心理学报 ›› 2024, Vol. 56 ›› Issue (11): 1634-1650.doi: 10.3724/SP.J.1041.2024.01634 cstr: 32110.14.2024.01634
唐小娟1, 彭志霞2, 秦珊珊2, 丁树良3, 毛萌萌4, 李瑜5(
)
收稿日期:2023-09-26
发布日期:2024-09-05
出版日期:2024-11-25
通讯作者:
李瑜, E-mail: mingliyuduo@126.com基金资助:
TANG Xiaojuan1, PENG Zhixia2, QIN Shanshan2, DING Shuliang3, MAO Mengmeng4, LI Yu5(
)
Received:2023-09-26
Online:2024-09-05
Published:2024-11-25
摘要:
Q矩阵的完备性是认知诊断模型具有可识别性的关键。多级评分含有比0-1评分更丰富的诊断信息, 却鲜见多级评分完备Q矩阵的设计研究。用最少的题量获得最高判准率是测验设计者追求的目标, 借鉴0-1评分完备Q矩阵的设计方法, 本文提出从可达阵中获取多级评分结构化/非结构化最简完备Q矩阵(SSCQM/USCQM)的方法和算法。模拟实验得出以下结论:(1)测验含SSCQM/USCQM越多, 判准率越高; (2)当列数相同时, 含多个SSCQM或多个USCQM测验的判准率与含可达阵测验的判准率非常接近; (3)对于一些结构, 纵使多个SSCQM/USCQM的列数少于可达阵列数, 其判准率仍不低于可达阵。总之, 短测验设计优先选择SSCQM; 长测验设计优先选择USCQM。
中图分类号:
唐小娟, 彭志霞, 秦珊珊, 丁树良, 毛萌萌, 李瑜. (2024). 基于可达阵的多级评分最简完备Q矩阵设计. 心理学报, 56(11), 1634-1650.
TANG Xiaojuan, PENG Zhixia, QIN Shanshan, DING Shuliang, MAO Mengmeng, LI Yu. (2024). Design of the polytomous simplest complete Q matrix based on the reachability matrix. Acta Psychologica Sinica, 56(11), 1634-1650.
| R | ||||||
|---|---|---|---|---|---|---|
| 1. (000000) | 0 | 0 | 0 | 0 | 0 | 0 |
| 2. (100000) | 1 | 1 | 1 | 1 | 1 | 1 |
| 3. (110000) | 1 | 2 | 2 | 2 | 2 | 2 |
| 4. (111000) | 1 | 2 | 3 | 3 | 3 | 3 |
| 5. (111100) | 1 | 2 | 3 | 4 | 4 | 4 |
| 6. (111110) | 1 | 2 | 3 | 4 | 5 | 5 |
| 7. (111111) | 1 | 2 | 3 | 4 | 5 | 6 |
表1 KS与R的理想反应
| R | ||||||
|---|---|---|---|---|---|---|
| 1. (000000) | 0 | 0 | 0 | 0 | 0 | 0 |
| 2. (100000) | 1 | 1 | 1 | 1 | 1 | 1 |
| 3. (110000) | 1 | 2 | 2 | 2 | 2 | 2 |
| 4. (111000) | 1 | 2 | 3 | 3 | 3 | 3 |
| 5. (111100) | 1 | 2 | 3 | 4 | 4 | 4 |
| 6. (111110) | 1 | 2 | 3 | 4 | 5 | 5 |
| 7. (111111) | 1 | 2 | 3 | 4 | 5 | 6 |
| (0,0,0,0,0,0) | |
| (1,0,0,0,0,0) | |
| (1,1,0,0,0,0) | |
| (1,1,1,0,0,0) | |
| (1,1,1,1,0,0) | |
| (1,1,1,1,1,0) | |
| (1,1,1,1,1,1) |
表2 线型结构$\alpha $在${{Q}_{L}}$上的$S(\alpha )$
| (0,0,0,0,0,0) | |
| (1,0,0,0,0,0) | |
| (1,1,0,0,0,0) | |
| (1,1,1,0,0,0) | |
| (1,1,1,1,0,0) | |
| (1,1,1,1,1,0) | |
| (1,1,1,1,1,1) |
| I1 | ||
|---|---|---|
| 1.(0,0,0,0,0,0) | ||
| 2.(1,0,0,0,0,0) | ||
| 3.(1,1,0,0,0,0) | ||
| 4.(1,1,1,0,0,0) | ||
| 5.(1,1,1,1,0,0) | ||
| 6.(1,1,1,0,1,0) | ||
| 7.(1,1,1,1,1,0) | ||
| 8.(1,1,1,1,1,1) | ||
表3 收敛型结构(a)$\mathbf{\alpha }$在I1上的$S(\mathbf{\alpha })$
| I1 | ||
|---|---|---|
| 1.(0,0,0,0,0,0) | ||
| 2.(1,0,0,0,0,0) | ||
| 3.(1,1,0,0,0,0) | ||
| 4.(1,1,1,0,0,0) | ||
| 5.(1,1,1,1,0,0) | ||
| 6.(1,1,1,0,1,0) | ||
| 7.(1,1,1,1,1,0) | ||
| 8.(1,1,1,1,1,1) | ||
| 属性层级结构 | 含最简完备Q列 的倍数(总列数) | 含1个或多个SSCQM | 含1个或多个USCQM | 可达阵 | |||
|---|---|---|---|---|---|---|---|
| MMR | PMR | MMR | PMR | MMR | PMR | ||
| 线型结构 | 1(1) | 0.9956 | 0.9736 | ||||
| 3(3) | 0.9986 | 0.9919 | 0.9989 | 0.9932 | |||
| 6(6) | 0.9997 | 0.9981 | 0.9995 | 0.9972 | 0.9967 | 0.9803 | |
| 收敛结构(a) | 1(2) | 0.9952 | 0.9714 | 0.9953 | 0.9716 | ||
| 2(4) | 0.9993 | 0.9962 | 0.9964 | 0.9786 | |||
| 3(6) | 0.9987 | 0.9922 | 0.9987 | 0.9922 | 0.9958 | 0.9748 | |
| 收敛结构(b) | 1(2) | 0.9958 | 0.9747 | 0.9962 | 0.9774 | ||
| 2(4) | 0.9993 | 0.9960 | 0.9971 | 0.9829 | |||
| 3(6) | 0.9992 | 0.9952 | 0.9988 | 0.9930 | 0.9959 | 0.9752 | |
| 收敛结构(c) | 1(3) | 0.9974 | 0.9844 | 0.9978 | 0.9865 | ||
| 2(6) | 0.9983 | 0.9898 | 0.9987 | 0.9923 | 0.9962 | 0.9780 | |
| 分支结构 | 1(3) | 0.9974 | 0.9848 | 0.9979 | 0.9876 | ||
| 2(6) | 0.9981 | 0.9884 | 0.9987 | 0.9922 | 0.9944 | 0.9665 | |
| 无结构 | 1(5) | 0.9964 | 0.9785 | 0.9980 | 0.9885 | ||
| 1+(6) | 0.9977 | 0.9872 | 0.9986 | 0.9919 | 0.9932 | 0.9590 | |
表4 六个属性s,g服从U(0,0.15)三种长测验的判准率
| 属性层级结构 | 含最简完备Q列 的倍数(总列数) | 含1个或多个SSCQM | 含1个或多个USCQM | 可达阵 | |||
|---|---|---|---|---|---|---|---|
| MMR | PMR | MMR | PMR | MMR | PMR | ||
| 线型结构 | 1(1) | 0.9956 | 0.9736 | ||||
| 3(3) | 0.9986 | 0.9919 | 0.9989 | 0.9932 | |||
| 6(6) | 0.9997 | 0.9981 | 0.9995 | 0.9972 | 0.9967 | 0.9803 | |
| 收敛结构(a) | 1(2) | 0.9952 | 0.9714 | 0.9953 | 0.9716 | ||
| 2(4) | 0.9993 | 0.9962 | 0.9964 | 0.9786 | |||
| 3(6) | 0.9987 | 0.9922 | 0.9987 | 0.9922 | 0.9958 | 0.9748 | |
| 收敛结构(b) | 1(2) | 0.9958 | 0.9747 | 0.9962 | 0.9774 | ||
| 2(4) | 0.9993 | 0.9960 | 0.9971 | 0.9829 | |||
| 3(6) | 0.9992 | 0.9952 | 0.9988 | 0.9930 | 0.9959 | 0.9752 | |
| 收敛结构(c) | 1(3) | 0.9974 | 0.9844 | 0.9978 | 0.9865 | ||
| 2(6) | 0.9983 | 0.9898 | 0.9987 | 0.9923 | 0.9962 | 0.9780 | |
| 分支结构 | 1(3) | 0.9974 | 0.9848 | 0.9979 | 0.9876 | ||
| 2(6) | 0.9981 | 0.9884 | 0.9987 | 0.9922 | 0.9944 | 0.9665 | |
| 无结构 | 1(5) | 0.9964 | 0.9785 | 0.9980 | 0.9885 | ||
| 1+(6) | 0.9977 | 0.9872 | 0.9986 | 0.9919 | 0.9932 | 0.9590 | |
| 属性层级结构 | 含最简完备Q列 的倍数(总列数) | 含1个或多个SSCQM | 含1个或多个USCQM | 可达阵 | |||
|---|---|---|---|---|---|---|---|
| MMR | PMR | MMR | PMR | MMR | PMR | ||
| 线型结构 | 1(1) | 0.9917 | 0.9539 | ||||
| 3(3) | 0.9927 | 0.9577 | 0.9964 | 0.9785 | |||
| 6(6) | 0.9983 | 0.9898 | 0.9977 | 0.9865 | 0.9940 | 0.9638 | |
| 收敛结构(a) | 1(2) | 0.9904 | 0.9451 | 0.9917 | 0.9502 | ||
| 2(4) | 0.9970 | 0.9839 | 0.9933 | 0.9597 | |||
| 3(6) | 0.9964 | 0.9788 | 0.9960 | 0.9759 | 0.9928 | 0.9573 | |
| 收敛结构(b) | 1(2) | 0.9922 | 0.9545 | 0.9934 | 0.9605 | ||
| 2(4) | 0.9972 | 0.9846 | 0.9945 | 0.9674 | |||
| 3(6) | 0.9976 | 0.9856 | 0.9966 | 0.9796 | 0.9933 | 0.9600 | |
| 收敛结构(c) | 1(3) | 0.9948 | 0.9694 | 0.9956 | 0.9742 | ||
| 2(6) | 0.9965 | 0.9793 | 0.9969 | 0.9818 | 0.9935 | 0.9614 | |
| 分支结构 | 1(3) | 0.9931 | 0.9610 | 0.9954 | 0.9734 | ||
| 2(6) | 0.9958 | 0.9751 | 0.9962 | 0.9780 | 0.9923 | 0.9543 | |
| 无结构 | 1(5) | 0.9937 | 0.9631 | 0.9958 | 0.9759 | ||
| 1+(6) | 0.9953 | 0.9748 | 0.9959 | 0.9765 | 0.9912 | 0.9503 | |
表5 六个属性s,g服从U(0,0.25)三种长测验的判准率
| 属性层级结构 | 含最简完备Q列 的倍数(总列数) | 含1个或多个SSCQM | 含1个或多个USCQM | 可达阵 | |||
|---|---|---|---|---|---|---|---|
| MMR | PMR | MMR | PMR | MMR | PMR | ||
| 线型结构 | 1(1) | 0.9917 | 0.9539 | ||||
| 3(3) | 0.9927 | 0.9577 | 0.9964 | 0.9785 | |||
| 6(6) | 0.9983 | 0.9898 | 0.9977 | 0.9865 | 0.9940 | 0.9638 | |
| 收敛结构(a) | 1(2) | 0.9904 | 0.9451 | 0.9917 | 0.9502 | ||
| 2(4) | 0.9970 | 0.9839 | 0.9933 | 0.9597 | |||
| 3(6) | 0.9964 | 0.9788 | 0.9960 | 0.9759 | 0.9928 | 0.9573 | |
| 收敛结构(b) | 1(2) | 0.9922 | 0.9545 | 0.9934 | 0.9605 | ||
| 2(4) | 0.9972 | 0.9846 | 0.9945 | 0.9674 | |||
| 3(6) | 0.9976 | 0.9856 | 0.9966 | 0.9796 | 0.9933 | 0.9600 | |
| 收敛结构(c) | 1(3) | 0.9948 | 0.9694 | 0.9956 | 0.9742 | ||
| 2(6) | 0.9965 | 0.9793 | 0.9969 | 0.9818 | 0.9935 | 0.9614 | |
| 分支结构 | 1(3) | 0.9931 | 0.9610 | 0.9954 | 0.9734 | ||
| 2(6) | 0.9958 | 0.9751 | 0.9962 | 0.9780 | 0.9923 | 0.9543 | |
| 无结构 | 1(5) | 0.9937 | 0.9631 | 0.9958 | 0.9759 | ||
| 1+(6) | 0.9953 | 0.9748 | 0.9959 | 0.9765 | 0.9912 | 0.9503 | |
| 属性层级结构 | 含最简完备Q列 的倍数(总列数) | 含1个或多个SSCQM | 含1个或多个USCQM | 可达阵 | |||
|---|---|---|---|---|---|---|---|
| MMR | PMR | MMR | PMR | MMR | PMR | ||
| 线型结构 | 1(1) | 0.9792 | 0.8901 | ||||
| 3(3) | 0.9913 | 0.9506 | 0.9909 | 0.9460 | |||
| 6(6) | 0.9959 | 0.9761 | 0.9929 | 0.9581 | 0.9892 | 0.9358 | |
| 收敛结构(a) | 1(2) | 0.9795 | 0.8901 | 0.9864 | 0.9198 | ||
| 2(4) | 0.9896 | 0.9466 | 0.9882 | 0.9304 | |||
| 3(6) | 0.9903 | 0.9449 | 0.9906 | 0.9445 | 0.9884 | 0.9336 | |
| 收敛结构(b) | 1(2) | 0.9851 | 0.9170 | 0.9874 | 0.9287 | ||
| 2(4) | 0.9909 | 0.9521 | 0.9888 | 0.9364 | |||
| 3(6) | 0.9919 | 0.9538 | 0.9905 | 0.9465 | 0.9880 | 0.9322 | |
| 收敛结构(c) | 1(3) | 0.9872 | 0.9304 | 0.9892 | 0.9417 | ||
| 2(6) | 0.9907 | 0.9490 | 0.9907 | 0.9500 | 0.9881 | 0.9327 | |
| 分支结构 | 1(3) | 0.9846 | 0.9188 | 0.9892 | 0.9402 | ||
| 2(6) | 0.9886 | 0.9341 | 0.9908 | 0.9479 | 0.9870 | 0.9256 | |
| 无结构 | 1(5) | 0.9859 | 0.9256 | 0.9895 | 0.9473 | ||
| 1+(6) | 0.9861 | 0.9268 | 0.9894 | 0.9473 | 0.9854 | 0.9227 | |
表6 六个属性s,g服从U(0,0.35)三种长测验的判准率
| 属性层级结构 | 含最简完备Q列 的倍数(总列数) | 含1个或多个SSCQM | 含1个或多个USCQM | 可达阵 | |||
|---|---|---|---|---|---|---|---|
| MMR | PMR | MMR | PMR | MMR | PMR | ||
| 线型结构 | 1(1) | 0.9792 | 0.8901 | ||||
| 3(3) | 0.9913 | 0.9506 | 0.9909 | 0.9460 | |||
| 6(6) | 0.9959 | 0.9761 | 0.9929 | 0.9581 | 0.9892 | 0.9358 | |
| 收敛结构(a) | 1(2) | 0.9795 | 0.8901 | 0.9864 | 0.9198 | ||
| 2(4) | 0.9896 | 0.9466 | 0.9882 | 0.9304 | |||
| 3(6) | 0.9903 | 0.9449 | 0.9906 | 0.9445 | 0.9884 | 0.9336 | |
| 收敛结构(b) | 1(2) | 0.9851 | 0.9170 | 0.9874 | 0.9287 | ||
| 2(4) | 0.9909 | 0.9521 | 0.9888 | 0.9364 | |||
| 3(6) | 0.9919 | 0.9538 | 0.9905 | 0.9465 | 0.9880 | 0.9322 | |
| 收敛结构(c) | 1(3) | 0.9872 | 0.9304 | 0.9892 | 0.9417 | ||
| 2(6) | 0.9907 | 0.9490 | 0.9907 | 0.9500 | 0.9881 | 0.9327 | |
| 分支结构 | 1(3) | 0.9846 | 0.9188 | 0.9892 | 0.9402 | ||
| 2(6) | 0.9886 | 0.9341 | 0.9908 | 0.9479 | 0.9870 | 0.9256 | |
| 无结构 | 1(5) | 0.9859 | 0.9256 | 0.9895 | 0.9473 | ||
| 1+(6) | 0.9861 | 0.9268 | 0.9894 | 0.9473 | 0.9854 | 0.9227 | |
| 属性层级结构 | 含最简完备Q列的 倍数(总列数) | 含1个或多个SSCQM | 含1个或多个USCQM | 可达阵 | |||
|---|---|---|---|---|---|---|---|
| MMR | PMR | MMR | PMR | MMR | PMR | ||
| 线型结构 | 1(1) | 0.9873 | 0.9229 | ||||
| 3(3) | 0.9927 | 0.9533 | 0.9901 | 0.9506 | |||
| 5(5) | 0.9962 | 0.9696 | 0.9949 | 0.9685 | 0.9846 | 0.9244 | |
| 收敛结构 | 1(3) | 0.9865 | 0.9358 | 0.9867 | 0.9377 | ||
| 1+(5) | 0.9924 | 0.9647 | 0.9896 | 0.9511 | 0.9915 | 0.9585 | |
| 分支结构 | 1(2) | 0.9812 | 0.9090 | 0.9856 | 0.9300 | ||
| 2(4) | 0.9906 | 0.9537 | 0.9873 | 0.9381 | |||
| 2+(5) | 0.9915 | 0.9591 | 0.9900 | 0.9518 | 0.9872 | 0.9375 | |
| 无结构 | 1(4) | 0.9856 | 0.9302 | 0.9881 | 0.9450 | ||
| 1+(5) | 0.9870 | 0.9412 | 0.9890 | 0.9495 | 0.9859 | 0.9337 | |
表7 五个属性三种长测验的判准率
| 属性层级结构 | 含最简完备Q列的 倍数(总列数) | 含1个或多个SSCQM | 含1个或多个USCQM | 可达阵 | |||
|---|---|---|---|---|---|---|---|
| MMR | PMR | MMR | PMR | MMR | PMR | ||
| 线型结构 | 1(1) | 0.9873 | 0.9229 | ||||
| 3(3) | 0.9927 | 0.9533 | 0.9901 | 0.9506 | |||
| 5(5) | 0.9962 | 0.9696 | 0.9949 | 0.9685 | 0.9846 | 0.9244 | |
| 收敛结构 | 1(3) | 0.9865 | 0.9358 | 0.9867 | 0.9377 | ||
| 1+(5) | 0.9924 | 0.9647 | 0.9896 | 0.9511 | 0.9915 | 0.9585 | |
| 分支结构 | 1(2) | 0.9812 | 0.9090 | 0.9856 | 0.9300 | ||
| 2(4) | 0.9906 | 0.9537 | 0.9873 | 0.9381 | |||
| 2+(5) | 0.9915 | 0.9591 | 0.9900 | 0.9518 | 0.9872 | 0.9375 | |
| 无结构 | 1(4) | 0.9856 | 0.9302 | 0.9881 | 0.9450 | ||
| 1+(5) | 0.9870 | 0.9412 | 0.9890 | 0.9495 | 0.9859 | 0.9337 | |
| 属性层级结构 | 含最简完备Q列的 倍数(总列数) | 含1个或多个SSCQM | 含1个或多个USCQM | 可达阵 | |||
|---|---|---|---|---|---|---|---|
| MMR | PMR | MMR | PMR | MMR | PMR | ||
| 线型结构 | 1(1) | 0.9853 | 0.9077 | ||||
| 4(4) | 0.9899 | 0.9468 | 0.9892 | 0.9262 | |||
| 7(7) | 0.9952 | 0.9667 | 0.9929 | 0.9520 | 0.9905 | 0.9363 | |
| 收敛结构 | 1(2) | 0.9796 | 0.8854 | 0.9883 | 0.9198 | ||
| 2(4) | 0.9914 | 0.9470 | 0.9898 | 0.9301 | |||
| 3+(7) | 0.9922 | 0.9515 | 0.9922 | 0.9463 | 0.9901 | 0.9337 | |
| 分支结构 | 1(4) | 0.9860 | 0.9097 | 0.9903 | 0.9377 | ||
| 1+(7) | 0.9910 | 0.9427 | 0.9906 | 0.9393 | 0.9877 | 0.9214 | |
| 无结构 | 1(6) | 0.9840 | 0.9143 | 0.9871 | 0.9273 | ||
| 1+(7) | 0.9873 | 0.9271 | 0.9867 | 0.9264 | 0.9849 | 0.9058 | |
表8 七个属性三种长测验的判准率
| 属性层级结构 | 含最简完备Q列的 倍数(总列数) | 含1个或多个SSCQM | 含1个或多个USCQM | 可达阵 | |||
|---|---|---|---|---|---|---|---|
| MMR | PMR | MMR | PMR | MMR | PMR | ||
| 线型结构 | 1(1) | 0.9853 | 0.9077 | ||||
| 4(4) | 0.9899 | 0.9468 | 0.9892 | 0.9262 | |||
| 7(7) | 0.9952 | 0.9667 | 0.9929 | 0.9520 | 0.9905 | 0.9363 | |
| 收敛结构 | 1(2) | 0.9796 | 0.8854 | 0.9883 | 0.9198 | ||
| 2(4) | 0.9914 | 0.9470 | 0.9898 | 0.9301 | |||
| 3+(7) | 0.9922 | 0.9515 | 0.9922 | 0.9463 | 0.9901 | 0.9337 | |
| 分支结构 | 1(4) | 0.9860 | 0.9097 | 0.9903 | 0.9377 | ||
| 1+(7) | 0.9910 | 0.9427 | 0.9906 | 0.9393 | 0.9877 | 0.9214 | |
| 无结构 | 1(6) | 0.9840 | 0.9143 | 0.9871 | 0.9273 | ||
| 1+(7) | 0.9873 | 0.9271 | 0.9867 | 0.9264 | 0.9849 | 0.9058 | |
| 属性层级结构 | 含最简完备Q列 的倍数(总列数) | 含1个或多个SSCQM | 含1个或多个USCQM | 可达阵 | |||
|---|---|---|---|---|---|---|---|
| MMR | PMR | MMR | PMR | MMR | PMR | ||
| 线型结构 | 1(1) | 0.9841 | 0.9041 | ||||
| 4(4) | 0.9906 | 0.9332 | 0.9934 | 0.9490 | |||
| 8(8) | 0.9925 | 0.9627 | 0.9937 | 0.9598 | 0.9927 | 0.9468 | |
| 收敛结构 | 1(3) | 0.9852 | 0.8962 | 0.9918 | 0.9393 | ||
| 2(6) | 0.9899 | 0.9269 | 0.9914 | 0.9364 | |||
| 2+(8) | 0.9913 | 0.9369 | 0.9928 | 0.9485 | 0.9914 | 0.9347 | |
| 分支结构 | 1(5) | 0.9827 | 0.8864 | 0.9891 | 0.9256 | ||
| 1+(8) | 0.9883 | 0.9234 | 0.9893 | 0.9277 | 0.9899 | 0.9270 | |
| 无结构 | 1(7) | 0.9781 | 0.8499 | 0.9851 | 0.9089 | ||
| 1+(8) | 0.9827 | 0.8957 | 0.9782 | 0.8973 | 0.9853 | 0.8939 | |
表9 八个属性三种长测验的判准率
| 属性层级结构 | 含最简完备Q列 的倍数(总列数) | 含1个或多个SSCQM | 含1个或多个USCQM | 可达阵 | |||
|---|---|---|---|---|---|---|---|
| MMR | PMR | MMR | PMR | MMR | PMR | ||
| 线型结构 | 1(1) | 0.9841 | 0.9041 | ||||
| 4(4) | 0.9906 | 0.9332 | 0.9934 | 0.9490 | |||
| 8(8) | 0.9925 | 0.9627 | 0.9937 | 0.9598 | 0.9927 | 0.9468 | |
| 收敛结构 | 1(3) | 0.9852 | 0.8962 | 0.9918 | 0.9393 | ||
| 2(6) | 0.9899 | 0.9269 | 0.9914 | 0.9364 | |||
| 2+(8) | 0.9913 | 0.9369 | 0.9928 | 0.9485 | 0.9914 | 0.9347 | |
| 分支结构 | 1(5) | 0.9827 | 0.8864 | 0.9891 | 0.9256 | ||
| 1+(8) | 0.9883 | 0.9234 | 0.9893 | 0.9277 | 0.9899 | 0.9270 | |
| 无结构 | 1(7) | 0.9781 | 0.8499 | 0.9851 | 0.9089 | ||
| 1+(8) | 0.9827 | 0.8957 | 0.9782 | 0.8973 | 0.9853 | 0.8939 | |
| 测验 项目 | 属性 | |||||||
|---|---|---|---|---|---|---|---|---|
| A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 | |
| 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 3 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| 4 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 |
| 5 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 6 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 |
| 7 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
| 8 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 |
| 9 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 |
| 10 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 |
| 11 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 |
| 12 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
| 13 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
| 14 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 |
| 15 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 16 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
| 17 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 |
表10 测验项目及其考察属性
| 测验 项目 | 属性 | |||||||
|---|---|---|---|---|---|---|---|---|
| A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 | |
| 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 3 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| 4 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 |
| 5 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 6 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 |
| 7 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
| 8 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 |
| 9 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 |
| 10 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 |
| 11 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 |
| 12 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
| 13 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
| 14 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 |
| 15 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 16 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
| 17 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 |
| 测验 | 属性 | |||||||
|---|---|---|---|---|---|---|---|---|
| A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 | |
| Q1 | −5.0 | −4.5 | −0.48 | 0.56 | −4.2 | 0.65 | 1.3 | −0.24 |
| Q2 | −6.5 | −3.6 | −5.6 | −2.2 | −2.4 | −1.8 | −4.5 | −2.3 |
| Q3 | 1.3 | 1.4 | 1.5 | 2.2 | 1.5 | 3.3 | 2.1 | −0.24 |
表11 由测验${{Q}_{1}}{{Q}_{2}}{{Q}_{3}}$与测验R估计被试掌握属性的差值(%)
| 测验 | 属性 | |||||||
|---|---|---|---|---|---|---|---|---|
| A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 | |
| Q1 | −5.0 | −4.5 | −0.48 | 0.56 | −4.2 | 0.65 | 1.3 | −0.24 |
| Q2 | −6.5 | −3.6 | −5.6 | −2.2 | −2.4 | −1.8 | −4.5 | −2.3 |
| Q3 | 1.3 | 1.4 | 1.5 | 2.2 | 1.5 | 3.3 | 2.1 | −0.24 |
| [1] |
Cai, Y., & Tu, D. B. (2015). Extension of cognitive diagnosis models based on the polytomous attributes framework and their Q-matrices designs. Acta Psychologica Sinica, 47(10), 1300-1308.
doi: 10.3724/SP.J.1041.2015.01300 |
| [蔡艳, 涂冬波. (2015). 属性多级化的认知诊断模型拓展及其Q矩阵设计. 心理学报, 47(10), 1300-1308.] | |
| [2] | Cai, Y., Zhao, Y., Liu, S. C., Zhang, S. F., & Tu, D. B. (2017). An extended polytomous cognitive diagnostic model. Journal of Psychological Science, 40(6), 1491-1497. |
| [蔡艳, 赵洋, 刘舒畅, 张淑芳, 涂冬波. (2017). 一种优化的多级评分认知诊断模型. 心理科学, 40(6), 1491-1497.] | |
| [3] | Chen, J., & de la Torre, J. (2018). Introducing the general polytomous diagnosis modeling framework. Frontiers in Psychology, 9. https://doi.org/10.3389/fpsyg.2018.01474 |
| [4] | Chiu, C. Y. (2013). Statistical refinement of the Q-matrix in cognitive diagnosis. Applied Psychological Measurement, 37(8), 598-618. |
| [5] | Chiu, C. Y., Douglas, J., & Li, X. (2009). Cluster analysis for cognitive diagnosis: Theory and applications. Psychometrika, 74, 633-665. |
| [6] | Chiu, C. Y., & Köhn, H. F. (2015). Consistency of cluster analysis for cognitive diagnosis: The DINO model and the DINA model revisited. Applied Psychological Measurement, 39(6), 465-479. |
| [7] | De Carlo, L. T. (2011). On the analysis of fraction subtraction data: The DINA model, classification, latent class sizes, and the q-matrix. Applied Psychological Measurement, 35(1), 8-26. |
| [8] | De Carlo, L. T. (2012). Recognizing uncertainty in the Q-matrix via a Bayesian extension of the DINA model. Applied Psychological Measurement, 36(6), 447-468. |
| [9] | de la Torre, J. (2011). The Generalized DINA Model Framework. Psychometrika, 76(2), 179-199. |
| [10] | Ding, S. L., Luo, F., & Wang, W. Y. (2014). Design of polytomous cognitively diagnostic test blueprint——For the independent and the rhombus attribute hierarchies. Journal of Jiangxi Normal University (Natural Sciences Edition), 38(3), 265-269. |
| [丁树良, 罗芬, 汪文义. (2014). 多级评分认知诊断测验蓝图的设计——独立型和收敛型结构. 江西师范大学学报(自然科学版), 38(3), 265-269.] | |
| [11] | Ding, S. L., Luo, F., Wang, W. Y., LI, J., & Xiong, J. H. (2022). The structure of unstructured complete Q matrices and their identification. Journal of Jiangxi Normal University (Natural Sciences Edition), 46(5), 441-446. |
| [丁树良, 罗芬, 汪文义, 李佳, 熊建华. (2022). 非结构化完备Q阵的构造与判定. 江西师范大学学报(自然科学版), 46(5), 441-446.] | |
| [12] | Ding, S. L., Luo, F., Wang, W. Y., & Xiong, J. H. (2015). The properties of 0-1 and polytomous Reach ability matrices and their applications. Journal of Jiangxi Normal University (Natural Sciences Edition), 39(1), 64-68. |
| [丁树良, 罗芬, 汪文义, 熊建华. (2015). 0-1和多值可达矩阵的性质及应用. 江西师范大学学报(自然科学版), 39(1), 64-68.] | |
| [13] |
Ding, S. L., Mao, M. M., Wang, W. Y., Luo, F., & Cui, Y. (2012). Evaluating the consistency of test items relative to the cognitive model for educational cognitive diagnosis. Acta Psychologica Sinica, 44(11), 1535-1546.
doi: 10.3724/SP.J.1041.2012.01535 |
| [丁树良, 毛萌萌, 汪文义, 罗芬, Cui, Y. (2012). 教育认知诊断测验与认知模型一致性的评估. 心理学报, 44(11), 1535-1546.] | |
| [14] | Ding, S. L., Wang, W. Y., & Luo, F. (2014). Design of polytomous cognitively diagnostic test blueprint——For the rooted tree type. Journal of Jiangxi Normal University (Natural Sciences Edition), 38(2), 111-118. |
| [丁树良, 汪文义, 罗芬. (2014). 多级评分认知诊断测验蓝图的设计——根树型结构. 江西师范大学学报(自然科学版), 38(2), 111-118.] | |
| [15] | Ding, S. L., Wang, W. Y., & Yang, S. Q. (2011). The design of cognitive diagnostic test blueprints. Journal of Psychological Science, 34(2), 258-265. |
| [丁树良, 汪文义, 杨淑群. (2011). 认知诊断测验蓝图的设计. 心理科学, 34(2), 258-265.] | |
| [16] | Ding, S. L., Yang, S. Q., & Wang, W. Y. (2010). The importance of reachability matrix in constructing cognitively diagnostic testing. Journal of Jiangxi Normal University (Natural Sciences Edition), 34(5), 490-494. |
| [丁树良, 杨淑群, 汪文义. (2010). 可达矩阵在认知诊断测验编制中的重要作用. 江西师范大学学报(自然科学版), 34(5), 490-494.] | |
| [17] |
Fang, G., Liu, J., & Ying, Z. (2019). On the identifiability of diagnostic classification models. Psychometrika, 84(1), 19-40.
doi: 10.1007/s11336-018-09658-x pmid: 30673967 |
| [18] | Gao, X. L., Gong, Y., & Wang, F. (2021). Research progress in polytomous cognitive diagnosis model. Journal of Psychological Science, 44(2), 457-464. |
| [高旭亮, 龚毅, 王芳. (2021). 多级评分认知诊断模型述评. 心理科学, 44(2), 457-464.] | |
| [19] | Groß, J., & George, A. C. (2014). On permissible attribute classes in noncompensatory cognitive diagnosis models. Methodology: European Journal of Research Methods for the Behavioral and Social Sciences, 10(3), 100-107. |
| [20] |
Gu, Y., & Xu, G. (2019). The sufficient and necessary condition for the identifiability and estimability of the DINA model. Psychometrika, 84(2), 468-483.
doi: 10.1007/s11336-018-9619-8 pmid: 29728918 |
| [21] | Gu, Y., & Xu, G. (2021a). Sufficient and necessary conditions for the identifiability of the Q-matrix. Statistica Sinica, 31(1), 449-472. |
| [22] | Gu, Y., & Xu, G. (2021b). Identifiability of hierarchical latent attribute models. preprint arXiv: 1906.07869v4. |
| [23] | Kang, C. H., Xin, T., & Tian, W. (2013). Development and validation of diagnostic test for primary school arithmetic word problems. Examinations Research, 41(6), 24-43. |
| [康春花, 辛涛, 田伟. (2013). 小学数学应用题认知诊断测验编制及效度验证. 考试研究, 41(6), 24-43.] | |
| [24] | Köhn, H. F., & Chiu, C. Y. (2017). A procedure for assessing the completeness of the Q-matrices of cognitively diagnostic tests. Psychometrika, 82, 112-132. |
| [25] | Köhn, H. F., & Chiu, C. Y. (2021). A unified theory of the completeness of Q-Matrices for the DINA model. Journal of Classification, 38(3), 500-518. |
| [26] | Leighton, J. P., & Gierl, M. J. (2007). Cognitive diagnostic assessment for education: Theory and applications. Cambridge University Press. |
| [27] | Lin, M., & Xu, G. (2023). Sufficient and Necessary Conditions for the Identifiability of DINA Models with Polytomous Responses. preprint arXiv: 2304.01363. |
| [28] |
Liu, J., Xu, G., & Ying, Z. (2012). Data-driven learning of Q-matrix. Applied Psychological Measurement, 36(7), 548-564.
pmid: 23926363 |
| [29] | Liu, J., Xu, G., & Ying, Z. (2013). Theory of the self-learning Q-matrix. Bernoulli, 19, 1790-1817. |
| [30] | Ma, W. C., & de la Torre, J. (2016). A sequential cognitive diagnosis model for polytomous responses. British Journal of Mathematical and Statistical Psychology, 69(3), 253-275. |
| [31] |
Madison, M. J., & Bradshaw, L. P. (2015). The effects of Q-matrix design on classification accuracy in the log-linear cognitive diagnosis model. Educational and Psychological Measurement, 75(3), 491-511.
doi: 10.1177/0013164414539162 pmid: 29795830 |
| [32] |
Ouyang, J., & Xu, G. (2022). Identifiability of latent class models with covariates. Psychometrika, 87(4), 1343-1360.
doi: 10.1007/s11336-022-09852-y pmid: 35254608 |
| [33] | Sun, J. N., Xin, T., Zhang, S. M., & de la Torre, J. (2013). A polytomous extension of the generalized distance discriminating method. Applied Psychological Measurement, 37(7), 503-521. |
| [34] | Tatsuoka, K. K. (1995). Architecture of knowledge structures and cognitive diagnosis: A statistical pattern recognition and classification approach. Erlbaum: Hillsdale, 327-359. |
| [35] | Tatsuoka, K. K. (2009). Cognitive assessment: An introduction to the rule space method. Routledge/Taylor & Francis Group. |
| [36] |
Xu, G., & Zhang, S. (2016). Identifiability of diagnostic classification models. Psychometrika, 81(3), 625-649.
doi: 10.1007/s11336-015-9471-z pmid: 26155755 |
| [1] | 王红丽, 陈政任, 李振, 刘智强, 梁翠琪, 赵彬洁. 何以跳脱时间困境:算法控制对零工工作者影响效应的主观时间边界[J]. 心理学报, 2025, 57(2): 275-297. |
| [2] | 赵一骏, 许丽颖, 喻丰, 金旺龙. 感知不透明性增加职场中的算法厌恶[J]. 心理学报, 2024, 56(4): 497-514. |
| [3] | 郭磊, 秦海江. 基于信号检测论的认知诊断评估:构建与应用[J]. 心理学报, 2024, 56(3): 339-351. |
| [4] | 徐岚, 陈全, 崔楠, 辜红. “共赢” vs. “牺牲”: 道德消费叙述框架对消费者算法推荐信任的影响[J]. 心理学报, 2024, 56(2): 179-193. |
| [5] | 游晓锋, 杨建芹, 秦春影, 刘红云. 认知诊断测评中缺失数据的处理:随机森林阈值插补法[J]. 心理学报, 2023, 55(7): 1192-1206. |
| [6] | 许丽颖, 喻丰, 彭凯平. 算法歧视比人类歧视引起更少道德惩罚欲[J]. 心理学报, 2022, 54(9): 1076-1092. |
| [7] | 黎光明, 秦越. 一种基于进化算法的概化理论最佳样本量估计新方法:兼与三种传统方法比较[J]. 心理学报, 2022, 54(10): 1262-1276. |
| [8] | 高旭亮, 汪大勋, 王芳, 蔡艳, 涂冬波. 基于分部评分模型思路的多级评分认知诊断模型开发[J]. 心理学报, 2019, 51(12): 1386-1397. |
| [9] | 康春花; 任平; 曾平飞. 多级评分聚类诊断法的影响因素[J]. 心理学报, 2016, 48(7): 891-902. |
| [10] | 蔡艳;苗莹;涂冬波. 多级评分的认知诊断计算机化适应测验[J]. 心理学报, 2016, 48(10): 1338-1346. |
| [11] | 康春花;任平;曾平飞. 非参数认知诊断方法:多级评分的聚类分析[J]. 心理学报, 2015, 47(8): 1077-1088. |
| [12] | 罗芬,丁树良,王晓庆. 多级评分计算机化自适应测验动态综合选题策略[J]. 心理学报, 2012, 44(3): 400-412. |
| [13] | 田伟,辛涛. 基于等级反应模型的规则空间方法[J]. 心理学报, 2012, 44(2): 249-262. |
| [14] | 刘玥,刘红云. 贝叶斯题组随机效应模型的必要性及影响因素[J]. 心理学报, 2012, 44(2): 263-275. |
| [15] | 肖涵敏,杜文久,张婷婷. 基于项目节点的多级评分模型的统一[J]. 心理学报, 2011, 43(12): 1462-1467. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||