[1] |
Chamberland, C., Hodgetts, H. M., Vallières, B. R., Vachon, F., & Tremblay, S. (2016). Pip and Pop:When auditory alarms facilitate visual change detection in dynamic settings. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 60(1), 284-288.
|
[2] |
Chastain, G., & Cheal, M. (1999). Time course of attention effects with abrupt-onset and offset single- and multiple- element precues. The American Journal of Psychology, 112(3), 411-436.
doi: 10.2307/1423639
URL
|
[3] |
Erdfelder, E., Auer, T.-S., Hilbig, B. E., Aßfalg, A., Moshagen, M., & Nadarevic, L. (2009). Multinomial processing tree models: Zeitschriftfur Psychologie. 217(3), 108-124.
|
[4] |
Escera, C., Alho, K., Winkler, I., & Näätänen, R. (1998). Neural mechanisms of involuntary attention to acoustic novelty and change. Journal of Cognitive Neuroscience, 10(5), 590-604.
pmid: 9802992
|
[5] |
Escera, C., Corral, M. J., & Yago, E. (2002). An electrophysiological and behavioral investigation of involuntary attention towards auditory frequency, duration and intensity changes. Cognitive Brain Research, 14(3), 325-332.
pmid: 12421656
|
[6] |
Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175-191.
doi: 10.3758/bf03193146
pmid: 17695343
|
[7] |
Fister, J. K., Stevenson, R. A., Nidiffer, A. R., Barnett, Z. P., & Wallace, M. T. (2016). Stimulus intensity modulates multisensory temporal processing. Neuropsychologia, 88, 92-100.
doi: S0028-3932(16)30051-3
pmid: 26920937
|
[8] |
Fleming, J. T., Noyce, A. L., & Shinn-Cunningham, B. G. (2020). Audio-visual spatial alignment improves integration in the presence of a competing audio-visual stimulus. Neuropsychologia, 146, 107530.
doi: 10.1016/j.neuropsychologia.2020.107530
URL
|
[9] |
Giard, M. H., & Peronnet, F. (1999). Auditory-visual integration during multimodal object recognition in humans: A behavioral and electrophysiological study. Journal of Cognitive Neuroscience, 11(5), 473-490.
pmid: 10511637
|
[10] |
Knoeferle, K. M., Knoeferle, P., Velasco, C., & Spence, C. (2016). Multisensory brand search: How the meaning of sounds guides consumers' visual attention. Journal of Experimental Psychology Applied, 22(2), 196-210.
doi: 10.1037/xap0000084
URL
|
[11] |
Kösem, A., & van Wassenhove, V. (2012). Temporal structure in audiovisual sensory selection. PLoS One, 7(7), e40936.
|
[12] |
Lavie, N. (2005). Distracted and confused?: Selective attention under load. Trends in Cognitive Sciences, 9(2), 75-82.
pmid: 15668100
|
[13] |
Lewald, J., Ehrenstein, W. H., & Guski, R. (2001). Spatio- temporal constraints for auditory-visual integration. Behavioural Brain Research, 121(1-2), 69-79.
pmid: 11275285
|
[14] |
Lewald, J., & Guski, R. (2003). Cross-modal perceptual integration of spatially and temporally disparate auditory and visual stimuli. Cognitive Brain Research, 16(3), 468-478.
pmid: 12706226
|
[15] |
Lunn, J., Sjoblom, A., Ward, J., Soto-Faraco, S., & Forster, S. (2019). Multisensory enhancement of attention depends on whether you are already paying attention. Cognition, 187, 38-49.
doi: S0010-0277(19)30035-6
pmid: 30825813
|
[16] |
Mishler, A. D., & Neider, M. B. (2018). Redundancy gain for categorical targets depends on display configuration and duration. Visual Cognition, 26(6), 393-404.
doi: 10.1080/13506285.2018.1470587
URL
|
[17] |
Mishler, A., & Neider, M. (2016). Evidence for the redundant signals effect in detection of categorical targets. Journal of Vision, 16(12), 1024.
|
[18] |
Ngo, M. K., & Spence, C. (2010a). Auditory, tactile, and multisensory cues facilitate search for dynamic visual stimuli. Attention Perception & Psychophysics, 72(6), 1654-1665.
doi: 10.3758/APP.72.6.1654
URL
|
[19] |
Ngo, M. K., & Spence, C. (2010b). Crossmodal facilitation of masked visual target identification. Attention Perception & Psychophysics, 72(7), 1938-1947.
doi: 10.3758/APP.72.7.1938
URL
|
[20] |
Ngo, M. K., & Spence, C. (2012). Facilitating masked visual target identification with auditory oddball stimuli. Experimental Brain Research, 221(2), 129-136.
doi: 10.1007/s00221-012-3153-1
pmid: 22760584
|
[21] |
Pariyadath, V., & Eagleman, D. (2007). The effect of predictability on subjective duration. PLoS One, 2(11), e1264.
|
[22] |
Perrott, D. R., Saberi, K., Brown, K., & Strybel, T. Z. (1990). Auditory psychomotor coordination and visual search performance. Perception & Psychophysics, 48(3), 214-226.
doi: 10.3758/BF03211521
URL
|
[23] |
Pluta, S. R., Rowland, B. A., Stanford, T. R., & Stein, B. E. (2011). Alterations to multisensory and unisensory integration by stimulus competition. Journal Neurophysiology, 106(6), 3091-3101.
doi: 10.1152/jn.00509.2011
URL
|
[24] |
Slutsky, D. A., & Recanzone, G. H. (2001). Temporal and spatial dependency of the ventriloquism effect. NeuroReport, 12(1), 7-10.
pmid: 11201094
|
[25] |
Soto-Faraco, S., Kingstone, A., & Spence, C. (2003). Multisensory contributions to the perception of motion. Neuropsychologia, 41(13), 1847-1862.
pmid: 14527547
|
[26] |
Spence, C. (2013). Just how important is spatial coincidence to multisensory integration? Evaluating the spatial rule. Annals of the New York Academy Sciences, 1296, 31-49.
|
[27] |
Stein, B. E., London, N., Wilkinson, L. K., & Price, D. D. (1996). Enhancement of perceived visual intensity by auditory stimuli: A psychophysical analysis. Journal of Cognitive Neuroscience, 8(6), 497-506.
doi: 10.1162/jocn.1996.8.6.497
pmid: 23961981
|
[28] |
Stein, B. E., & Stanford, T. R. (2008). Multisensory integration: Current issues from the perspective of the single neuron. Nature Reviews Neuroscience, 9(4), 255-266.
doi: 10.1038/nrn2331
pmid: 18354398
|
[29] |
Stevenson, R. A., Fister, J. K., Barnett, Z. P., Nidiffer, A. R., & Wallace, M. T. (2012). Interactions between the spatial and temporal stimulus factors that influence multisensory integration in human performance. Experimental Brain Research, 219(1), 121-137.
doi: 10.1007/s00221-012-3072-1
pmid: 22447249
|
[30] |
Talsma, D., Senkowski, D., Soto-Faraco, S., & Woldorff, M. G. (2010). The multifaceted interplay between attention and multisensory integration. Trends in Cognitive Sciences, 14(9), 400-410.
doi: 10.1016/j.tics.2010.06.008
URL
|
[31] |
Tang, X., Wu, J., & Shen, Y. (2016). The interactions of multisensory integration with endogenous and exogenous attention. Neuroscience Biobehavioral Reviews, 61, 208-224.
doi: 10.1016/j.neubiorev.2015.11.002
URL
|
[32] |
Tsai, Y.-Y., & Yeh, S.-L. (2013). Freezing effect in tactile perception: Sound facilitates tactile identification by enhancing intensity but not duration. Journal of Experimental Psychology Human Perception & Performance, 39(4), 925-932.
|
[33] |
Tse, P. U., Intriligator, J., Rivest, J., & Cavanagh, P. (2004). Attention and the subjective expansion of time. Perception & Psychophysics, 66(7), 1171-1189.
doi: 10.3758/BF03196844
URL
|
[34] |
van den Brink, R. L., Cohen, M. X., van der Burg, E., Talsma, D., Vissers, M. E., & Slagter, H. A. (2014). Subcortical, modality-specific pathways contribute to multisensory processing in humans. Cerebral Cortex, 24(8), 2169-2177.
doi: 10.1093/cercor/bht069
URL
|
[35] |
van der Burg, E., Olivers, C. N., Bronkhorst, A. W., & Theeuwes, J. (2008). Pip and pop: Nonspatial auditory signals improve spatial visual search. Journal of Experimental Psychology: Human Perception & Performance, 34(5), 1053-1065.
|
[36] |
van der Burg, E., Talsma, D., Olivers, C. N., Hickey, C., & Theeuwes, J. (2011). Early multisensory interactions affect the competition among multiple visual objects. Neuroimage, 55(3), 1208-1218.
doi: 10.1016/j.neuroimage.2010.12.068
pmid: 21195781
|
[37] |
van der Stoep, N., van der Stigchel, S., & Nijboer, T. C. (2015). Exogenous spatial attention decreases audiovisual integration. Attention Perception & Psychophysics, 77(2), 464-482.
doi: 10.3758/s13414-014-0785-1
URL
|
[38] |
van der Stoep, N., van der Stigchel, S., Nijboer, T. C. W., & Spence, C. (2017). Visually Induced Inhibition of Return Affects the Integration of Auditory and Visual Information. Perception, 46(1), 6-17.
doi: 10.1177/0301006616661934
pmid: 27484341
|
[39] |
Vroomen, J., & de Gelder, B. (2000). Sound enhances visual perception: Cross-modal effects of auditory organization on vision. Journal of Experimental Psychology: Human Perception & Performance, 26(5), 1583-1590.
|
[40] |
Yang, W., Chu, B., Yang, J., Yu, Y., Wu, J., & Yu, S. (2014). Elevated audiovisual temporal interaction in patients with migraine without aura. Journal of Headache & Pain, 15(1), 44.
|
[41] |
Zou, H., Müller, H. J., & Shi, Z. (2012). Non-spatial sounds regulate eye movements and enhance visual search. Journal of Vision, 12(5), 123-129.
doi: 10.1167/12.9.123
URL
|