Please wait a minute...
心理科学进展  2018, Vol. 26 Issue (7): 1165-1173    DOI: 10.3724/SP.J.1042.2018.01165
     研究简报 本期目录 | 过刊浏览 | 高级检索 |
现代舞训练与弦乐训练对脑灰质体积的差异影响
李谷静,李薪,贺辉,罗程,尧德中()
电子科技大学生命科学与技术学院, 成都 610054
Modern dance training and string instrument training have different effects on grey matter architecture
Gujing LI,Xin LI,Hui HE,Cheng LUO,Dezhong YAO()
School of Life Science And Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
全文: PDF(1291 KB)   HTML
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 

目前舞蹈与音乐两种训练对脑灰质结构影响的差异尚不明确。本研究利用基于体素的形态学分析方法(voxel-based morphometry, VBM), 比较现代舞训练被试、弦乐训练被试与对照组被试的脑结构磁共振数据。结果表明现代舞训练组在涉及感觉运动控制的皮层、皮层下结构及小脑多个区域出现灰质体积的显著增加与减少; 弦乐训练组则在与音乐训练直接相关的听-动-读皮层出现灰质体积的显著增加。这一发现提示现代舞训练可能系统性地影响广泛脑区的灰质结构, 弦乐训练可能局部地改变了具体功能脑区的灰质结构, 两种训练对脑灰质结构的影响模式存在差异。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李谷静
李薪
贺辉
罗程
尧德中
关键词 现代舞训练弦乐训练基于体素的形态学分析(VBM)    
Abstract

The discrepant effects of dance and music training on gray matter volume are still unknown. In this study, We used voxel-based morphometry (VBM) method to analyze the structural magnetic resonance imaging (sMRI) data of modern dancers, string instrument players and controls subjects. Our results showed increased gray matter volume (GMV) among cortical, subcortical and the cerebellum areas within the modern dancers and localized cortical regions in the string instrument players respectively. Moreover, among the three groups only modern dancers showed decreased GMV between cortical and subcortical regions. The results suggested a systematical and widespread effects of modern dance training as well as an effector-specific training outcome in the auditory-motor-semantic cortex of the string instrument players.

Key wordsmodern dance training    string instrument training    voxel-based morphometry (VBM)
收稿日期: 2017-11-24      出版日期: 2018-05-29
ZTFLH:  B845  
基金资助:长江学者和创新团队发展计划项目(IRT0910);中央高校基本科研业务费项目(ZYGX2016J266)
通讯作者: 尧德中     E-mail: dyao@uestc.edu.cn
引用本文:   
李谷静,李薪,贺辉,罗程,尧德中. (2018). 现代舞训练与弦乐训练对脑灰质体积的差异影响. 心理科学进展, 26(7), 1165-1173.
Gujing LI,Xin LI,Hui HE,Cheng LUO,Dezhong YAO. (2018). Modern dance training and string instrument training have different effects on grey matter architecture. Advances in Psychological Science, 26(7), 1165-1173.
链接本文:  
http://journal.psych.ac.cn/xlkxjz/CN/10.3724/SP.J.1042.2018.01165      或      http://journal.psych.ac.cn/xlkxjz/CN/Y2018/V26/I7/1165
人口学变量 现代舞训练组 弦乐训练组 对照组 p
性别(男/女) 5/13 7/13 8/17 0.892
年龄(岁) 19.00 ± 1.41 19.05 ± 1.19 19.24 ± 0.87 0.765 df (2,60)
教育水平(年) 12.83 ± 1.33 13.05 ± 1.09 13.20 ± 1.11 0.574 df (2,60)
训练年限(年) 11.44 ± 3.24 11.33 ± 2.72 0.282 df (36)
  被试人口学信息
脑区 MNI坐标 体素
个数
F(2,60)值
(最大点)
dan-con dan-
con (p)
dan-
con (t41)
mus-con mus-
con (p)
mus-
con (t43)
mus-dan mus-dan (p) mus-
dan (t36)
x y z
Cerebelum_
Crus1_R
33 -58 -40 32 9.99 p < 0.05 0.01029 2.69 0.07979 -1.79 p < 0.001 0.00029 -4.01
Frontal_
Med_Orb_R
6 40 -6 82 11.29 p < 0.001 0.00039 3.86 0.74462 -0.33 p < 0.001 0.00058 -3.76
Thalamus_R 12 -21 -1 267 18.05 p < 0.001 0.00028 -3.97 0.16760 1.40 p < 0.001 0.00001 5.26
Thalamus_L -10 -16 1 240 13.33 p < 0.001 0.00036 -3.89 0.26093 1.14 p < 0.001 0.00001 5.26
Temporal_
Sup_R
55 -15 1 131 13.47 0.74732 0.32 p < 0.001 0.00002 4.80 p < 0.001 0.00090 3.61
Putamen_R 25 4 13 112 12.88 p < 0.001 0.00009 4.33 0.29734 1.05 p < 0.01 0.00233 -3.27
Supp_Motor_
Area_R
6 1 63 128 11.83 p < 0.01 0.00161 -3.38 0.34007 0.96 p < 0.001 0.00001 5.12
Precentral_L -34 -6 58 120 12.12 p < 0.01 0.00564 -2.92 p < 0.05 0.04677 2.05 p < 0.001 0.00004 4.68
Frontal_
Mid_R
42 -3 57 71 11.30 0.23886 -1.20 p < 0.01 0.00225 3.24 p < 0.001 0.00003 4.77
  现代舞训练组、弦乐训练组与对照组灰质体积的组间比较
  现代舞训练组、弦乐训练组与对照组灰质体积的组间比较
注:MFG. R: 右侧额中回; STG. R: 右侧颞上回; SMA. R: 右侧辅助运动皮层; PreCG. L: 左侧中央前回; THA. L: 左侧丘脑; THA. R: 右侧丘脑; CERC1. R: 右侧小脑; PUT. R: 右侧壳核; ORBsup. R: 右侧眶部额上回。彩图见电子版。
1 段旭君 . ( 2013). 基于大尺度脑网络分析方法的脑可塑性研究(博士学位论文). 电子科技大学, 成都.
2 蒋存梅 . ( 2016). 音乐心理学. 上海: 华东师范大学出版社.
3 马清 . ( 2000). 音乐理论与管弦乐基础. 北京: 北京大学出版社.
4 平心 . ( 2004). 舞蹈心理学. 北京: 高等教育出版社.
5 吕艺生 . ( 2003). 舞蹈学导论. 上海: 上海音乐出版社.
6 覃嫔 . ( 2018). 舞蹈艺术的训练研究. 北京: 北京理工大学出版社.
7 周临舒, 赵怀阳, 蒋存梅 . ( 2017). 音乐表演训练对神经可塑性的影响: 元分析研究. 心理科学进展, 25( 11), 1877-1887.
8 Ashburner, J., & Friston K. J, . ( 2000). Voxel-based morphometry--the methods. NeuroImage, 11, 805-821.
9 Ashburner, J., & Friston K. J, . ( 2005). Unified segmentation. NeuroImage, 26( 3), 839-851.
10 Bangert M., Peschel T., Schlaug G., Rotte M., Drescher D., Hinrichs H., .. Altenmüller E . ( 2006). Shared networks for auditory and motor processing in professional pianists: Evidence from fMRI conjunction. NeuroImage, 30( 3), 917-926.
pmid: 16380270
11 Bangert, M., & Schlaug G. , ( 2006). Specialization of the specialized in features of external human brain morphology. European Journal of Neuroscience, 24( 6), 1832-1834.
pmid: 1700494617004946
12 Baumann S., Koeneke S., Schmidt C. F., Meyer M., Lutz K., & Jancke L . ( 2007). A network for audio-motor coordination in skilled pianists and non-musicians. Brain Research, 1161, 65-78.
pmid: 17603027
13 Bermudez P., Lerch J. P., Evans A. C., & Zatorre R. J . ( 2009). Neuroanatomical correlates of musicianship as revealed by cortical thickness and voxel-based morphometry. Cerebral Cortex, 19( 7), 1583-1596.
pmid: 19073623
14 Bostan A. C., Dum R. P., & Strick P. L . ( 2013). Cerebellar networks with the cerebral cortex and basal ganglia. Trends in Cognitive Sciences, 17( 5), 241-254.
15 Brown S., Martinez M. J., & Parsons L. M . ( 2006). The neural basis of human dance. Cerebral Cortex, 16( 8), 1157-1167.
pmid: 16221923
16 Burzynska A. Z., Finc K., Taylor B. K., Knecht A. M., & Kramer A. F . ( 2017). The dancing brain: Structural and functional signatures of expert dance training. Frontiers in Human Neuroscience, 11, 566.
pmid: 5711858
17 Calvo-Merino B., Glaser D. E., Grèzes J., Passingham R. E., & Haggard P . ( 2005). Action observation and acquired motor skills: An FMRI study with expert dancers. Cerebral Cortex, 15( 8), 1243-1249.
pmid: 15616133
18 Cross E. S., Hamilton A. F., & Grafton S. T . ( 2006). Building a motor simulation de novo: Observation of dance by dancers. NeuroImage, 31( 3), 1257-1267.
19 Draganski B., Gaser C., Busch V., Schuierer G., Bogdahn U., & May A . ( 2004). Neuroplasticity: Changes in grey matter induced by training. Nature, 427( 6972), 311-312.
20 Giacosa C., Karpati F. J., Foster N. E. V., Penhune V. B., & Hyde K. L . ( 2016). Dance and music training have different effects on white matter diffusivity in sensorimotor pathways. NeuroImage, 135, 273-286.
pmid: 27114054
21 Groussard M., Rauchs G., Landeau B., Viader F., Desgranges B., Eustache F., & Platel H . ( 2010). The neural substrates of musical memory revealed by fMRI and two semantic tasks. NeuroImage, 53( 4), 1301-1309.
pmid: 20627131
22 Groussard M., Viader F., Landeau B., Desgranges B., Eustache F., & Platel H . ( 2014). The effects of musical practice on structural plasticity: The dynamics of grey matter changes. Brain and Cognition, 90, 174-180.
pmid: 25127369
23 Han Y., Yang H., Lv Y. T., Zhu C. Z., He Y., Tang H. H., .. Dong Q . ( 2009). Gray matter density and white matter integrity in pianists' brain: A combined structural and diffusion tensor MRI study. Neuroscience Letters, 459( 1), 3-6.
pmid: 18672026
24 Hänggi J., Koeneke S., Bezzola L., & Jäncke L . ( 2010). Structural neuroplasticity in the sensorimotor network of professional female ballet dancers. Human Brain Mapping, 31( 8), 1196-1206.
pmid: 20024944
25 Huang H. Y., Wang J. J., Seger C., Min L., Feng D., Wu X. Y., .. Huang R. W . ( 2017). Long-term intensive gymnastic training induced changes in intra- and inter-network functional connectivity: An independent component analysis. Brain Structure and Function, 223( 1), 131-144.
pmid: 28733834
26 Huang R. W., Lu M., Song Z., & Wang J . ( 2015). Long-term intensive training induced brain structural changes in world class gymnasts. Brain Structure and Function, 220( 2), 625-644.
pmid: 24297657
27 Hutchinson S., Lee L. H. L., Gaab N., & Schlaug G . ( 2003). Cerebellar volume of musicians. Cerebral Cortex, 13( 9), 943-949.
28 Hyde K. L., Peretz I., & Zatorre R. J . ( 2008). Evidence for the role of the right auditory cortex in fine pitch resolution. Neuropsychologia, 46( 2), 632-639.
pmid: 17959204
29 Jola C., McAleer P., Grosbras M. H., Love S. A., Morison G., & Pollick F. E . ( 2013). Uni- and multisensory brain areas are synchronised across spectators when watching unedited dance recordings. i-Perception, 4( 4), 265-284.
pmid: 24349687
30 Jones J., Adlam A., Benattayallah A., & Milton F . ( 2017, July). Working memory training increases recruitment of the middle frontal gyrus in children. Poster session presented at the Conference of Experimental Psychology Society, Reading, UK.
31 Karpati F. J., Giacosa C., Foster N. E. V., Penhune V. B., & Hyde K. L . ( 2017). Dance and music share gray matter structural correlates. Brain Research, 1657, 62-73.
pmid: 27923638
32 Kheradmand, A., & Zee D. S, . ( 2011). Cerebellum and ocular motor control. Frontiers in Neurology, 2, 53.
pmid: 3164106
33 Koelsch, S., & Siebel W. A, . ( 2005). Towards a neural basis of music perception. Trends in Cognitive Sciences, 9( 12), 578-584.
34 Lahav A., Saltzman E., & Schlaug G . ( 2007). Action representation of sound: Audiomotor recognition network while listening to newly acquired actions. Journal of Neuroscience, 27( 2), 308-314.
35 Laufer I., Negishi M., Lacadie C. M., Papademetris X., & Constable R. T . ( 2011). Dissociation between the activity of the right middle frontal gyrus and the middle temporal gyrus in processing semantic priming. PLoS One, 6( 8), e22368.
pmid: 21829619
36 Li G. J., He H., Huang M. T., Zhang X. X., Lu J., Lai Y. X., .. Yao D. Z . ( 2015). Identifying enhanced cortico- basal ganglia loops associated with prolonged dance training. Scientific Reports, 5, 10271.
pmid: 26035693
37 Li S. Y., Han Y., Wang D. Y., Yang H., Fan Y. B., Lv Y. T., .. He Y . ( 2010). Mapping surface variability of the central sulcus in musicians. Cerebral Cortex, 20( 1), 25-33.
pmid: 19433652
38 Maguire E. A., Gadian D. G., Johnsrude I. S., Good C. D., Ashburner J., Frackowiak R. S. J., & Frith C. D . ( 2000) Navigation-related structural change in the hippocampi of taxi drivers. Proceedings of the National Academy of Sciences of the United States of America, 97( 8), 4398-4403.
pmid: 10716738
39 Mutschler I., Schulze-Bonhage A., Glauche V., Demandt E., Speck O., & Ball T . ( 2007). A rapid sound-action association effect in human insular cortex. PLoS One, 2( 2), e259.
pmid: 17327919
40 Nichols, T. E . ( 2012). Multiple testing corrections, nonparametric methods, and random field theory. NeuroImage, 62( 2), 811-815.
pmid: 22521256
41 Oldfield, R. C . ( 1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9( 1), 97-113.
pmid: 5146491
42 Ono Y., Nomoto Y., Tanaka S., Sato K., Shimada S., Tachibana A., .. Noah J. A . ( 2014). Frontotemporal oxyhemoglobin dynamics predict performance accuracy of dance simulation gameplay: Temporal characteristics of top-down and bottom-up cortical activities. NeuroImage, 85, 461-470.
pmid: 23707582
43 Öztürk A. H., Tasçioglu B., Aktekin M., Kurtoglu Z., & Erden I . ( 2002). Morphometric comparison of the human corpus callosum in professional musicians and non- musicians by using in vivo magnetic resonance imaging. Journal of Neuroradiology, 29( 1), 29-34.
pmid: 11984475
44 Rüber T., Lindenberg R., & Schlaug G . ( 2015). Differential adaptation of descending motor tracts in musicians. Cerebral Cortex, 25( 6), 1490-1498.
pmid: 24363265
45 Schlaug G., Jancke L., Huang Y., & Steinmetz H . ( 1995). In vivo evidence of structural brain asymmetry in musicians. Science, 267( 5198), 699-701.
46 Schneider P., Scherg M., Dosch H. G., Specht H. J., Gutschalk A., & Rupp A . ( 2002). Morphology of Heschl's gyrus reflects enhanced activation in the auditory cortex of musicians. Nature Neuroscience, 5( 7), 688-694.
pmid: 12068300
47 Shibasaki H., Sadato N., Lyshkow H., Yonekura Y., Honda M., Nagamine T., .. Konishi J . ( 1993). Both primary motor cortex and supplementary motor area play an important role in complex finger movement. Brain, 116, 1387-1398.
pmid: 8293277
48 Sluming V., Barrick T., Howard M., Cezayirli E., Mayes A., & Roberts N . ( 2002). Voxel-based morphometry reveals increased gray matter density in Broca's area in male symphony orchestra musicians. NeuroImage, 17( 3), 1613-1622.
pmid: 12414299
49 Taubert M., Draganski B., Anwander A., Muller K., Horstmann A., Villringer A., & Ragert P . ( 2010). Dynamic properties of human brain structure: Learning-related changes in cortical areas and associated fiber connections. Journal of Neuroscience, 30( 35), 11670-11677.
pmid: 20810887
50 Turner R. S., Grafton S. T., Votaw J. R., Delong M. R., & Hoffman J. M . ( 1998). Motor subcircuits mediating the control of movement velocity: A PET study. Journal of Neurophysiology, 80( 4), 2162-2176.
pmid: 9772269
[1] 邓潇斐, 郭建友. Parvalbumin阳性中间神经元缺陷在精神分裂症病理机制中的作用[J]. 心理科学进展, 2018, 26(11): 1992-2002.
[2] 周晶, 宣宾. 额叶区域的经颅直流电刺激对抑制控制的影响[J]. 心理科学进展, 2018, 26(11): 1976-1991.
[3] 李丹阳,李鹏,李红. 反馈负波及其近10年理论解释[J]. 心理科学进展, 2018, 26(9): 1642-1650.
[4] 傅于玲,邓富民,杨帅,徐玖平. 舌尖上的“自虐”——食辣中的心理学问题[J]. 心理科学进展, 2018, 26(9): 1651-1660.
[5] 林博荣,何勍,赵金,杨佳,石迎珍,闫芳芳,席洁,黄昌兵. 经颅电刺激与视功能调控[J]. 心理科学进展, 2018, 26(9): 1632-1641.
[6] 段凯凯,董昊铭,苗丽雯,苏学权,相洁,左西年. 人脑自适应多尺度功能连接的性别差异[J]. 心理科学进展, 2018, 26(9): 1567-1575.
[7] 杨洋,孙铃,张红川,黄四林,朱晓. 适应负荷:社会经济地位影响健康的生理机制[J]. 心理科学进展, 2018, 26(8): 1475-1487.
[8] 林云强,朱慧敏,连福鑫. 自闭症儿童能否痊愈?——来自谱系个体“最佳结果”及剩余缺陷研究的证据分析[J]. 心理科学进展, 2018, 26(8): 1465-1474.
[9] 孙岩,房林,王亭予,崔丽. 自闭症谱系障碍者抑制控制的影响因素及神经机制[J]. 心理科学进展, 2018, 26(8): 1450-1464.
[10] 张旭凯,尹航,李鹏,李红. 催产素对社会决策行为的影响[J]. 心理科学进展, 2018, 26(8): 1438-1449.
[11] 刘迪迪,王美萍,陈翩,张文新. COMT基因Val158Met多态性与抑郁的关系[J]. 心理科学进展, 2018, 26(8): 1429-1437.
[12] 张一帆,齐星亮,蔡厚德. 啮齿动物主动母性行为动态改变的神经机制[J]. 心理科学进展, 2018, 26(8): 1417-1428.
[13] 雷怡,梅颖,张文海,李红. 基于知觉的恐惧泛化的认知神经机制[J]. 心理科学进展, 2018, 26(8): 1391-1403.
[14] 武侠,钟楚鹏,丁玉珑,曲折. 利用时频分析研究非相位锁定脑电活动[J]. 心理科学进展, 2018, 26(8): 1349-1364.
[15] 毛天欣,熊晓,李静华,姚颖,杨健,李笑然,周国富. 光照的警觉性作用[J]. 心理科学进展, 2018, 26(7): 1213-1222.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《心理科学进展》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn