心理学报 ›› 2021, Vol. 53 ›› Issue (1): 15-25.doi: 10.3724/SP.J.1041.2021.00015
雷震1, 毕蓉2, 莫李澄2, 于文汶2, 张丹丹1,2()
收稿日期:
2020-05-03
出版日期:
2021-01-25
发布日期:
2020-11-24
通讯作者:
张丹丹
E-mail:zhangdd05@gmail.com
基金资助:
LEI Zhen1, BI Rong2, MO Licheng2, YU Wenwen2, ZHANG Dandan1,2()
Received:
2020-05-03
Online:
2021-01-25
Published:
2020-11-24
Contact:
ZHANG Dandan
E-mail:zhangdd05@gmail.com
摘要:
准确识别言语中的情绪韵律信息对社会交往非常重要。本研究采用功能近红外成像技术, 探索外显和内隐情绪加工条件下愤怒、恐惧、快乐三种情绪韵律加工过程中的大脑皮层神经活动。结果表明, 对愤怒、恐惧、快乐韵律进行特异性加工的脑区分别为左侧额极/眶额叶、右侧缘上回、左侧额下回, 其中右侧缘上回脑区同时受到情绪和任务的调控。此外, 右侧颞中回、颞下回和颞极在情绪外显任务中的激活明显强于内隐任务。本研究的结果部分支持了情绪韵律的层次模型, 也对该模型的第三层次, 即“额区对语音情绪信息的精细加工需要外显性情绪加工任务参与”提出了质疑。
中图分类号:
雷震, 毕蓉, 莫李澄, 于文汶, 张丹丹. (2021). 外显和内隐情绪韵律加工的脑机制:近红外成像研究. 心理学报, 53(1), 15-25.
LEI Zhen, BI Rong, MO Licheng, YU Wenwen, ZHANG Dandan. (2021). The brain mechanism of explicit and implicit processing of emotional prosodies: An fNIRS study. Acta Psychologica Sinica, 53(1), 15-25.
通道 | 发射器-探测器 | MNI坐标 | Brodmann分区及脑区重合度* | ||
---|---|---|---|---|---|
x | y | z | |||
1 | Fp1-Fpz | -10 | 68 | -5 | 10 - Frontopolar area (0.62) |
2 | Fp1-AF3 | -25 | 66 | 4 | 10 - Frontopolar area (1.00) |
3 | Fp1-AF7 | -32 | 62 | -8 | 10 - Frontopolar area (0.58) 11 - Orbitofrontal area (0.42) |
4 | AFz-Fpz | 3 | 66 | 11 | 10 - Frontopolar area (1.00) |
5 | AFz-AF3 | -12 | 65 | 20 | 10 - Frontopolar area (1.00) |
6 | AFz-AF4 | 16 | 65 | 20 | 10 - Frontopolar area (1.00) |
7 | F5-AF7 | -46 | 48 | 0 | 10 - Frontopolar area (0.46) 47 - Inferior prefrontal gyrus (0.34) |
8 | F5-F7 | -52 | 39 | 0 | 47 - Inferior prefrontal gyrus (0.62) |
9 | F5-FC5 | -56 | 27 | 16 | 45 - pars triangularis, part of Broca’s area (0.64) |
10 | FT7-F7 | -57 | 21 | -13 | 38 - Temporopolar area (0.68) |
11 | FT7-FC5 | -61 | 8 | 2 | 22 - Superior temporal gyrus (0.61) |
12 | FT7-T7 | -66 | -7 | -14 | 21 - Middle temporal gyrus (1.00) |
13 | C5-FC5 | -64 | -2 | 24 | 6 - Pre-motor and supplementary motor cortex (0.67) |
14 | C5-T7 | -68 | -17 | 8 | 42 - Primary and auditory association cortex (0.51) |
15 | C5-CP5 | -66 | -30 | 28 | 40 - Supramarginal gyrus, part of Wernicke’s area (0.73) |
16 | TP7-T7 | -69 | -31 | -9 | 21 - Middle temporal gyrus (1.00) |
17 | TP7-CP5 | -67 | -44 | 11 | 22 - Superior temporal gyrus (0.92) |
18 | TP7-P7 | -64 | -55 | -4 | 21 - Middle temporal gyrus (0.58) 37 - Fusiform gyrus (0.42) |
19 | P5-CP5 | -60 | -56 | 28 | 40 - Supramarginal gyrus, part of Wernicke’s area (0.58) |
20 | P5-P7 | -58 | -68 | 13 | 39 - Angular gyrus, part of Wernicke’s area (0.42) |
21 | Fp2-Fpz | 14 | 68 | -5 | 10 - Frontopolar area (0.66) |
22 | Fp2-AF4 | 28 | 66 | 4 | 10 - Frontopolar area (1.00) |
23 | Fp2-AF8 | 35 | 63 | -8 | 10 - Frontopolar area (0.63) |
24 | F6-AF8 | 49 | 48 | 1 | 10 - Frontopolar area (0.45) |
25 | F6-F8 | 54 | 39 | 1 | 47 - Inferior prefrontal gyrus (0.56) |
26 | F6-FC6 | 58 | 25 | 16 | 45 - pars triangularis, part of Broca’s area (0.69) |
27 | FT8-F8 | 59 | 21 | -12 | 38 - Temporopolar area (0.62) |
28 | FT8-FC6 | 63 | 7 | 3 | 22 - Superior temporal gyrus (0.63) |
29 | FT8-T8 | 67 | -7 | -12 | 21 - Middle temporal gyrus (1.00) |
30 | C6-FC6 | 66 | -3 | 24 | 6 - Pre-motor and supplementary motor cortex (0.66) |
31 | C6-T8 | 70 | -17 | 8 | 42 - Primary and auditory association cortex (0.50) |
32 | C6-CP6 | 67 | -30 | 28 | 40 - Supramarginal gyrus, part of Wernicke’s area (0.78) |
33 | TP8-T8 | 70 | -30 | -9 | 21 - Middle temporal gyrus (0.98) |
34 | TP8-CP6 | 68 | -43 | 11 | 22 - Superior temporal gyrus (0.92) |
35 | TP8-P8 | 64 | -54 | -4 | 37 - Fusiform gyrus (0.54) 21 - Middle temporal gyrus (0.46) |
36 | P6-CP6 | 61 | -56 | 28 | 40 - Supramarginal gyrus, part of Wernicke’s area (0.61) |
37 | P6-P8 | 57 | -67 | 13 | 39 - Angular gyrus, part of Wernicke’s area (0.54) |
表1 实验中37个NIRS通道的空间配准信息
通道 | 发射器-探测器 | MNI坐标 | Brodmann分区及脑区重合度* | ||
---|---|---|---|---|---|
x | y | z | |||
1 | Fp1-Fpz | -10 | 68 | -5 | 10 - Frontopolar area (0.62) |
2 | Fp1-AF3 | -25 | 66 | 4 | 10 - Frontopolar area (1.00) |
3 | Fp1-AF7 | -32 | 62 | -8 | 10 - Frontopolar area (0.58) 11 - Orbitofrontal area (0.42) |
4 | AFz-Fpz | 3 | 66 | 11 | 10 - Frontopolar area (1.00) |
5 | AFz-AF3 | -12 | 65 | 20 | 10 - Frontopolar area (1.00) |
6 | AFz-AF4 | 16 | 65 | 20 | 10 - Frontopolar area (1.00) |
7 | F5-AF7 | -46 | 48 | 0 | 10 - Frontopolar area (0.46) 47 - Inferior prefrontal gyrus (0.34) |
8 | F5-F7 | -52 | 39 | 0 | 47 - Inferior prefrontal gyrus (0.62) |
9 | F5-FC5 | -56 | 27 | 16 | 45 - pars triangularis, part of Broca’s area (0.64) |
10 | FT7-F7 | -57 | 21 | -13 | 38 - Temporopolar area (0.68) |
11 | FT7-FC5 | -61 | 8 | 2 | 22 - Superior temporal gyrus (0.61) |
12 | FT7-T7 | -66 | -7 | -14 | 21 - Middle temporal gyrus (1.00) |
13 | C5-FC5 | -64 | -2 | 24 | 6 - Pre-motor and supplementary motor cortex (0.67) |
14 | C5-T7 | -68 | -17 | 8 | 42 - Primary and auditory association cortex (0.51) |
15 | C5-CP5 | -66 | -30 | 28 | 40 - Supramarginal gyrus, part of Wernicke’s area (0.73) |
16 | TP7-T7 | -69 | -31 | -9 | 21 - Middle temporal gyrus (1.00) |
17 | TP7-CP5 | -67 | -44 | 11 | 22 - Superior temporal gyrus (0.92) |
18 | TP7-P7 | -64 | -55 | -4 | 21 - Middle temporal gyrus (0.58) 37 - Fusiform gyrus (0.42) |
19 | P5-CP5 | -60 | -56 | 28 | 40 - Supramarginal gyrus, part of Wernicke’s area (0.58) |
20 | P5-P7 | -58 | -68 | 13 | 39 - Angular gyrus, part of Wernicke’s area (0.42) |
21 | Fp2-Fpz | 14 | 68 | -5 | 10 - Frontopolar area (0.66) |
22 | Fp2-AF4 | 28 | 66 | 4 | 10 - Frontopolar area (1.00) |
23 | Fp2-AF8 | 35 | 63 | -8 | 10 - Frontopolar area (0.63) |
24 | F6-AF8 | 49 | 48 | 1 | 10 - Frontopolar area (0.45) |
25 | F6-F8 | 54 | 39 | 1 | 47 - Inferior prefrontal gyrus (0.56) |
26 | F6-FC6 | 58 | 25 | 16 | 45 - pars triangularis, part of Broca’s area (0.69) |
27 | FT8-F8 | 59 | 21 | -12 | 38 - Temporopolar area (0.62) |
28 | FT8-FC6 | 63 | 7 | 3 | 22 - Superior temporal gyrus (0.63) |
29 | FT8-T8 | 67 | -7 | -12 | 21 - Middle temporal gyrus (1.00) |
30 | C6-FC6 | 66 | -3 | 24 | 6 - Pre-motor and supplementary motor cortex (0.66) |
31 | C6-T8 | 70 | -17 | 8 | 42 - Primary and auditory association cortex (0.50) |
32 | C6-CP6 | 67 | -30 | 28 | 40 - Supramarginal gyrus, part of Wernicke’s area (0.78) |
33 | TP8-T8 | 70 | -30 | -9 | 21 - Middle temporal gyrus (0.98) |
34 | TP8-CP6 | 68 | -43 | 11 | 22 - Superior temporal gyrus (0.92) |
35 | TP8-P8 | 64 | -54 | -4 | 37 - Fusiform gyrus (0.54) 21 - Middle temporal gyrus (0.46) |
36 | P6-CP6 | 61 | -56 | 28 | 40 - Supramarginal gyrus, part of Wernicke’s area (0.61) |
37 | P6-P8 | 57 | -67 | 13 | 39 - Angular gyrus, part of Wernicke’s area (0.54) |
通道 | 脑区 | F | p* | 愤怒β值 | 恐惧β值 | 快乐β值 |
---|---|---|---|---|---|---|
3 | L Frontopolar/orbitofrontal area | 12.51 | 0.001 | 0.21 ± 0.20 | 0.12 ± 0.23 | 0.06 ± 0.20 |
9 | L pars triangularis/Broca’s area | 24.24 | < 0.001 | 0.10 ± 0.16 | 0.10 ± 0.15 | 0.21 ± 0.15 |
32 | R Supramarginal gyrus | 12.48 | 0.001 | 0.10 ± 0.56 | 0.36 ± 0.51 | 0.11 ± 0.45 |
表2 情绪主效应结果
通道 | 脑区 | F | p* | 愤怒β值 | 恐惧β值 | 快乐β值 |
---|---|---|---|---|---|---|
3 | L Frontopolar/orbitofrontal area | 12.51 | 0.001 | 0.21 ± 0.20 | 0.12 ± 0.23 | 0.06 ± 0.20 |
9 | L pars triangularis/Broca’s area | 24.24 | < 0.001 | 0.10 ± 0.16 | 0.10 ± 0.15 | 0.21 ± 0.15 |
32 | R Supramarginal gyrus | 12.48 | 0.001 | 0.10 ± 0.56 | 0.36 ± 0.51 | 0.11 ± 0.45 |
通道 | 脑区 | F | p* | 内隐β值 | 外显β值 |
---|---|---|---|---|---|
27 | R Temporopolar area | 11.62 | 0.004 | 0.04 ± 0.36 | 0.32 ± 0.42 |
28 | R Superior temporal gyrus | 26.17 | < 0.001 | 0.05 ± 0.45 | 0.37 ± 0.43 |
29 | R Middle temporal gyrus | 15.84 | 0.003 | -0.03 ± 0.49 | 0.34 ± 0.53 |
表3 任务主效应结果
通道 | 脑区 | F | p* | 内隐β值 | 外显β值 |
---|---|---|---|---|---|
27 | R Temporopolar area | 11.62 | 0.004 | 0.04 ± 0.36 | 0.32 ± 0.42 |
28 | R Superior temporal gyrus | 26.17 | < 0.001 | 0.05 ± 0.45 | 0.37 ± 0.43 |
29 | R Middle temporal gyrus | 15.84 | 0.003 | -0.03 ± 0.49 | 0.34 ± 0.53 |
[1] |
Adolphs, R., Damasio, H., Tranel, D., Cooper, G., & Damasio, A. R. (2000). A role for somatosensory cortices in the visual recognition of emotion as revealed by three-dimensional lesion mapping. The Journal of Neuroscience, 20(7), 2683-2690.
URL pmid: 10729349 |
[2] |
Alba-Ferrara, L., Kochen, S., & Hausmann, M. (2018). Emotional prosody processing in epilepsy: Some insights on brain reorganization. Frontiers in Human Neuroscience, 12, 92.
URL pmid: 29593517 |
[3] |
Aryani, A., Hsu, C.-T., & Jacobs, A. M. (2018). The sound of words evokes affective brain responses. Brain Sciences, 8(6), 94.
doi: 10.3390/brainsci8060094 URL |
[4] |
Bach, D. R., Grandjean, D., Sander, D., Herdener, M., Strik, W. K., & Seifritz, E. (2008). The effect of appraisal level on processing of emotional prosody in meaningless speech. Neuroimage, 42(2), 919-927.
doi: 10.1016/j.neuroimage.2008.05.034 URL pmid: 18586524 |
[5] |
Beaucousin, V., Zago, L., Herve, P.-Y., Strelnikov, K., Crivello, F., Mazoyer, B., & Tzourio-Mazoyer, N. (2011). Sex-dependent modulation of activity in the neural networks engaged during emotional speech comprehension. Brain Research, 1390, 108-117.
URL pmid: 21439268 |
[6] |
Belyk, M., & Brown, S. (2014). Perception of affective and linguistic prosody: An ALE meta-analysis of neuroimaging studies. Social Cognitive and Affective Neuroscience, 9(9), 1395-1403.
doi: 10.1093/scan/nst124 URL pmid: 23934416 |
[7] |
Ben-David, B. M., Multani, N., Shakuf, V., Rudzicz, F., & van Lieshout, P. H. H. M. (2016). Prosody and semantics are separate but not separable channels in the perception of emotional speech: test for rating of emotions in speech. Journal of Speech Language and Hearing Research, 59(1), 72-89.
doi: 10.1044/2015_JSLHR-H-14-0323 URL |
[8] |
Beyer, F., Munte, T. F., Gottlich, M., & Kramer, U. M. (2014). Orbitofrontal cortex reactivity to angry facial expression in a social interaction correlates with aggressive behavior. Cerebral Cortex, 25(9), 3057-3063.
URL pmid: 24842782 |
[9] |
Brück, C., Kreifelts, B., & Wildgruber, D. (2011). Emotional voices in context: A neurobiological model of multimodal affective information processing. Physics of Life Reviews, 8(4), 383-403.
doi: 10.1016/j.plrev.2011.10.002 URL pmid: 22035772 |
[10] |
Calvo, M. G., & Nummenmaa, L. (2016). Perceptual and affective mechanisms in facial expression recognition: An integrative review. Cognition and Emotion, 30(6), 1081-1106.
URL pmid: 26212348 |
[11] |
Dieler, A. C., Tupak, S. V., & Fallgatter, A. J. (2012). Functional near-infrared spectroscopy for the assessment of speech related tasks. Brain and Language, 121(2), 90-109.
URL pmid: 21507475 |
[12] |
Enea, V., & Iancu, S. (2016). Processing emotional body expressions: state-of-the-art. Social Neuroscience, 11(5), 495-506.
URL pmid: 26513592 |
[13] |
Ethofer, T., Anders, S., Erb, M., Herbert, C., Wiethoff, S., Kissler, J., … Wildgruber, D. (2006). Cerebral pathways in processing of affective prosody: a dynamic causal modeling study. Neuroimage, 30(2), 580-587.
URL pmid: 16275138 |
[14] |
Ethofer, T., Bretscher, J., Gschwind, M., Kreifelts, B., Wildgruber, D., & Vuilleumier, P. (2012). Emotional voice areas: Anatomic location, functional properties, and structural connections revealed by combined fMRI/DTI. Cerebral Cortex, 22(1), 191-200.
URL pmid: 21625012 |
[15] |
Ethofer, T., Kreifelts, B., Wiethoff, S., Wolf, J., Grodd, W., Vuilleumier, P., & Wildgruber, D. (2009b). Differential influences of emotion, task, and novelty on brain regions underlying the processing of speech melody. Journal of Cognitive Neuroscience, 21(7), 1255-1268.
URL pmid: 18752404 |
[16] |
Ethofer, T., van de Ville, D., Scherer, K., & Vuilleumier, P. (2009a). Decoding of emotional information in voice- sensitive cortices. Current Biology, 19(12), 1028-1033.
URL pmid: 19446457 |
[17] |
Fox, K. C. R., Yih, J., Raccah, O., Pendekanti, S. L., Limbach, L. E., Maydan, D. D., & Parvizi, J. (2018). Changes in subjective experience elicited by direct stimulation of the human orbitofrontal cortex. Neurology, 91(16), e1519-e1527.
URL pmid: 30232252 |
[18] |
Frühholz, S., Ceravolo, L., & Grandjean, D. (2012). Specific brain networks during explicit and implicit decoding of emotional prosody. Cerebral Cortex, 22(5), 1107-1117.
URL pmid: 21750247 |
[19] |
Frühholz, S., & Grandjean, D. (2013a). Multiple subregions in superior temporal cortex are differentially sensitive to vocal expressions: a quantitative meta-analysis. Neuroscience and Biobehavioral Reviews, 37(1), 24-35.
URL pmid: 23153796 |
[20] |
Frühholz, S., & Grandjean, D. (2013b). Processing of emotional vocalizations in bilateral inferior frontal cortex. Neuroscience and Biobehavioral Reviews, 37(10), 2847-2855.
doi: 10.1016/j.neubiorev.2013.10.007 URL |
[21] |
Frühholz, S., Hofstetter, C., Cristinzio, C., Saj, A., Seeck, M., & Vuilleumier, P., & Grandjean, D.(2015). Asymmetrical effects of unilateral right or left amygdala damage on auditory cortical processing of vocal emotions. Proceedings of the National Academy of Sciences of the United States of America, 112(5), 1583-1588.
URL pmid: 25605886 |
[22] |
Frühholz, S., Trost, W., & Kotz, S. A. (2016). The sound of emotions-Towards a unifying neural network perspective of affective sound processing. Neuroscience and Biobehavioral Reviews, 68, 96-110.
URL pmid: 27189782 |
[23] |
Goucha, T., & Friederici, A. D. (2015). The language skeleton after dissecting meaning: A functional segregation within Broca’s Area. Neuroimage, 114, 294-302.
URL pmid: 25871627 |
[24] |
Hartwigsen, G., Baumgaertner, A., Price, C. J., Koehnke, M., Ulmer, S., & Siebner, H. R. (2010). Phonological decisions require both the left and right supramarginal gyri. Proceedings of the National Academy of Sciences of the United States of America, 107(38), 16494-16499.
URL pmid: 20807747 |
[25] |
Hensel, L., Bzdok, D., Müller, V. I., Zilles, K., & Eickhoff, S. B. (2015). Neural correlates of explicit social judgments on vocal stimuli. Cerebral Cortex, 25(5), 1152-1162.
URL pmid: 24243619 |
[26] |
Herpertz, S. C., Nagy, K., Ueltzhöffer, K., Schmitt, R., Mancke, F., Schmahl, C., & Bertsch, K. (2017). Brain mechanisms underlying reactive aggression in borderline personality disorder-sex matters. Biological Psychiatry, 82(4), 257-266.
URL pmid: 28388995 |
[27] |
Hinojosa, J. A., Mercado, F., & Carretié, L. (2015). N170 sensitivity to facial expression: A meta-analysis. Neuroscience and Biobehavioral Reviews, 55, 498-509.
URL pmid: 26067902 |
[28] |
Johnstone, T., van Reekum, C. M., Oakes, T. R., & Davidson, R. J. (2006). The voice of emotion: an FMRI study of neural responses to angry and happy vocal expressions. Social Cognitive and Affective Neuroscience, 1(3), 242-249.
URL pmid: 17607327 |
[29] |
Kirby, L. A. J., & Robinson, J. L. (2017). Affective mapping: An activation likelihood estimation (ALE) meta-analysis. Brain and Cognition, 118, 137-148.
doi: 10.1016/j.bandc.2015.04.006 URL pmid: 26074298 |
[30] |
Knight, M. J., & Baune, B. T. (2019). Social cognitive abilities predict psychosocial dysfunction in major depressive disorder. Depression and Anxiety, 36(1), 54-62.
URL pmid: 30211966 |
[31] |
Kotz, S. A., Kalberlah, C., Bahlmann, J., Friederici, A. D., & Haynes, J.-D. (2013). Predicting vocal emotion expressions from the human brain. Human Brain Mapping, 34(8), 1971-1981.
URL pmid: 22371367 |
[32] |
Kotz, S. A., Meyer, M., Alter, K., Besson, M., von Cramon, D. Y., & Friederici, A. D. (2003). On the lateralization of emotional prosody: an event-related functional MR investigation. Brain and Language, 86(3), 366-376.
URL pmid: 12972367 |
[33] | Köchel, A., Schöngassner, F., & Schienle, A. (2013). Cortical activation during auditory elicitation of fear and disgust: a near-infrared spectroscopy (NIRS) study. Neuroscience Letters, 9(549), 197-200. |
[34] |
Lancaster, J. L., Woldorff, M. G., Parsons, L. M., Liotti, M., Freitas, C. S., Rainey, L.,… Fox, P. (2000). Automated Talairach atlas labels for functional brain mapping. Human Brain Mapping, 10(3), 120-131.
doi: 10.1002/1097-0193(200007)10:3<120::aid-hbm30>3.0.co;2-8 URL pmid: 10912591 |
[35] | Liebenthal, E., Silbersweig, D. A., & Stern, E. (2016). The Language, Tone and prosody of emotions: neural substrates and dynamics of spoken-word emotion perception. Frontiers in Aging Neuroscience, 10, 506. |
[36] | Lin, Y., Ding, H., & Zhang, Y. (2018). Emotional prosody processing in schizophrenic patients: A selective review and meta-analysis. Journal of Clinical Medicine, 7(10), 363. |
[37] | Lindquist, K. A., Wager, T. D., Kober, H., Bliss-Moreau, E., & Barrett, L. F. (2012). The brain basis of emotion: a meta- analytic review. Behavioral and Brain Sciences, 35(3), 121-143. |
[38] |
Liu, P., & Pell, M. D. (2012). Recognizing vocal emotions in Mandarin Chinese: a validated database of Chinese vocal emotional stimuli. Behavior Research Methods, 44, 1042-1051.
URL pmid: 22539230 |
[39] |
Matsui, T., Nakamura, T., Utsumi, A., Sasaki, A. T., Koike, T., Yoshida, Y., … Sadato, N. (2016). The role of prosody and context in sarcasm comprehension: Behavioral and fMRI evidence. Neuropsychologia, 87, 74-84.
URL pmid: 27157883 |
[40] |
Mitchell, R. L. C. (2007). fMRI delineation of working memory for emotional prosody in the brain: commonalities with the lexico-semantic emotion network. Neuroimage, 36(3), 1015-1025.
URL pmid: 17481919 |
[41] |
Mitchell, R. L. C., & Xu, Y. (2015). What is the value of embedding artificial emotional prosody in human-computer interactions? Implications for theory and design in psychological science. Frontiers in Psychology, 6, 1750.
URL pmid: 26617563 |
[42] |
Molavi, B., & Dumont, G. A. (2012). Wavelet-based motion artifact removal for functional near-infrared spectroscopy. Physiological Measurement, 33(2), 259-270.
URL pmid: 22273765 |
[43] |
Mothes-Lasch, M., Mentzel, H.-J., Miltner, W. H. R., & Straube, T. (2011). Visual attention modulates brain activation to angry voices. Journal of Neuroscience, 31(26), 9594-9598.
URL pmid: 21715624 |
[44] |
Patel, S., Oishi, K., Wright, A., Sutherland-Foggio, H., Saxena, S., Sheppard, S. M., & Hillis, A. E. (2018). Right hemisphere regions critical for expression of emotion through prosody. Frontiers in Neurology, 9, 224.
URL pmid: 29681885 |
[45] |
Patterson, R. D., Uppenkamp, S., Johnsrude, I. S., & Griffiths, T. D. (2002). The processing of temporal pitch and melody information in auditory cortex. Neuron, 36(4), 767-776.
URL pmid: 12441063 |
[46] |
Paulmann, S., Seifert, S., & Kotz, S. A. (2010). Orbito-frontal lesions cause impairment during late but not early emotional prosodic processing. Social Neuroscience, 5(1), 59-75.
URL pmid: 19658025 |
[47] |
Quadflieg, S., Mohr, A., Mentzel, H.-J., Miltner, W. H. R., & Straube, T. (2008). Modulation of the neural network involved in the processing of anger prosody: the role of task-relevance and social phobia. Biological Psychology, 78(2), 129-137.
URL pmid: 18353521 |
[48] |
Ross, E. D. (1981). The aprosodias. Functional-anatomic organization of the affective components of language in the right hemisphere. Archives of Neurology, 38(9), 561-569.
URL pmid: 7271534 |
[49] |
Schirmer, A., & Kotz, S. A. (2006). Beyond the right hemisphere: brain mechanisms mediating vocal emotional processing. Trends in Cognitive Sciences, 10(1), 24-30.
URL pmid: 16321562 |
[50] |
Steber, S., König, N., Stephan, F., & Rossi, S. (2020). Uncovering electrophysiological and vascular signatures of implicit emotional prosody. Scientific Reports, 10(1), 5807.
URL pmid: 32242032 |
[51] |
Tong, Y., Hocke, L. M., & Frederick, B. B., (2011). Isolating the sources of widespread physiological fluctuations in functional near-infrared spectroscopy signals. Journal of Biomedical Optics, 16(10), 106005.
URL pmid: 22029352 |
[52] |
Witteman, J., van Heuven, V. J., & Schiller, N. O. (2012). Hearing feelings: a quantitative meta-analysis on the neuroimaging literature of emotional prosody perception. Neuropsychologia, 50(12), 2752-2763.
URL pmid: 22841991 |
[53] |
Zhang, D., Chen, Y., Hou, X., & Wu, Y. J. (2019). Near-infrared spectroscopy reveals neural perception of vocal emotions in human neonates. Human Brain Mapping, 40(8), 2434-2448.
URL pmid: 30697881 |
[54] |
Zhang, D., Zhou, Y., Hou, X., Cui, Y., & Zhou, C. (2017). Discrimination of emotional prosodies in human neonates: A pilot fNIRS study. Neuroscience Letters, 658, 62-66.
URL pmid: 28842278 |
[55] |
Zhang, D., Zhou, Y., & Yuan, J. (2018). Speech prosodies of different emotional categories activate different brain regions in adult cortex: an fNIRS study. Scientific Reports, 8(1), 218.
URL pmid: 29317758 |
[1] | 郑晓明, 余宇, 刘鑫. 配偶情绪智力对员工工作投入的影响:员工生活幸福感的中介作用和性别的调节作用[J]. 心理学报, 2022, 54(6): 646-664. |
[2] | 张明, 王婷婷, 吴晓刚, 张月娥, 王爱君. 面孔表情和声音情绪信息整合对返回抑制的影响[J]. 心理学报, 2022, 54(4): 331-342. |
[3] | 刘宇平, 周冰涛, 杨波. 情绪如何引发暴力犯的攻击?基于情绪调节理论的解释[J]. 心理学报, 2022, 54(3): 270-280. |
[4] | 罗文波, 齐正阳. 词汇具体性对情绪名词效价加工影响的ERP研究[J]. 心理学报, 2022, 54(2): 111-121. |
[5] | 蒋元萍, 江程铭, 胡天翊, 孙红月. 情绪对跨期决策的影响:来自单维占优模型的解释[J]. 心理学报, 2022, 54(2): 122-140. |
[6] | 尹可丽, 兰淼森, 李慧, 赵子文. 仪式动作、象征意义和积极情绪增强控制感:双路径机制[J]. 心理学报, 2022, 54(1): 54-65. |
[7] | 张文新, 李曦, 陈光辉, 曹衍淼. 母亲积极教养与青少年亲社会行为:共情的中介作用与OXTR基因的调节作用[J]. 心理学报, 2021, 53(9): 976-991. |
[8] | 佘卓霖, 李全, 杨百寅, 杨斌. 工作狂领导对团队绩效的双刃剑作用机制[J]. 心理学报, 2021, 53(9): 1018-1031. |
[9] | 程瑞, 卢克龙, 郝宁. 愤怒情绪对恶意创造力的影响及调节策略[J]. 心理学报, 2021, 53(8): 847-860. |
[10] | 宋琪, 陈扬. 需求和接受的授权型领导匹配对下属工作结果的影响:情绪耗竭的中介作用[J]. 心理学报, 2021, 53(8): 890-903. |
[11] | 熊承清, 许佳颖, 马丹阳, 刘永芳. 囚徒困境博弈中对手面部表情对合作行为的影响及其作用机制[J]. 心理学报, 2021, 53(8): 919-932. |
[12] | 袁加锦, 张祎程, 陈圣栋, 罗利, 茹怡珊. 中国情绪调节词语库的初步编制与试用[J]. 心理学报, 2021, 53(5): 445-455. |
[13] | 宋锡妍, 程亚华, 谢周秀甜, 龚楠焰, 刘雷. 愤怒情绪对延迟折扣的影响:确定感和控制感的中介作用[J]. 心理学报, 2021, 53(5): 456-468. |
[14] | 莫李澄, 郭田友, 张岳瑶, 徐锋, 张丹丹. 激活右腹外侧前额叶提高抑郁症患者对社会疼痛的情绪调节能力:一项TMS研究[J]. 心理学报, 2021, 53(5): 494-504. |
[15] | 杨伟文, 李超平. 资质过剩感对个体绩效的作用效果及机制:基于情绪-认知加工系统与文化情境的元分析[J]. 心理学报, 2021, 53(5): 527-554. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||