Meng M., Chen L., Zhou K., & Luo H . ( 2014). Behavioral oscillations in attention: Rhythmic α pulses mediated through θ band. Journal of Neuroscience, 34( 14), 4837-4844.
pmid: 24695703 url: http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.4856-13.2014
92 Spencer K. M., Nestor P. G., Niznikiewicz M. A., Salisbury D. F., Shenton M. E., & McCarley R. W . ( 2003). Abnormal neural synchrony in schizophrenia. Journal of Neuroscience, 23( 19), 7407-7411.
url: http://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.23-19-07407.2003
93 StÖrmer V., Feng W. F., Martinez A., McDonald J. J., & Hillyard S. A . ( 2016). Salient, irrelevant sounds reflexively induce alpha rhythm desynchronization in parallel with slow potential shifts in visual cortex. Journal of Cognitive Neuroscience, 28( 3), 433-445.
url: http://www.mitpressjournals.org/doi/10.1162/jocn_a_00915
94 Tallon-Baudry, C . ( 2009). The roles of gamma-band oscillatory synchrony in human visual cognition. Frontiers in Bioscience, 14, 321-332.
pmid: 19273069 url: http://www.ncbi.nlm.nih.gov/pubmed/19273069
95 Tallon-Baudry, C., & Bertrand, O . ( 1999). Oscillatory gamma activity in humans and its role in object representation. Trends in Cognitive Sciences, 3( 4), 151-162.
pmid: 10322469 url: http://linkinghub.elsevier.com/retrieve/pii/S1364661399012991
96 Tallon-Baudry C., Bertrand O., & Fischer C . ( 2001). Oscillatory synchrony between human extrastriate areas during visual short-term memory maintenance. Journal of Neuroscience, 21, RC177.
97 Thut G., Nietzel A., Brandt S. A., & Pascual-Leone A . ( 2006). α-band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection. Journal of Neuroscience, 26( 37), 9494-9502.
url: http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.0875-06.2006
98 Torrence, C., & Compo, G. P . ( 1998). A practical guide to wavelet analysis. Bulletin of the American Meteorological Society, 79( 1), 61-78.
url: http://journals.ametsoc.org/doi/abs/10.1175/1520-0477%281998%29079%3C0061%3AAPGTWA%3E2.0.CO%3B2
99 Tort A. B. L., Komorowski R. W., Manns J. R., Kopell N. J., & Eichenbaum H . ( 2009). Theta-gamma coupling increases during the learning of item-context associations. Proceedings of the National Academy of Sciences of the United States of America, 106( 49), 20942-20947.
url: http://www.pnas.org/cgi/doi/10.1073/pnas.0911331106
100 Tseng P., Chang Y. T., Chang C. F., Liang W. K., & Juan C. H . ( 2016). The critical role of phase difference in gamma oscillation within the temporoparietal network for binding visual working memory. Scientific Reports, 6, 32138.
url: http://www.nature.com/articles/srep32138
101 Uusberg A., Uibo H., Kreegipuu K., & Allik J . ( 2013). EEG alpha and cortical inhibition in affective attention. International Journal of Psychophysiology, 89( 1), 26-36.
url: http://linkinghub.elsevier.com/retrieve/pii/S0167876013001220
102 Valipour S., Shaligram A. D., & Kulkarni G. R . ( 2013). Spectral analysis of EEG signal for detection of alpha rhythm with open and closed eyes. International Journal of Engineering and Innovative Technology, 3( 6), 1-4.
103 van Gerven, M., & Jensen, O . ( 2009). Attention modulations of posterior alpha as a control signal for two-dimensional brain-computer interfaces. Journal of Neuroscience Methods, 179, 78-84.
url: http://linkinghub.elsevier.com/retrieve/pii/S0165027009000430
104 Vidakovic, B., & Mueller, P . ( 1991). Wavelets for kids: A tutorial introduction. Duke University.
105 Waldert S., Preissl H., Demandt E., Braun C., Birbaumer N., Aertsen A., & Mehring C . ( 2008). Hand movement direction decoded from MEG and EEG. Journal of Neuroscience, 28( 4), 1000-1008.
pmid: 18216207 url: http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.5171-07.2008
106 Womelsdorf T., Johnston K., Vinck M., & Everling S . ( 2010). Theta-activity in anterior cingulate cortex predicts task rules and their adjustments following errors. Proceedings of the National Academy of Sciences of the United States of America, 107( 11), 5248-5253.
url: http://www.pnas.org/cgi/doi/10.1073/pnas.0906194107
107 Woodman, G. F . ( 2010). A brief introduction to the use of event-related potentials in studies of perception and attention. Attention, Perception, & Psychophysics, 72( 8), 2031-2046.
108 Worden M. S., Foxe J. J., Wang N., & Simpson G. V . ( 2000). Anticipatory biasing of visuospatial attention indexed by retinotopically specific α-band electroencephalography increases over occipital cortex. The Journal of Neuroscience, 20, RC63.
109 Yuval-Greenberg S., Tomer O., Keren A. S., Nelken I., & Deouell L. Y . ( 2008). Transient induced gamma-band response in EEG as a manifestation of miniature saccades. Neuron, 58( 3), 429-441.
pmid: 18466752 url: http://linkinghub.elsevier.com/retrieve/pii/S0896627308003012
[1] Jue DENG, Yiduo YE, Yanfang CHEN. Implicit acquisition of musical syntax and its influence on schema expectation[J]. Advances in Psychological Science, 2018, 26(6): 1012-1018.
[2] Heng LI. Implicit space-time mappings on the front and back axis and their influencing factors[J]. Advances in Psychological Science, 2018, 26(6): 975-983.
[3] FANG Jie, WEN Zhonglin, WU Yan.  The analyses of multilevel moderation effects based on structural equation modeling[J]. Advances in Psychological Science, 2018, 26(5): 781-788.
[4] CHENG Nanhua, LI Zhanxing, ZHU Liqi.  Children’s understanding of social power and its relationship with social behavior[J]. Advances in Psychological Science, 2018, 26(2): 283-293.
[5] Jinyun DUAN,Yue XU,Linhan YU. Theory of self-cultivation extracted from Confucianism: A reflection and supplement to social exchange paradigm[J]. Advances in Psychological Science, 2018, 26(10): 1890-1900.
[6] Yi’ nan WANG. Neural mechanisms of self-esteem stability in the perspective of neuroendocrine system-brain-behavior[J]. Advances in Psychological Science, 2018, 26(10): 1724-1733.
[7] JIANG Hongyan, LIU Bangshun, SUN Peizhen.  The influence of power on consumer behavior and its theoretical explanation[J]. Advances in Psychological Science, 2018, 26(1): 156-168.
[8] ZANG Xuelian, ZHANG Xiaoxiao, JIA Lina, LI Genqiang, LI Hong.  The effect of selective attention in contextual cueing[J]. Advances in Psychological Science, 2017, 25(9): 1503-1511.
[9] ZHANG Yinpu, SHI Wei, LUO Ben Nanfeng, XING Lu, XU Yuan.  Applications of experience sampling method in organizational behavior research[J]. Advances in Psychological Science, 2017, 25(6): 943-954.
[10] JIN Jian; LI Ye; CHEN Dongming; GUO Kaijiao. Effects and mechanisms of power and status on self-interested behavior[J]. Advances in Psychological Science, 2017, 25(5): 878-886.
[11] LU Jian; XIAO Zilun; FENG Tinyong. Metacognition: A new perspective on attitude and persuasion study[J]. Advances in Psychological Science, 2017, 25(5): 866-877.
[12] WANG Hao; YU Guoliang. Power cognitions in intimate relationship[J]. Advances in Psychological Science, 2017, 25(4): 639-651.
[13] YANG Jianfeng; MING Xiaodong. The process and antecedents of team ethical decision-making: A study in Chinese context[J]. Advances in Psychological Science, 2017, 25(4): 542-552.
[14] SONG Yunqiang; XU Ruiheng; XING Cai. Risk-sensitivity theory: Need motivates risky decision-making[J]. Advances in Psychological Science, 2017, 25(3): 486-499.
[15] LI Kai; GUO Yongyu; YANG Shenlong. Public risk perception of terror attacks[J]. Advances in Psychological Science, 2017, 25(2): 358-369.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Advances in Psychological Science
Support by Beijing Magtech