Please wait a minute...
Advances in Psychological Science    2018, Vol. 26 Issue (6) : 966-974     DOI: 10.3724/SP.J.1042.2018.00966
Regular Articles |
Attentional regulation mechanisms of cognitive control in conflict resolution
Zhenghan LI1,2, Guochun YANG1,2, Weizhi NAN3, Qi LI1,2, Xun LIU1,2()
1 CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Brain and Cognitive Neuroscience Research Center, School of Education, Guangzhou University, Guangzhou 510006, China
Download: PDF(945 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     Supporting Info
Guide   
Abstract  

Cognitive control is essential in conflict processing. Most related theories elucidated the mechanism via integrating both the enhancement of task-relevant stimuli and inhibition of task-irrelevant stimuli, which has been challenged by recent studies. We reviewed the major debates on whether enhancement or inhibition might be the mechanism and their empirical evidences, and then argued that conflict resolution mechanisms might not be constant, but depend on conflict situation and individual state. Future studies could pay more attention to reveal the influence factors of cognitive control, exploring cognitive processing strategies and doing cognitive training, which may benefit the intervention treatment of the cognitive function disorders.

Keywords cognitive control      conflict resolution      attention      enhancement      inhibition     
PACS:  B842  
Corresponding Authors: Xun LIU     E-mail: liux@psych.ac.cn
Issue Date: 28 April 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhenghan LI
Guochun YANG
Weizhi NAN
Qi LI
Xun LIU
Cite this article:   
Zhenghan LI,Guochun YANG,Weizhi NAN, et al. Attentional regulation mechanisms of cognitive control in conflict resolution[J]. Advances in Psychological Science, 2018, 26(6): 966-974.
URL:  
http://journal.psych.ac.cn/xlkxjz/EN/10.3724/SP.J.1042.2018.00966     OR     http://journal.psych.ac.cn/xlkxjz/EN/Y2018/V26/I6/966
  
  
  
[1] 刘培朵, 杨文静, 田夏, 陈安涛 . ( 2012). 冲突适应效应研究述评. 心理科学进展, 20( 4), 532-541.
doi: 10.3724/SP.J.1042.2012.00532 url: http://www.cqvip.com/QK/80511A/201204/41512146.html
[2] 刘勋, 南威治, 王凯, 李琦 . ( 2013). 认知控制的模块化组织. 心理科学进展, 21( 12), 2091-2102.
url: http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGXG201311001003.htm
[3] Abel S., Dressel K., Weiller C., & Huber W . ( 2012). Enhancement and suppression in a lexical interference fMRI-paradigm. Brain & Behavior, 2( 2), 109-127.
doi: 10.1002/brb3.31 pmid: 22574280 url: http://onlinelibrary.wiley.com/doi/10.1002/brb3.31/full
[4] Baldauf, D., & Desimone, R. ( 2014). Neural mechanisms of object-based attention. Science, 344, 424-427.
doi: 10.1126/science.1247003 pmid: 24763592 url: http://www.sciencemag.org/cgi/doi/10.1126/science.1247003
[5] Banich M. T., Milham M. P., Jacobson B. L., Webb A., Wszalek T., Cohen N. J., & Kramer A. F . ( 2001). Attentional selection and the processing of task-irrelevant information: Insights from fMRI examinations of the Stroop task. Progress in Brain Research, 134, 459-470.
doi: 10.1016/S0079-6123(01)34030-X url: http://linkinghub.elsevier.com/retrieve/pii/S007961230134030X
[6] Biehl S. C., Ehlis A. C., Müller L. D., Niklaus A., Pauli P., & Herrmann M. J . ( 2013). The impact of task relevance and degree of distraction on stimulus processing. BMC Neuroscience, 14, 107.
doi: 10.1186/1471-2202-14-107 pmid: 24079268 url: http://bmcneurosci.biomedcentral.com/articles/10.1186/1471-2202-14-107
[7] Botvinick, M., & Braver, T. (2015). Motivation and cognitive control: From behavior to neural mechanism. Annual Review of Psychology, 66, 83-113.
doi: 10.1146/annurev-psych-010814-015044 pmid: 25251491 url: http://www.annualreviews.org/doi/10.1146/annurev-psych-010814-015044
[8] Botvinick M. M., Braver T. S., Barch D. M., Carter C. S., & Cohen J. D . ( 2001). Conflict monitoring and cognitive control. Psychological Review, 108( 3), 624-652.
doi: 10.1037//0033-295X.108.3.624 pmid: 11488380 url: http://doi.apa.org/getdoi.cfm?doi=10.1037/0033-295X.108.3.624
[9] Burt, J. S . ( 2002). Why do non-color words interfere with color naming? Journal of Experimental Psychology: Human Perception and Performance, 28( 5), 1019-1038.
doi: 10.1037/0096-1523.28.5.1019 pmid: 12421053 url: http://doi.apa.org/getdoi.cfm?doi=10.1037/0096-1523.28.5.1019
[10] Chao, H. F . ( 2011). Active inhibition of a distractor word: The distractor precue benefit in the Stroop color-naming task. Journal of Experimental Psychology: Human Perception and Performance, 37( 3), 799-812.
doi: 10.1037/a0022191 pmid: 21480743 url: http://doi.apa.org/getdoi.cfm?doi=10.1037/a0022191
[11] Chechko N., Kellermann T., Schneider F., & Habel U . ( 2014). Conflict adaptation in emotional task underlies the amplification of target. Emotion, 14( 2), 321-330.
doi: 10.1037/a0035208 pmid: 24377682 url: http://doi.apa.org/getdoi.cfm?doi=10.1037/a0035208
[12] Chun J. W., Park H. J., Kim D. J., Kim E., & Kim J. J . ( 2017). Contribution of fronto-striatal regions to emotional valence and repetition under cognitive conflict. Brain Research, 1666, 48-57.
doi: 10.1016/j.brainres.2017.04.018 url: http://linkinghub.elsevier.com/retrieve/pii/S0006899317301798
[13] Clouter A., Wilson R., Allen S., Klein R. M., & Eskes G. A . ( 2015). The influence of verbal and spatial working memory load on the time course of the Simon effect. Journal of Experimental Psychology: Human Perception and Performance, 41( 2), 342-355.
doi: 10.1037/a0038715 pmid: 25621577 url: http://doi.apa.org/getdoi.cfm?doi=10.1037/a0038715
[14] Cohen J. D., Dunbar K., & McClelland J. L . ( 1990). On the control of automatic processes - a parallel distributed- processing account of the Stroop effect. Psychological Review, 97( 3), 332-361.
doi: 10.1037//0033-295X.97.3.332 pmid: 2200075 url: http://doi.apa.org/getdoi.cfm?doi=10.1037/0033-295X.97.3.332
[15] Cole M. W., Ito T., Bassett D. S., & Schultz D. H . ( 2016). Activity flow over resting-state networks shapes cognitive task activations. Nature Neuroscience, 19( 12), 1718-1726.
doi: 10.1038/nn.4406 pmid: 27723746 url: http://www.nature.com/articles/nn.4406
[16] Cole M. W., Repovš G., & Anticevic A . ( 2014). The frontoparietal control system: A central role in mental health. Neuroscientist, 20( 6), 652-664.
doi: 10.1177/1073858414525995 url: http://journals.sagepub.com/doi/10.1177/1073858414525995
[17] Cole M. W., Reynolds J. R., Power J. D., Repovs G., Anticevic A., & Braver T. S . ( 2013). Multi-task connectivity reveals flexible hubs for adaptive task control. Nature Neuroscience, 16( 9), 1348-1355.
doi: 10.1038/nn.3470 pmid: 3758404 url: http://www.nature.com/articles/nn.3470
[18] Corbetta M., Miezin F. M., Dobmeyer S., Shulman G. L., & Petersen S. E . ( 1991). Selective and divided attention during visual discriminations of shape, color, and speed: Functional anatomy by positron emission tomography. Journal of Neuroscience, 11( 8), 2383-2402.
doi: 10.1523/JNEUROSCI.11-08-02383.1991 url: http://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.11-08-02383.1991
[19] Egner, T., & Hirsch, J. (2005). Cognitive control mechanisms resolve conflict through cortical amplification of task-relevant information. Nature Neuroscience, 8( 12), 1784-1790.
doi: 10.1038/nn1594 pmid: 16286928 url: http://www.nature.com/articles/nn1594
[20] Fan, J. (2014). An information theory account of cognitive control. Frontiers in Human Neuroscience, 8, 680.
doi: 10.3389/fnhum.2014.00680 pmid: 4151034 url: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4151034/
[21] Fenske, M. J., & Eastwood, J. D . ( 2003). Modulation of focused attention by faces expressing emotion: Evidence from Flanker tasks. Emotion, 3( 4), 327-343.
doi: 10.1037/1528-3542.3.4.327 url: http://doi.apa.org/getdoi.cfm?doi=10.1037/1528-3542.3.4.327
[22] Fox E., Russo R., Bowles R., & Dutton K . ( 2001). Do threatening stimuli draw or hold visual attention in subclinical anxiety? Journal of Experimental Psychology- General, 130( 4), 681-700.
doi: 10.1037/0096-3445.130.4.681 pmid: 11757875 url: http://doi.apa.org/getdoi.cfm?doi=10.1037/0096-3445.130.4.681
[23] Frings C., Wentura D., & Wühr P . ( 2012). On the fate of distractor representations. Journal of Experimental Psychology: Human Perception and Performance, 38( 3), 570-575.
doi: 10.1037/a0027781 pmid: 22428679 url: http://doi.apa.org/getdoi.cfm?doi=10.1037/a0027781
[24] Frings, C., & Wühr, P. (2014). Top-down deactivation of interference from irrelevant spatial or verbal stimulus features. Attention Perception & Psychophysics, 76( 8), 2360-2374.
doi: 10.3758/s13414-014-0728-x pmid: 24980154 url: http://www.ncbi.nlm.nih.gov/pubmed/24980154
[25] Gajewski, P. D., & Falkenstein, M. (2012). Training-induced improvement of response selection and error detection in aging assessed by task switching: Effects of cognitive, physical, and relaxation training. Frontiers in Human Neuroscience, 6, 130.
doi: 10.3389/fnhum.2012.00130 pmid: 3349932 url: http://europepmc.org/articles/PMC3349932
[26] Gorfein, D. S., & MacLeod, C. M . ( 2007). Inhibition in cognition. Washington, DC: American Psychological Association.
[27] Gregoriou G. G., Gotts S. J., Zhou H. H., & Desimone R . ( 2009). High-frequency, long-range coupling between prefrontal and visual cortex during attention. Science, 324, 1207-1210.
doi: 10.1126/science.1171402 pmid: 2849291650773022967381 url: http://www.sciencemag.org/cgi/doi/10.1126/science.1171402
[28] Harris, K. D., & Mrsic-Flogel, T. D . ( 2013). Cortical connectivity and sensory coding. Nature, 503( 7474), 51-58.
doi: 10.1038/nature12654 pmid: 24201278 url: http://www.nature.com/articles/nature12654
[29] Herd S. A., Banich M. T., & O'Reilly R. C . ( 2006). Neural mechanisms of cognitive control: An integrative model of stroop task performance and fMRI data. Journal of Cognitive Neuroscience, 18( 1), 22-32.
doi: 10.1162/089892906775250012 pmid: 16417680 url: http://www.mitpressjournals.org/doi/10.1162/089892906775250012
[30] Houghton, G., & Tipper, S. P . ( 1996). Inhibitory mechanisms of neural and cognitive control: Applications to selective attention and sequential action. Brain and Cognition, 30( 1), 20-43.
doi: 10.1006/brcg.1996.0003 pmid: 8811979 url: http://linkinghub.elsevier.com/retrieve/pii/S0278262696900032
[31] Kalanthroff E., Avnit A., Henik A., Davelaar E. J., & Usher M . ( 2015). Stroop proactive control and task conflict are modulated by concurrent working memory load. Psychonomic Bulletin & Review, 22( 3), 869-875.
doi: 10.3758/s13423-014-0735-x pmid: 25257710 url: http://link.springer.com/article/10.3758/s13423-014-0735-x
[32] Kim S. Y., Kim M. S., & Chun M. M . ( 2005). Concurrent working memory load can reduce distraction. Proceedings of the National Academy of Sciences of the United States of America, 102( 45), 16524-16529.
doi: 10.1073/pnas.0505454102 pmid: 16258067 url: http://www.pnas.org/cgi/doi/10.1073/pnas.0505454102
[33] Koster E. H. W., Hoorelbeke K., Onraedt T., Owens M., & Derakshan N . ( 2017). Cognitive control interventions for depression: A systematic review of findings from training studies. Clinical Psychology Review, 53, 79-92.
doi: 10.1016/j.cpr.2017.02.002 pmid: 28273486 url: http://linkinghub.elsevier.com/retrieve/pii/S0272735816304354
[34] Li Q., Nan W. Z., Wang K., & Liu X . ( 2014). Independent processing of stimulus-stimulus and stimulus-response conflicts. PLoS One, 9( 2), e89249.
doi: 10.1371/journal.pone.0089249 pmid: 3928426 url: http://dx.plos.org/10.1371/journal.pone.0089249
[35] Luna B., Marek S., Larsen B., Tervo-Clemmens B., & Chahal R . ( 2015). An integrative model of the maturation of cognitive control. Annual Review of Neuroscience, 38, 151-170.
doi: 10.1146/annurev-neuro-071714-034054 pmid: 26154978 url: http://www.annualreviews.org/doi/10.1146/annurev-neuro-071714-034054
[36] Manza P., Hu S., Chao H. H., Zhang S., Leung H. C., & Li, C. S. R. (2016). A dual but asymmetric role of the dorsal anterior cingulate cortex in response inhibition and switching from a non-salient to salient action. Neuroimage, 134, 466-474.
doi: 10.1016/j.neuroimage.2016.04.055 pmid: 27126003 url: http://linkinghub.elsevier.com/retrieve/pii/S1053811916300969
[37] Martiny-Huenger T., Gollwitzer P. M., & Oettingen G . ( 2014). Distractor devaluation in a flanker task: Object-specific effects without distractor recognition memory. Journal of Experimental Psychology: Human Perception and Performance, 40( 2), 613-625.
doi: 10.1037/a0034130 pmid: 24016067 url: http://doi.apa.org/getdoi.cfm?doi=10.1037/a0034130
[38] McClure, S. M., & Bickel, W. K . ( 2014). A dual-systems perspective on addiction: Contributions from neuroimaging and cognitive training. Annals of the New York Academy of Sciences, 1327, 62-78.
doi: 10.1111/nyas.12561 pmid: 4285342 url: http://doi.wiley.com/10.1111/nyas.2014.1327.issue-1
[39] Miller G. A., Galanter E., & Pribram K. H . ( 1960). Plans and the structure of behavior. New York, NY, US: Henry Holt and Company.
[40] Minamoto T., Shipstead Z., Osaka N., & Engle R. W . ( 2015). Low cognitive load strengthens distractor interference while high load attenuates when cognitive load and distractor possess similar visual characteristics. Attention, Perception, & Psychophysics, 77( 5), 1659-1673.
doi: 10.3758/s13414-015-0866-9 pmid: 25813738 url: http://www.ncbi.nlm.nih.gov/pubmed/25813738
[41] Mishra J., de Villers-Sidani E., Merzenich M., & Gazzaley A . ( 2014). Adaptive training diminishes distractibility in aging across species. Neuron, 84( 5), 1091-1103.
doi: 10.1016/j.neuron.2014.10.034 pmid: 4264379 url: http://linkinghub.elsevier.com/retrieve/pii/S0896627314009544
[42] Möller M., Mayr S., & Buchner A . ( 2013). Target localization among concurrent sound sources: No evidence for the inhibition of previous distractor responses. Attention, Perception, & Psychophysics, 75( 1), 132-144.
doi: 10.3758/s13414-012-0380-2 pmid: 23077027 url: http://link.springer.com/article/10.3758/s13414-012-0380-2
[43] Motter J. N., Pimontel M. A., Rindskopf D., Devanand D. P., Doraiswamy P. M., & Sneed J. R . ( 2016). Computerized cognitive training and functional recovery in major depressive disorder: A meta-analysis. Journal of Affective Disorders, 189, 184-191.
doi: 10.1016/j.jad.2015.09.022 pmid: 26437233 url: http://linkinghub.elsevier.com/retrieve/pii/S0165032715308454
[44] Navalyal, G. U., & Gavas, R. D . ( 2014). A dynamic attention assessment and enhancement tool using computer graphics. Human-centric Computing and Information Sciences, 4( 1), 11.
doi: 10.1186/s13673-014-0011-0 url: http://www.hcis-journal.com/content/4/1/11
[45] Noonan M. P., Adamian N., Pike A., Printzlau F., Crittenden B. M., & Stokes M. G . ( 2016). Distinct mechanisms for distractor suppression and target facilitation. Journal of Neuroscience, 36( 6), 1797-1807.
doi: 10.1523/JNEUROSCI.2133-15.2016 pmid: 26865606 url: http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.2133-15.2016
[46] Notebaert, W., & Verguts, T. (2008). Cognitive control acts locally. Cognition, 106( 2), 1071-1080.
doi: 10.1016/j.cognition.2007.04.011 url: http://linkinghub.elsevier.com/retrieve/pii/S0010027707001187
[47] Olivers, C. N. L., & Humphreys, G. W . ( 2002). When visual marking meets the attentional blink: More evidence for top-down, limited-capacity inhibition. Journal of Experimental Psychology: Human Perception and Performance, 28( 1), 22-42.
doi: 10.1037/0096-1523.28.1.22 url: http://doi.apa.org/getdoi.cfm?doi=10.1037/0096-1523.28.1.22
[48] Owens M., Koster E. H. W., & Derakshan N . ( 2013). Improving attention control in dysphoria through cognitive training: Transfer effects on working memory capacity and filtering efficiency. Psychophysiology, 50( 3), 297-307.
doi: 10.1111/psyp.12010 pmid: 23350956 url: http://doi.wiley.com/10.1111/psyp.2013.50.issue-3
[49] Padmala, S., & Pessoa, L. (2011). Reward reduces conflict by enhancing attentional control and biasing visual cortical processing. Journal of Cognitive Neuroscience, 23( 11), 3419-3432.
doi: 10.1162/jocn_a_00011 pmid: 21452938 url: http://www.mitpressjournals.org/doi/10.1162/jocn_a_00011
[50] Pardo J. V., Pardo P. J., Janer K. W., & Raichle M. E . ( 1990). The anterior cingulate cortex mediates processing selection in the Stroop attentional conflict paradigm. Proceedings of the National Academy of Sciences of the United States of America, 87( 1), 256-259.
doi: 10.1073/pnas.87.1.256 pmid: 2296583 url: http://www.pnas.org/cgi/doi/10.1073/pnas.87.1.256
[51] Polk T. A., Drake R. M., Jonides J. J., Smith M. R., & Smith E. E . ( 2008). Attention enhances the neural processing of relevant features and suppresses the processing of irrelevant features in humans: A functional magnetic resonance imaging study of the stroop task. Journal of Neuroscience, 28( 51), 13786-13792.
doi: 10.1523/JNEUROSCI.1026-08.2008 pmid: 19091969 url: http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.1026-08.2008
[52] Posner, M., & Snyder, C. (1975). Attention and cognitive control. In R. L. Solso (Ed.), Information processing and cognition: Loyola symposium. Hillsdale, New Jersey: Erlbaum.
[53] Posner, M. I., & Dehaene, S. (1994). Attentional networks. Trends in Neurosciences, 17( 2), 75-79.
doi: 10.1016/0166-2236(94)90078-7 url: http://linkinghub.elsevier.com/retrieve/pii/0166223694900787
[54] Purmann, S., & Pollmann, S. (2015). Adaptation to recent conflict in the classical color-word Stroop-task mainly involves facilitation of processing of task-relevant information. Frontiers in Human Neuroscience, 9, 88.
doi: 10.3389/fnhum.2015.00088 pmid: 4347451 url: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4347451/
[55] Reisenauer, R., & Dreisbach, G. (2014). The shielding function of task rules in the context of task switching. Quarterly Journal of Experimental Psychology, 67( 2), 358-376.
doi: 10.1080/17470218.2013.808678 pmid: 23805948 url: http://journals.sagepub.com/doi/10.1080/17470218.2013.808678
[56] Schrobsdorff H., Ihrke M., Behrendt J., Hasselhorn M., & Herrmann J. M . ( 2012). Inhibition in the dynamics of selective attention: An integrative model for negative priming. Frontiers in Psychology, 3, 491.
doi: 10.3389/fpsyg.2012.00491 pmid: 3498964 url: http://pubmedcentralcanada.ca/pmcc/articles/PMC3498964/
[57] Shenhav A., Botvinick M. M., & Cohen J. D . ( 2013). The expected value of control: An integrative theory of anterior cingulate cortex function. Neuron, 79( 2), 217-240.
doi: 10.1016/j.neuron.2013.07.007 pmid: 23889930 url: http://linkinghub.elsevier.com/retrieve/pii/S0896627313006077
[58] Soutschek A., Stelzel C., Paschke L., Walter H., & Schubert T . ( 2015). Dissociable effects of motivation and expectancy on conflict processing: An fMRI Study. Journal of Cognitive Neuroscience, 27( 2), 409-423.
doi: 10.1162/jocn_a_00712 pmid: 25203271 url: http://www.mitpressjournals.org/doi/10.1162/jocn_a_00712
[59] Stout, D. (2010). The evolution of cognitive control. Topics in Cognitive Science, 2( 4), 614-630.
doi: 10.1111/j.1756-8765.2009.01078.x pmid: 25164046 url: http://doi.wiley.com/10.1111/tops.2010.2.issue-4
[60] Stroop, J. R . ( 1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643-662.
doi: 10.1037/0096-3445.121.1.15 url: http://content.apa.org/journals/xge/18/6/643
[61] Verguts, T., & Notebaert, W. (2008). Hebbian learning of cognitive control: Dealing with specific and nonspecific adaptation. Psychological Review, 115( 2), 518-525.
doi: 10.1037/0033-295X.115.2.518 pmid: 18426302 url: http://doi.apa.org/getdoi.cfm?doi=10.1037/0033-295X.115.2.518
[62] Weissman D. H., Gopalakrishnan A., Hazlett C. J., & Woldorff M. G . ( 2005). Dorsal anterior cingulate cortex resolves conflict from distracting stimuli by boosting attention toward relevant events. Cerebral Cortex, 15( 2), 229-237.
doi: 10.1093/cercor/bhh125 pmid: 15238434 url: http://www.ncbi.nlm.nih.gov/pubmed/15238434
[63] Wendt M., Luna-Rodriguez A., & Jacobsen T . ( 2012). Conflict-Induced perceptual filtering. Journal of Experimental Psychology: Human Perception and Performance, 38( 3), 675-686.
doi: 10.1037/a0025902 url: http://doi.apa.org/getdoi.cfm?doi=10.1037/a0025902
[64] Wingfield, A. (2016). Evolution of models of working memory and cognitive resources. Ear and Hearing, 37, 35S-43S.
doi: 10.1097/AUD.0000000000000310 pmid: 27355768 url: http://Insights.ovid.com/crossref?an=00003446-201607001-00004
[65] Zhang L. W., Ding C., Li H., Zhang Q. L., & Chen A. T . ( 2013). The influence of attentional control on stimulus processing is category specific in Stroop tasks: Attentional control. Psychological Research, 77( 5), 599-610.
doi: 10.1007/s00426-012-0457-5 pmid: 23080057 url: http://link.springer.com/10.1007/s00426-012-0457-5
[1] LEI Ming, LI Pengbo. Neural mechanism underlying the attentional modulation of auditory sensory gating[J]. Advances in Psychological Science, 2020, 28(8): 1232-1245.
[2] Xiaozhuang FAN, Xiaobin BI, Yu XIE, Huizhong HE. Attention bias toward threatening emotional faces in individuals with high-functioning autism[J]. Advances in Psychological Science, 2020, 28(7): 1172-1186.
[3] Lihui WU. The influence and mechanism of self-construal on consumers’ preference for polarizing products[J]. Advances in Psychological Science, 2020, 28(4): 535-548.
[4] Zili HUANG, Yulong DING, Zhe QU. The global modulation of feature-based attention: Enhancement or suppression?[J]. Advances in Psychological Science, 2020, 28(4): 566-578.
[5] Yuan YOU, Li WANG. Cognitive neurological process associated with behavioral inhibition and psychopathology in children[J]. Advances in Psychological Science, 2020, 28(4): 612-625.
[6] Qi HE, Haiying WANG. The effects of meditation on attention[J]. Advances in Psychological Science, 2020, 28(2): 284-293.
[7] Shu MA, Wei ZHANG, Jinlei SHI, Zhen YANG. The human factors of the take-over process in conditional automated driving based on cognitive mechanism[J]. Advances in Psychological Science, 2020, 28(1): 150-160.
[8] ShengDong CHEN, YongQiang CHEN, Wei GAO, Li LUO, JieMin YANG, JiaJin YUAN. The automaticity in cognitive processing: From dichotomy to gradual view[J]. Advances in Psychological Science, 2019, 27(9): 1556-1563.
[9] Taian LI, Yu ZHANG, Jie LI. The application of multiple object tracking in the evaluation and training of different populations[J]. Advances in Psychological Science, 2019, 27(9): 1585-1595.
[10] Yanjie SU, Dongjie XIE, Xiaonan WANG. The role of cognitive control in third-party punishment[J]. Advances in Psychological Science, 2019, 27(8): 1331-1343.
[11] Luyi YUAN, Ruosong CHANG, Jinfei MA. Why does a driver can not see a critical event on the road?Interaction between “bottom-up” and “top-down” processing mechanisms[J]. Advances in Psychological Science, 2019, 27(3): 557-570.
[12] Yuzhu JI, Hongyan BI. The noise exclusion deficit in developmental dyslexia[J]. Advances in Psychological Science, 2019, 27(2): 201-208.
[13] Shaorui WANG, Hong CHEN. Why trying to lose weight brings fat? Psychological mechanisms and influencing factors of overeating among restrained eaters[J]. Advances in Psychological Science, 2019, 27(2): 322-328.
[14] Liuqing WEI, Xuemin ZHANG. The neural mechanism of multiple object tracking[J]. Advances in Psychological Science, 2019, 27(12): 2007-2018.
[15] Haining LIU, Xiaoqian LIU, Haihong LIU, Feng LI, Buxin HAN. The mechanism of positivity effect in elderly’s emotional attention[J]. Advances in Psychological Science, 2019, 27(12): 2064-2076.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Advances in Psychological Science
Support by Beijing Magtech