心理学报 ›› 2024, Vol. 56 ›› Issue (3): 363-382.doi: 10.3724/SP.J.1041.2024.00363 cstr: 32110.14.2024.00363
• 理论与史 • 上一篇
收稿日期:
2023-09-14
发布日期:
2023-12-11
出版日期:
2024-03-25
通讯作者:
许为, E-mail: xuwei11@zju.edu.cn;
XU Wei1(), GAO Zaifeng2(
), GE Liezhong1
Received:
2023-09-14
Online:
2023-12-11
Published:
2024-03-25
摘要:
本文首先提出了“人因科学”这一创新的学科群概念来表征工程心理学、人因工程、工效学、人机交互等相近领域。尽管这些领域的研究角度不一样, 但是它们分享共同的研究理念、对象以及目的。我们近期的研究表明, 人工智能(AI)新技术带来了一系列新的人因问题, 而作为人因科学研究对象的人机关系呈现出从“人机交互”向“人智组队式合作”的跨时代演进。这些变化对人因科学研究提出了新问题和新挑战, 需要我们重新审视基于非智能技术的人因科学研究范式和重点。在此背景下, 本文梳理人因科学研究范式取向跨时代的演进, 总结我们近5年所提出的一系列用于丰富人因科学研究范式的新概念模型和框架, 其中包括人智协同认知系统、人智协同认知生态系统以及智能社会技术系统的模型和框架。本文进一步从人因科学研究范式取向的角度进一步提升这些概念模型和框架, 提出智能时代人因科学研究的三种新范式取向, 分析相应的应用意义, 并展望今后的研究方向。同时, 针对智能时代人因科学研究重点的跨时代转移新特征, 本文从“人智交互” “智能人机界面” “人智组队合作”三个方面展望了今后人因科学的研究重点, 揭示出人因科学新研究范式取向对未来研究重点的作用。我们认为, 人因科学的研究范式取向和研究重点互为影响, 互为促进, 智能时代的人因科学研究需要多样化、创新的研究范式取向, 从而进一步推动人因科学的发展。
中图分类号:
许为, 高在峰, 葛列众. (2024). 智能时代人因科学研究的新范式取向及重点. 心理学报, 56(3), 363-382.
XU Wei, GAO Zaifeng, GE Liezhong. (2024). New research paradigms and agenda of human factors science in the intelligence era. Acta Psychologica Sinica, 56(3), 363-382.
产生时代 | 研究范式取向 | 范式取向描述 | 代表性领域或框架 | 代表性方法 | |
---|---|---|---|---|---|
![]() | |||||
计算机、智能时代 | 基于人类认知神经活动 | 在神经层面了解人机环境中认知加工的神经机制与工作绩效之间的关系 | 神经人因学 | 脑机接口技术和设计, 脑电测量、特征分析和建模 | |
计算机时代 | 基于人类认知信息加工活动 | 从人类心理活动(感知、记忆、认知负荷等)层面了解人机环境中认知加工与工作绩效间的关系, 优化人机系统设计 | 工程心理学 | 在人机操作环境中, 采用工作绩效测量(反应时、错误率等)和主观评价方法来评价人类心理活动与绩效间的关系、人机系统设计的有效性 | |
机械时代 | 基于人机能力差异性和互补性 | 人与机器能力的差异化及互补性, 优化人机功能和任务分配, 人适应于机器 | 早期的工效学、人因工程 | 人类体力作业分析, 时间动作分析, 人机功能和任务分析及分配等 | |
计算机时代 | 基于机器作为辅助人类作业(工具)的人机交互 | 通过人机交互技术、设计、测试和实现达到机器适应于人、人机交互优化、最佳用户体验 | 人机交互 | 用户心理模型和需求研究及分析、人机交互认知建模和界面概念化、基于心理学方法的可用性测试 | |
智能时代 | 基于人和智能体两个认知体之间的协同合作(单一人机系统) | 机器智能体成为与人类合作的团队队友, 人与智能体是协同认知系统中的两个认知体, 通过组队合作达到最佳整体系统绩效 | 基于人智组队合作的人智协同认知系统 | 基于人−人团队合作、协同认知系统等理论, 建模人机双向式情景意识、心理模型、信任、决策, 实现人机协同合作的人机交互技术和设计 | |
智能时代 | 基于跨人−智系统之间的协同合作(多重协同认知系统) | 多智能体系统(协同认知系统)形成智能协同认知生态系统, 整体系统绩效取决于各协同认知系统间的协同合作和优化设设计 | 人智协同认知生态系统 | 基于生态系统的建模、设计、技术, 包括跨多智能体系统间的协同合作、多智能体系统间的群体知识迁移、自组织与自适应协同、分布式情景意识、人机交互和协同决策等 | |
智能时代 | 基于社会和智能技术子系统间的协同合作 | 通过实现人、组织、社会、技术子系统之间的相互作用和协同优化, 达到最佳的整体系统绩效 | 智能社会技术系统 | 系统化方法, 社会技术系统方法, 工作系统重新设计, 组织优化设计, 工程、社会行为科学等跨学科方法 |
表1 人因科学研究范式取向的跨时代演变
产生时代 | 研究范式取向 | 范式取向描述 | 代表性领域或框架 | 代表性方法 | |
---|---|---|---|---|---|
![]() | |||||
计算机、智能时代 | 基于人类认知神经活动 | 在神经层面了解人机环境中认知加工的神经机制与工作绩效之间的关系 | 神经人因学 | 脑机接口技术和设计, 脑电测量、特征分析和建模 | |
计算机时代 | 基于人类认知信息加工活动 | 从人类心理活动(感知、记忆、认知负荷等)层面了解人机环境中认知加工与工作绩效间的关系, 优化人机系统设计 | 工程心理学 | 在人机操作环境中, 采用工作绩效测量(反应时、错误率等)和主观评价方法来评价人类心理活动与绩效间的关系、人机系统设计的有效性 | |
机械时代 | 基于人机能力差异性和互补性 | 人与机器能力的差异化及互补性, 优化人机功能和任务分配, 人适应于机器 | 早期的工效学、人因工程 | 人类体力作业分析, 时间动作分析, 人机功能和任务分析及分配等 | |
计算机时代 | 基于机器作为辅助人类作业(工具)的人机交互 | 通过人机交互技术、设计、测试和实现达到机器适应于人、人机交互优化、最佳用户体验 | 人机交互 | 用户心理模型和需求研究及分析、人机交互认知建模和界面概念化、基于心理学方法的可用性测试 | |
智能时代 | 基于人和智能体两个认知体之间的协同合作(单一人机系统) | 机器智能体成为与人类合作的团队队友, 人与智能体是协同认知系统中的两个认知体, 通过组队合作达到最佳整体系统绩效 | 基于人智组队合作的人智协同认知系统 | 基于人−人团队合作、协同认知系统等理论, 建模人机双向式情景意识、心理模型、信任、决策, 实现人机协同合作的人机交互技术和设计 | |
智能时代 | 基于跨人−智系统之间的协同合作(多重协同认知系统) | 多智能体系统(协同认知系统)形成智能协同认知生态系统, 整体系统绩效取决于各协同认知系统间的协同合作和优化设设计 | 人智协同认知生态系统 | 基于生态系统的建模、设计、技术, 包括跨多智能体系统间的协同合作、多智能体系统间的群体知识迁移、自组织与自适应协同、分布式情景意识、人机交互和协同决策等 | |
智能时代 | 基于社会和智能技术子系统间的协同合作 | 通过实现人、组织、社会、技术子系统之间的相互作用和协同优化, 达到最佳的整体系统绩效 | 智能社会技术系统 | 系统化方法, 社会技术系统方法, 工作系统重新设计, 组织优化设计, 工程、社会行为科学等跨学科方法 |
跨时代转移的新特征 | 智能技术的人因新问题 | 人因科学研究重点(部分) |
---|---|---|
从“可预期”到“潜在不可预期”的机器行为 | ![]() ![]() ![]() | ![]() ![]() ![]() |
从“人机交互”到“人智组队合作” | ![]() ![]() ![]() | ![]() ![]() |
从“人类智能”到基于“人机智能互补”的人机混合增强智能 | ![]() ![]() | ![]() ![]() ![]() ![]() |
从“以人为中心自动化”到“人类可控自主化” | ![]() ![]() ![]() | ![]() ![]() ![]() ![]() |
从“非智能”到“智能”人机交互” | ![]() ![]() ![]() | ![]() ![]() ![]() ![]() |
从“体验需求”到“伦理化AI” | ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() |
从“体验式”到“系统化”交互设计 | ![]() ![]() ![]() | ![]() ![]() ![]() ![]() |
从“实体物理”到“虚实融合元宇宙”空间的交互 | ![]() ![]() ![]() | ![]() ![]() ![]() ![]() |
表2 “人智交互”领域的人因科学研究重点
跨时代转移的新特征 | 智能技术的人因新问题 | 人因科学研究重点(部分) |
---|---|---|
从“可预期”到“潜在不可预期”的机器行为 | ![]() ![]() ![]() | ![]() ![]() ![]() |
从“人机交互”到“人智组队合作” | ![]() ![]() ![]() | ![]() ![]() |
从“人类智能”到基于“人机智能互补”的人机混合增强智能 | ![]() ![]() | ![]() ![]() ![]() ![]() |
从“以人为中心自动化”到“人类可控自主化” | ![]() ![]() ![]() | ![]() ![]() ![]() ![]() |
从“非智能”到“智能”人机交互” | ![]() ![]() ![]() | ![]() ![]() ![]() ![]() |
从“体验需求”到“伦理化AI” | ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() |
从“体验式”到“系统化”交互设计 | ![]() ![]() ![]() | ![]() ![]() ![]() ![]() |
从“实体物理”到“虚实融合元宇宙”空间的交互 | ![]() ![]() ![]() | ![]() ![]() ![]() ![]() |
跨时代转移的新特征 | 智能技术的人因新问题 | 人因科学研究重点 |
---|---|---|
从“单向式”到“人机合作双向式”界面 | ![]() ![]() | ![]() ![]() |
从“可用性”到“可解释AI”界面 | ![]() ![]() | ![]() ![]() ![]() |
从“简单属性”到“情境化”交互界面 | ![]() | ![]() ![]() |
从“精准输入式”到“模糊推理式”交互界面 | ![]() ![]() | ![]() ![]() |
从“交互式”到“合作式”认知界面 | ![]() ![]() | ![]() ![]() ![]() |
表3 “智能人机界面”领域的人因科学研究重点
跨时代转移的新特征 | 智能技术的人因新问题 | 人因科学研究重点 |
---|---|---|
从“单向式”到“人机合作双向式”界面 | ![]() ![]() | ![]() ![]() |
从“可用性”到“可解释AI”界面 | ![]() ![]() | ![]() ![]() ![]() |
从“简单属性”到“情境化”交互界面 | ![]() | ![]() ![]() |
从“精准输入式”到“模糊推理式”交互界面 | ![]() ![]() | ![]() ![]() |
从“交互式”到“合作式”认知界面 | ![]() ![]() | ![]() ![]() ![]() |
重点方面 | 人智组队的新问题 | 人因科学研究重点 |
---|---|---|
方法与模型 | ![]() ![]() ![]() ![]() | ![]() ![]() ![]() |
合作流程与能力 | ![]() ![]() ![]() | ![]() ![]() ![]() |
情景意识 | ![]() ![]() ![]() | ![]() ![]() ![]() |
人机信任 | ![]() ![]() | ![]() ![]() ![]() |
运行操作 | ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() |
人智参与、学习和演化 | ![]() ![]() | ![]() ![]() ![]() ![]() |
社会因素 | ![]() ![]() | ![]() ![]() ![]() |
表4 人智组队领域的人因科学研究重点
重点方面 | 人智组队的新问题 | 人因科学研究重点 |
---|---|---|
方法与模型 | ![]() ![]() ![]() ![]() | ![]() ![]() ![]() |
合作流程与能力 | ![]() ![]() ![]() | ![]() ![]() ![]() |
情景意识 | ![]() ![]() ![]() | ![]() ![]() ![]() |
人机信任 | ![]() ![]() | ![]() ![]() ![]() |
运行操作 | ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() |
人智参与、学习和演化 | ![]() ![]() | ![]() ![]() ![]() ![]() |
社会因素 | ![]() ![]() | ![]() ![]() ![]() |
研究课题 | 研究范式取向 | |||||
---|---|---|---|---|---|---|
神经人因学(认知 加工的神经机制) | 工程心理学(认知信息加工) | 人机交互 | 基于人智组队合作的人智协同认知系统 | 人智协同认知 生态系统 | 智能社会技术系统 | |
智能 机器行为 | 基于人类认知神经模型的机器学习算法模型优化 | 基于人类信息加工模型的机器学习算法优化(Leibo et al., | 基于迭代式原型设计、用户 测试方法, 优化机器学习算法训练和测试来减小算法和行为偏差 | 人智协同合作对机器行为的影响 | 机器行为进化模式, 人机行为协同共生理论(Rahwan et al., | 社会环境对机器行为的影响, 社会交互中的机器行为, 机器行为公正性和伦理化, 智能系统决策与组织决策的协调 |
人智 组队合作 | 人智组队合作和交互中的神经机制(Stevens & Galloway, | 用户感知、情感、意图、行 为等认知模型 | 基于人智组队合作的人机交互和界面模型 | 针对人智组队合作模型的研究, 包括人机互信, 分享式情景意识、心理模型、决策等 | 人智组队的生态系统, 多智能体系统间的协同合作(Mohanty & Vyas, | 社会环境中的人智组队合作, 人与智能体的社会互动, 社会责任对人机合作的影响(Mou & Xu, |
人机混合 增强智能 | 脑机混合、脑机融合等研究 | 人类高级认知计算模型、知识表征和图谱在实现人机混合智能中的应用 | “人在环中”混合智能的交互设计, 人机协同控制(胡源达 等, | 人机混合增强智能中的人智协同合作, 人机混合增强智能中的人机智能互补 | 跨多智能体系(Dorri et al., | 社会和组织环境中人机智能互补和协调、功能和任务分配、人机决策权限设置 |
伦理化AI | 伦理化AI的认知方法(Schoenherr, | “有意义的人类控制”设计(自主化系统) (Santoni & van den Hoven, | 人智系统合作的伦理问题(Boni, | 伦理化AI的生态系统方法(Stahl, | 智能社会技术系统的伦理化AI问题, 伦理化社会技术系统(Chopra & Singh, | |
智能 人机交互 | 脑机接口技术、交互设计、应用 | 智能人机交互的认知模型和理论, 社会和情感交互、意图识别的认知模型 | 智能人机交互设计新范式和新方法, 智能人机交互设计标准 | 基于人智组队合作的认知界面设计、设计新范式、认知架构 | 智能人机交互模拟和生态管理, 多智能交互系统的共同演化(Döppner et al., | 社会、文化等因素对智能人机交互的影响 |
可解释AI | 可解释AI 的认知神神经学研究(Fellous et al., | 心理学解释理论转化, 可解释AI界面的认知模型 | 创新的人机界面技术和设计, 可视化技术和设计 | “以人为中心”的可解释AI (Ehsan et al., | 跨智能决策系统的可解释AI问题 | 公众AI信任度和接受度与AI解释性间的关系(Ehsan, |
表5 人因学科研究范式取向与研究重点的关系
研究课题 | 研究范式取向 | |||||
---|---|---|---|---|---|---|
神经人因学(认知 加工的神经机制) | 工程心理学(认知信息加工) | 人机交互 | 基于人智组队合作的人智协同认知系统 | 人智协同认知 生态系统 | 智能社会技术系统 | |
智能 机器行为 | 基于人类认知神经模型的机器学习算法模型优化 | 基于人类信息加工模型的机器学习算法优化(Leibo et al., | 基于迭代式原型设计、用户 测试方法, 优化机器学习算法训练和测试来减小算法和行为偏差 | 人智协同合作对机器行为的影响 | 机器行为进化模式, 人机行为协同共生理论(Rahwan et al., | 社会环境对机器行为的影响, 社会交互中的机器行为, 机器行为公正性和伦理化, 智能系统决策与组织决策的协调 |
人智 组队合作 | 人智组队合作和交互中的神经机制(Stevens & Galloway, | 用户感知、情感、意图、行 为等认知模型 | 基于人智组队合作的人机交互和界面模型 | 针对人智组队合作模型的研究, 包括人机互信, 分享式情景意识、心理模型、决策等 | 人智组队的生态系统, 多智能体系统间的协同合作(Mohanty & Vyas, | 社会环境中的人智组队合作, 人与智能体的社会互动, 社会责任对人机合作的影响(Mou & Xu, |
人机混合 增强智能 | 脑机混合、脑机融合等研究 | 人类高级认知计算模型、知识表征和图谱在实现人机混合智能中的应用 | “人在环中”混合智能的交互设计, 人机协同控制(胡源达 等, | 人机混合增强智能中的人智协同合作, 人机混合增强智能中的人机智能互补 | 跨多智能体系(Dorri et al., | 社会和组织环境中人机智能互补和协调、功能和任务分配、人机决策权限设置 |
伦理化AI | 伦理化AI的认知方法(Schoenherr, | “有意义的人类控制”设计(自主化系统) (Santoni & van den Hoven, | 人智系统合作的伦理问题(Boni, | 伦理化AI的生态系统方法(Stahl, | 智能社会技术系统的伦理化AI问题, 伦理化社会技术系统(Chopra & Singh, | |
智能 人机交互 | 脑机接口技术、交互设计、应用 | 智能人机交互的认知模型和理论, 社会和情感交互、意图识别的认知模型 | 智能人机交互设计新范式和新方法, 智能人机交互设计标准 | 基于人智组队合作的认知界面设计、设计新范式、认知架构 | 智能人机交互模拟和生态管理, 多智能交互系统的共同演化(Döppner et al., | 社会、文化等因素对智能人机交互的影响 |
可解释AI | 可解释AI 的认知神神经学研究(Fellous et al., | 心理学解释理论转化, 可解释AI界面的认知模型 | 创新的人机界面技术和设计, 可视化技术和设计 | “以人为中心”的可解释AI (Ehsan et al., | 跨智能决策系统的可解释AI问题 | 公众AI信任度和接受度与AI解释性间的关系(Ehsan, |
[1] | Ali, M. I., Patel, P., Breslin, J. G., Harik, R., & Sheth, A. (2021). Cognitive digital twins for smart manufacturing. IEEE Intelligent Systems, 36(2), 96-100. |
[2] | Allenby, B. R. (2021). World Wide Weird: Rise of the cognitive ecosystem. Issues in Science and Technology, 37(3), 34-45. |
[3] |
Amershi, S., Cakmak, M., Knox, W. B., & Kulesza, T. (2014). Power to the people: The role of humans in interactive machine learning. AI Magazine, 35(4), 105-120.
doi: 10.1609/aimag.v35i4.2513 URL |
[4] | Amershi, S., Weld, D., Vorvoreanu, M., Fourney, A., Nushi, B., Collisson, P.,... Horvitz, E. (2019, May). Guidelines for human-AI interaction. In Proceedings of the 2019 chi conference on human factors in computing systems (pp. 1-13). Association for Computing Machinery. |
[5] | André, E., Paiva, A., Shah, J., & Šabanovic, S. (2020). Social agents for teamwork and group interactions. Report presented at the Dagstuhl Seminar, Schloss Dagstuhl- Leibniz-Zentrum fuer Informatik, Germany. |
[6] | Asatiani, A., Malo, P., Nagbøl, P. R., Penttinen, E., Rinta-Kahila, T., & Salovaara, A. (2021). Sociotechnical envelopment of artificial intelligence: An approach to organizational deployment of inscrutable artificial intelligence systems. Journal of the Association for Information Systems, 22(2), 8. |
[7] | Badham, R., Clegg, C., & Wall, T. (2000). Socio-technical theory. In: KarwowskiW. (Ed.), Handbook of Ergonomics. John Wiley, New York, NY. |
[8] | Bansal, G., Nushi, B., Kamar, E., Lasecki, W. S., Weld, D. S., & Horvitz, E. (2019). Beyond accuracy:The role of mental models in human-AI team performance. Proceedings of the AAAI Conference on Human Computation and Crowdsourcing, 7(1), 2-11. |
[9] |
Baxter, G., & Sommerville, I. (2011). Socio-technical systems: From design methods to systems engineering. Interacting with Computers, 23(1), 4-17.
doi: 10.1016/j.intcom.2010.07.003 URL |
[10] | Bendell, R., Williams, J., Fiore, S. M., & Jentsch, F. (2021, September). Supporting social interactions in human-AI teams:Profiling human teammates from sparse data. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting (Vol. 65, No. 1, pp. 665-669). Sage CA:Los Angeles, CA: SAGE Publications. |
[11] |
Biondi, F., Alvarez, I., & Jeong, K. A. (2019). Human-system cooperation in automated driving. International Journal of Human-Computer Interaction, 35(11), 917-918.
doi: 10.1080/10447318.2018.1561793 URL |
[12] |
Boni, M. (2021). The ethical dimension of human-artificial intelligence collaboration. European View, 20(2), 182-90.
doi: 10.1177/17816858211059249 URL |
[13] |
Borenstein, J., Herkert, J. R., & Miller, K. W. (2019). Self-driving cars and engineering ethics: The need for a system level analysis. Science and Engineering Ethics, 25(2), 383-398.
doi: 10.1007/s11948-017-0006-0 pmid: 29134429 |
[14] | Brill, J. C., Cummings, M. L., Evans III, A. W., Hancock, P. A., Lyons, J. B., & Oden, K. (2018). Navigating the advent of human-machine teaming. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting (Vol. 62, No. 1, pp. 455-459). Sage CA: Los Angeles, CA: SAGE Publications. |
[15] | Brown, B., Bødker, S., & Höök, K. (2017). Does HCI scale? Scale hacking and the relevance of HCI. Interactions, 24(5), 28-33. |
[16] | Caldwell, S., Sweetser, P., O’Donnell, N., Knight, M. J., Aitchison, M., Gedeon, T.,... Conroy, D. (2022). An agile new research framework for hybrid human-AI teaming: Trust, transparency, and transferability. ACM Transactions on Interactive Intelligent Systems, 12(3), 1-36. |
[17] | Chen, L., Wang, B. C., Huang, S. H., Zhang, J. Y., Guo, R., & Lu, J. Q. (2021). Artificial intelligence ethics guidelines and governance system: Current status and strategic suggestions. Science and Technology Management Research, (6), 193-200. |
[ 陈磊, 王柏村, 黄思翰, 张吉豫, 郭锐, 鲁俊群. (2021). 人工智能伦理准则与治理体系: 发展现状和战略建议. 科技管理研究, (6), 193-200.] | |
[18] | Chopra, A. K., & Singh, M. P. (2018, December). Sociotechnical systems and ethics in the large. In Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society (pp. 48-53), Association for Computing Machinery. |
[19] |
Cummings, M. L., & Clare, A. S. (2015). Holistic modelling for human-autonomous system interaction. Theoretical Issues in Ergonomics Science, 16(3), 214-231.
doi: 10.1080/1463922X.2014.1003990 URL |
[20] |
Dehais, F., Karwowski, W., & Ayaz, H. (2020). Brain at work and in everyday life as the next frontier: Grand field challenges for neuroergonomics. Frontiers in Neuroergonomics, 1, 583733-583745.
doi: 10.3389/fnrgo.2020.583733 URL |
[21] |
Demir, M., Likens, A. D., Cooke, N. J., Amazeen, P. G., & McNeese, N. J. (2018). Team coordination and effectiveness in human-autonomy teaming. IEEE Transactions on Human-Machine Systems, 49(2), 150-159.
doi: 10.1109/THMS.6221037 URL |
[22] | Döppner, D. A., Derckx, P., & Schoder, D. (2019). Symbiotic co-evolution in collaborative human-machine decision making: Exploration of a multi-year design science research project in the Air Cargo Industry. In Proceedings of the 52nd Hawaii International Conference on System Sciences (pp. 125-131). Computer Society Press. |
[23] |
Dorri, A., Kanhere, S. S., & Jurdak, R. (2018). Multi-agent systems: A survey. IEEE Access, 6, 28573-28593.
doi: 10.1109/ACCESS.2018.2831228 URL |
[24] | Eason, K. (2008). Sociotechnical systems theory in the 21st century: Another half-filled glass? Sense in social science: A collection of essay in honor of Dr. Lisl Klein (pp. 123-134), Desmond Graves, Broughton. |
[25] | Ehsan, U., & Riedl, M. O. (2020). Human-centered explainable ai: Towards a reflective sociotechnical approach. In HCI International 2020-Late Breaking Papers: Multimodality and Intelligence: 22nd HCI International Conference, HCII 2020, Copenhagen, Denmark, July 19-24, 2020, Proceedings 22 (pp. 449-466). Springer International Publishing. |
[26] | Ehsan, U., Tambwekar, P., Chan, L., Harrison, B., & Riedl, M. O. (2019). Automated rationale generation: A technique for explainable AI and its effects on human perceptions. In Proceedings of the 24th International Conference on Intelligent User Interfaces (pp. 263-274). Association for Computing Machinery. |
[27] | Ehsan, U., Wintersberger, P., Liao, Q. V., Mara, M., Streit, M., Wachter, S.,... Riedl, M. O. (2021). Operationalizing human-centered perspectives in explainable AI. In Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems (pp. 1-6). Association for Computing Machinery. |
[28] |
Endsley, M. R. (1995). Toward a theory of situation awareness in dynamic systems. Human Factors, 37(1), 32-64.
doi: 10.1518/001872095779049543 URL |
[29] |
Endsley, M. R. (2015). Situation awareness misconceptions and misunderstandings. Journal of Cognitive Engineering and Decision Making, 9(1), 4-32.
doi: 10.1177/1555343415572631 URL |
[30] | Endsley, M. R. (2018). Situation awareness in future autonomous vehicles:Beware of the unexpected. Proceedings of the 20th Congress of the International Ergonomics Association (IEA 2018), IEA 2018. Springer. |
[31] | Farooq, U., & Grudin, J. (2016). Human computer integration. Interactions, 23(6), 27-32. |
[32] | Fellous, J. M., Sapiro, G., Rossi, A., Mayberg, H. S., & Ferrante, M. (2019). Explainable artificial intelligence for neuroscience: Behavioral neurostimulation. Frontiers of Neuroscience, 13, 1346. doi: 10.3389/fnins.2019.01346 |
[33] | Finstad, K., Xu, W., Kapoor, S., Canakapalli, S., & Gladding, J. (2009). Bridging the gaps between enterprise software and end users. Interactions, 16(2), 10-14. |
[34] | Fiore, E. (2020). Ethics of technology and design ethics in socio-technical systems: Investigating the role of the designer. Form Akademisk Forskningstidsskrift for Design og Designdidaktikk, 13(1), 13-19. |
[35] | Fridman, L. (2018). Human-centered autonomous vehicle systems: Principles of effective shared autonomy. https://arxiv.org/pdf/1810.01835.pdf. |
[36] | Gao, Q., Xu, W., Shen, M., Gao, Z. (2023). Agent teaming situation awareness (ATSA): A situation awareness framework for human-AI teaming. https://arxiv.org/abs/2308.16785. |
[37] |
Gao, Z. F., Li, W. M., Liang, J. W., Pan, H. X., Xu, W., & Shen, M. W. (2021). Trust in automated vehicles. Advances in Psychological Science, 29(11), 1-12.
doi: 10.3724/SP.J.1042.2021.00001 URL |
[ 高在峰, 李文敏, 梁佳文, 潘晗希, 许为, 沈模卫. (2021). 自动驾驶车中的人机信任. 心理科学进展, 29(11), 1-12.] | |
[38] |
Gardner, D., Mark, L., Dainoff, M. & Xu, W. (1995). Considerations for linking seatpan and backrest angles. International Journal of Human-Computer Interaction, 7(2), 153-165.
doi: 10.1080/10447319509526117 URL |
[39] | Ge, L. Z., & Xu, W. (Eds). (2020). User experience: Theory and practice. China Renmin University Press. |
[ 葛列众, 许为. (主编). (2020). 用户体验: 理论与实践. 中国人民大学出版社.] | |
[40] | Ge, L. Z., Xu, W., & Song, X. (Eds). (2022). Engineering psychology (2nd ed.). China Renmin University Press. |
[ 葛列众, 许为, 宋晓蕾. (主编). (2022). 工程心理学 (第2版). 中国人民大学出版社.] | |
[41] |
Goodwin, G. F., Blacksmith, N., & Coats, M. R. (2018). The science of teams in the military: Contributions from over 60 years of research. American Psychologist, 73(4), 322.
doi: 10.1037/amp0000259 pmid: 29792451 |
[42] | Google, PAIR. (2019). People + AI Guidebook: Designing human-centered AI products. Retrieved Nov. 23, 2023 from https://pair.withgoogle.com. |
[43] | Guo, B., & Yu, Z. W. (2021). Crowd intelligence with the deep fusion of human, machine, and IoT. Communication of the CCF, 17(2), 35-40. |
[ 郭斌, 於志文. (2021). 人机物融合群智计算. 中国计算机学会通讯, 17(2), 35-40.] | |
[44] | Herrmann, T., Schmidt, A., & Degeling, M. (2018, June). From interaction to intervention: An approach for keeping humans in control in the context of socio-technical systems. In STPIS@CAiSE (pp. 101-110). Tallinn, Estonia. |
[45] | Heydari, B., Szajnfarber, Z., Panchal, J., Cardin, M. A., Hölttä-Otto, K., Kremer, G. E., & Chen, W. (2019). Analysis and design of sociotechnical systems. Journal of Mechnical Design, 141(11), 118001. |
[46] |
Hodgson, A., Siemieniuch, C. E., & Hubbard, E. M. (2013). Culture and the safety of complex automated sociotechnical systems. IEEE Transactions on Human-Machine Systems, 43(6), 608-619.
doi: 10.1109/THMS.2013.2285048 URL |
[47] | Hollnagel, E., & Woods, D. D. (2005). Joint cognitive systems: Foundations of cognitive systems engineering. London: CRC Press. |
[48] | Hollnagel, E., Woods, D., & Leveson, N. (Eds.). (2006). Resilience engineering: Concepts and precepts. Williston, VT: Ashgate. |
[49] | Holmquist, L. E. (2017). Intelligence on tap: Artificial intelligence as a new design material. Interactions, 24(4), 28-33. |
[50] | Hu, Y. D., Sun, X. H., Zhang, H. X., Zhang, S. C., & Yi, S. Q. (2020). Interaction design in human-in-the-loop hybrid intelligence. Packaging Engineering, 41(18), 38-47. |
[ 胡源达, 孙效华, 张何辛, 张绳宸, 易思琦. (2020). 支持人在环路混合智能的交互设计研究. 包装工程艺术版, 41(18), 38-47.] | |
[51] | Huang, Y., Poderi, G., Šćepanović, S., Hasselqvist, H., Warnier, M., & Brazier, F. (2019). Embedding internet-of-things in large-scale socio-technical systems:A community-oriented design in future smart grids. The Internet of Things for Smart Urban Ecosystems (pp. 125-150). Cham: Springer. |
[52] | Hughes, J. A., Randall, D., Shapiro, D. (1992). Faltering from ethnography to design. In: Proceedings of CSCW ’92 (pp. 115-122). ACM Press, New York, NY. |
[53] | IDC International Data Corporation. (2020). 智能体白皮书, 共建智能体, 共创全场景智慧. 2023-11-10取自 https://www.huawei.com/minisite/building-an-intelligent-world-together/assets/doc/White_Paper_on_Huawei_Intelligent_Twins.pdf |
[54] | IEEE The Institute of Electrical and Electronics Engineers. (2019). Ethically aligned design: A vision for prioritizing human well-being with autonomous and intelligent systems. The Institute of Electrical and Electronics Engineers (IEEE), Incorporated. |
[55] | ISO International Organization for Standardization. (2020). Ergonomics- ergonomics of human-system interaction - Part 810: Robotic, intelligent and autonomous systems. Retrieved Nov. 10, 2023 from https://www.iso.org/standard/76577.html. |
[56] |
Kaber, D. B. (2018). A conceptual framework of autonomous and automated agents. Theoretical Issues in Ergonomics Science, 19(4), 406-430.
doi: 10.1080/1463922X.2017.1363314 URL |
[57] |
Kaluarachchi, T., Reis, A., & Nanayakkara, S. (2021). A review of recent deep learning approaches in human- centered machine learning. Sensors, 21(7), 2514.
doi: 10.3390/s21072514 URL |
[58] |
Le Page, C., & Bousquet, F. (2004). Multi-agent simulations and ecosystem management: A review. Ecological Modelling, 176(3-4), 313-332.
doi: 10.1016/j.ecolmodel.2004.01.011 URL |
[59] | Lee, J. D., & Kolodge, K. (2018). Understanding attitudes towards self-driving vehicles: Quantitative analysis of qualitative data. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 62(1), doi: 10.1177/ 1541931218621319 |
[60] | Leibo, J. Z., d'Autume, C. D. M., Zoran, D., Amos, D., Beattie, C., Anderson, K.,... Botvinick, M. M. (2018). Psychlab: A psychology laboratory for deep reinforcement learning agents. arXiv:1801.08116. |
[61] | Li, F. F. (2018). How to make A.I. that’s good for people. The New York Times. Retrieved Nov. 10, 2023 from fromhttps://www.nytimes.com/2018/03/07/opinion/artificial-intelligence-human.html. |
[62] |
Lieberman, H. (2009). User interface goals, AI opportunities. AI Magazine, 30(4), 16-22.
doi: 10.1609/aimag.v30i4.2266 URL |
[63] | Liu, W. (2023). Human-machine environmental system intelligence: Beyond human-machine fusion. Beijing: Science Press. |
[ 刘伟. (2023). 人机环境系统智能:超越人机融合. 北京: 科学出版社 ] | |
[64] |
Madhavan, P., & Wiegmann, D. A. (2007). Similarities and differences between human-human and human-automation trust: An integrative review. Theoretical Issues in Ergonomics Science, 8(4), 277-301.
doi: 10.1080/14639220500337708 URL |
[65] |
Madni, A. M., & Madni, C. C. (2018). Architectural framework for exploring adaptive human-machine teaming options in simulated dynamic environments. Systems, 6(4), 44(2018).
doi: 10.3390/systems6040044 URL |
[66] | Mcgregor, S. (2022). AI Incidents Database. Retrieved Nov. 10, 2023 from fromhttps://incidentdatabase.ai/. |
[67] | Mohanty, S., & Vyas, S. (2018). Putting it all together:Toward a human-machine collaborative ecosystem. In S. Mohanty& S. Vyas (Eds.), How to compete in the age of artificial intelligence: Implementing a collaborative human-machine strategy for your business (pp. 215-229). Apress. |
[68] |
Mou, Y., & Xu, K. (2017). The media inequality: Comparing the initial human-human and human-AI social interactions. Computers in Human Behavior, 72(3), 432-440.
doi: 10.1016/j.chb.2017.02.067 URL |
[69] | Mueller, S. T., Hoffman, R. R., Clancey, W., Emrey, A., & Klein, G. (2019). Explanation in human-AI systems: A literature meta-review, synopsis of key ideas and publications, and bibliography for explainable AI. arXiv preprint arXiv:1902.01876. |
[70] | National Academies of Sciences, Engineering, and Medicine (NASEM). (2021). Human-AI teaming: State-of-the-art and research needs. Retrieved Nov. 10, 2023 from https://nap.nationalacademies.org/catalog/26355/human-ai-teaming-state-of-the-art-and-research-needs |
[71] |
Neftci, E. O., & Averbeck, B. B. (2019). Reinforcement learning in artificial and biological systems. Nature Machine Intelligence, 1(3), 133-143.
doi: 10.1038/s42256-019-0025-4 |
[72] | Nielsen, J. (1994). Usability engineering. Morgan Kaufmann. |
[73] | Norman, D. A., & Draper, S. W. (1986). User-centered system design: New perspectives on human-computer interaction. CRC Press. |
[74] |
Norman, D. A., & Stappers, P. J. (2015). DesignX: complex sociotechnical systems. She Ji: The Journal of Design, Economics, and Innovation, 1(2), 83-106.
doi: 10.1016/j.sheji.2016.01.002 URL |
[75] | Norman, K., & Kirakowski, J. (Eds.). (2017). The Wiley handbook of human-computer interaction set. John Wiley & Sons. |
[76] | NTSB. (2017). Collision between a car operating with automated vehicle control systems and a tractor-semitrailor truck near Williston, Florida, May 7, 2016. Accidents Report, by National Transportation Safety Board (NTSB) 2017, Washington, DC. |
[77] | Parasuraman, R., & Rizzo, M. (Eds.). (2006). Neuroergonomics: The brain at work (Vol. 3). Oxford University Press. |
[78] | Prada, R., & Paiva, A. (2014). Human-agent interaction: Challenges for bringing humans and agents together. In Proc. of the 3rd Int. Workshop on Human-Agent Interaction Design and Models (HAIDM 2014) (pp. 1-10), Association for Computing Machinery. |
[79] |
Rahwan, I., Cebrian, M., Obradovich, N., Bongard, J., Bonnefon, J.-F., Breazeal, C.,... Wellman, M. (2019). Machine behaviour. Nature, 568(7753), 477-486.
doi: 10.1038/s41586-019-1138-y |
[80] |
Roth, E. M., Sushereba, C., Militello, L. G., Diiulio, J., & Ernst, K. (2019). Function allocation considerations in the era of human autonomy teaming. Journal of Cognitive Engineering and Decision Making, 13(4), 199-220.
doi: 10.1177/1555343419878038 URL |
[81] |
Ozmen Garibay, O., Winslow, B., Andolina, S., Antona, M., Bodenschatz, A., Coursaris, C.,... Xu, W. (2023). Six human-centered artificial intelligence grand challenges. International Journal of Human-Computer Interaction, 39(3), 391-437.
doi: 10.1080/10447318.2022.2153320 URL |
[82] |
Salas, E., Cooke, N. J., & Rosen, M. A. (2008). On teams, teamwork, and team performance: Discoveries and developments. Human Factors, 50(3), 540-547.
pmid: 18689065 |
[83] | Sanders, M. S., & McCormick, E. J. (1993). Human factors in engineering and design (7th ed.). McGraw-Hill Education |
[84] | Santoni de Sio, F., & van den Hoven, J. (2018). Meaningful human control over autonomous systems: A philosophical account. Front Robot AI, 5(2), 15. |
[85] | Schneeberger, T. (2018). Transfer of social human-human interaction to social human-agent interaction. In Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems (pp. 1778-1780), Association for Computing Machinery. |
[86] | Schoenherr, J. (2022). Ethical artificial intelligence from popular to cognitive science: Trust in the age of entanglement. Routledge. |
[87] |
Schoonderwoerd, T. A., van Zoelen, E. M., van den Bosch, K., & Neerincx, M. A. (2022). Design patterns for human-AI co-learning: A wizard-of-Oz evaluation in an urban-search- and-rescue task. International Journal of Human-Computer Studies, 164(8), 102831.
doi: 10.1016/j.ijhcs.2022.102831 URL |
[88] | Shi, Y. C. (2021). Metaverse needs a breakthrough in human- computer interaction. Communication of the CAAI, 12(1), 26-33. |
[ 史元春. (2021). 元宇宙需要人机交互的突破. 中国人工智能学会通讯, 12(1), 26-33.] | |
[89] | Shively, R. J., Lachter, J, Brandt, S. L., Matessa, M., Battiste, V. & Johnson, W. W. (2018). Why human-autonomy teaming? International Conference on Applied Human Factors and Ergonomics, May 2018, Orlando, FL. |
[90] | Society of Automotive Engineers SAE. (2019). Taxonomy and definitions for terms related to driving automation systems for on-road motor vehicles. Recommended Practice J3016. Retrieved Nov. 10, 2023 from https://www.sae.org/standards/content/j3016_202104/ |
[91] | Stahl, B. C. (2021). Artificial intelligence for a better future: An ecosystem perspective on the ethics of AI and emerging digital technologies (p. 124). Springer Nature. |
[92] | Steghofer, J.-P., Diaconescu, A., Marsh, S., & Pitt, J. (2017). The next generation of socio-technical systems: Realizing the potential, protecting the value [introduction]. IEEE Technology and Society Magazine, 36(3), 46-47. |
[93] |
Stevens, R. H., & Galloway, T. L. (2019). Teaching machines to recognize neurodynamic correlates of team and team member uncertainty. Journal of Cognitive Engineering and Decision Making, 13(4), 310-327.
doi: 10.1177/1555343419874569 URL |
[94] | Sun, X. H., Wu, C. X., Zhang, l., & Qu, W. N. (2011). The role, status, and current development of engineering psychology. Bulletin of Chinese Academy of Sciences, 26(6), 650-660. |
[ 孙向红, 吴昌旭, 张亮, 瞿炜娜. (2011). 工程心理学作用、地位和进展. 中国科学院院刊, 26(6), 650-660. ] | |
[95] | Tan, Z. Y., Dai, N. Y., Zhang, R. F., & Dai, K. Y. (2020). Overview and perspectives on human-computer interaction in intelligent and connected vehicles. Computer Integrated Manufacturing Systems, 26(10), 2615-2632. |
[ 谭征宇, 戴宁一, 张瑞佛, 戴柯颖. (2020). 智能网联汽车人机交互研究现状及展望. 计算机集成制造系统, 26(10), 2615-2632.]
doi: 10.13196/j.cims.2020.10.002 |
|
[96] | van der Bosch, K, Schoonderwoerd, T., Blankendaal, R., & Neerincx, M. (2019). Six challenges for human-AI Co-learning. In International Conference on Human- Computer Interaction (pp. 572-589). Springer Internatoinal Publishing. |
[97] |
Van de Poel, I. (2020). Embedding values in artificial intelligence (AI) systems. Minds and Machines, 30(3), 385-409.
doi: 10.1007/s11023-020-09537-4 |
[98] |
Waterson, P., Robertson, M. M., Cooke, N. J., Militello, L., Roth, E., & Stanton, N. A. (2015). Defining the methodological challenges and opportunities for an effective science of sociotechnical systems and safety. Ergonomics, 58(4), 565-599.
doi: 10.1080/00140139.2015.1015622 pmid: 25832121 |
[99] |
Werfel, J., Petersen, K., & Nagpal, R. (2014). Designing collective behavior in a termite-inspired robot construction team. Science, 343(6172), 754-758.
doi: 10.1126/science.1245842 pmid: 24531967 |
[100] |
Wesche, J. S., & Sonderegger, A. (2019). When computers take the lead: The automation of leadership. Computers in Human Behavior, 101(12), 197-209.
doi: 10.1016/j.chb.2019.07.027 URL |
[101] | Wickens, C. D., Helton, W. S., Hollands, J. G., & Banbury, S. (2021). Engineering psychology and human performance. Routledge. |
[102] | Wooldridge, M., & Jennings, N. R. (1995). Intelligent agent: Theory and practice. Knowledge Engineering, 10(2), 115-152. |
[103] | Wu, Z. (2020). Ecological transformation and man-machine symbiosis:A study on the relationship between human and artificial intelligence. In Multidisciplinary Digital Publishing Institute Proceedings, 47(1), 37, MDPI. |
[104] | Xie, L., & Xie, X. (2021). General situational intelligence. Communication of the CCF, 17(2), 8-9. |
[ 谢磊, 谢幸. (2021). 泛在情境智能. 中国计算机学会通讯, 17(2), 8-9.] | |
[105] | Xu, W. (2003). User-Centered Design approach: Opportunities and challenges of human factors practices in China. Chinese Journal of Ergonomics, 9(4), 8-11. |
[ 许为. (2003). 以用户为中心设计:人机工效学的机遇和挑战. 人类工效学, 9(4), 8-11.] | |
[106] | Xu, W. (2005). Recent trend of research and applications on human-computer interaction. Chinese Journal of Ergonomics, 11(4), 37-40. |
[ 许为. (2005). 人-计算机交互作用研究和应用新思路的探讨. 人类工效学, 11(4), 37-40.] | |
[107] |
Xu, W. (2007). Identifying problems and generating recommendations for enhancing complex systems: Applying the abstraction hierarchy framework as an analytical tool. Human Factors, 49(6), 975-994.
pmid: 18074698 |
[108] | Xu, W. (2012). User experience design:Beyond user interface design and usability. In I.Nunes (Ed.), Ergonomics, a systems approach (Chapter 8). InTech. |
[109] |
Xu, W. (2014). Enhanced ergonomics approaches for product design: A user experience ecosystem perspective and case studies. Ergonomics, 57(1), 34-51.
doi: 10.1080/00140139.2013.861023 pmid: 24405167 |
[110] | Xu, W. (2017). User-centered design (Ⅱ): New challenges and new opportunities. Chinese Journal of Ergonomics, 23(1), 82-86. |
[ 许为. (2017). 再论以用户为中心的设计: 新挑战和新机遇. 人类工效学, 23(1), 82-86.] | |
[111] |
Xu, W. (2019). Toward human-centered AI: A perspective from human-computer interaction. Interactions, 26(4), 42-46.
doi: 10.1145/3328485 URL |
[112] | Xu, W. (2019a). User-centered design (Ⅲ): Methods for user experience and innovative design in the intelligent era. Chinese Journal of Applied Psychology, 25(1), 3-17. |
[ 许为. (2019a). 三论以用户为中心的设计:智能时代的用户体验和创新设计. 应用心理学, 25(1), 3-17.] | |
[113] | Xu, W. (2019b). User-centered design (Ⅳ): Human-centered artificial intelligence. Chinese Journal of Applied Psychology, 25(4), 291-305. |
[ 许为. (2019b). 四论以用户为中心的设计: 以人为中心的人工智能. 应用心理学, 25(4), 291-305.] | |
[114] | Xu, W. (2020). User-Centered Design (Ⅴ): From automation to the autonomy and autonomous vehicles in the intelligence era. Chinese Journal of Applied Psychology, 26(2), 108-128. |
[ 许为. (2020). 五论以用户为中心的设计: 从自动化到智能时代的自主化以及自动驾驶车. 应用心理学, 26(2), 108-128.] | |
[115] | Xu, W. (2021). From automation to autonomy and autonomous vehicles: Challenges and opportunities for human-computer interaction. Interactions, 28(1), 48-53. |
[116] | Xu, W. (2022). AI in human-computer interaction and user experience. https://arxiv.org/abs/2301.00987. |
[117] | Xu, W. (2022a). User-centered design (VI): Human factors engineering approaches for intelligent human-computer interaction. Chinese Journal of Applied Psychology, 28(3), 191-209. |
[ 许为. (2022a). 六论以用户为中心的设计: 智能人机交互的人因工程途径. 应用心理学, 28(3), 191-209.] | |
[118] | Xu, W. (2022b). User-centered design (Ⅶ): From automated to intelligent flight deck. Chinese Journal of Applied Psychology, 28(4), 291-313. |
[ 许为. (2022b). 七论以用户为中心的设计: 从自动化到智能化飞机驾驶舱. 应用心理学, 28(4), 291-313.] | |
[119] | Xu, W. (2022c). User-Centered Design (Ⅷ): A new framework of intelligent sociotechnical systems and prospects for future human factors research. Chinese Journal of Applied Psychology, 28(5), 387-401. |
[ 许为. (2022c). 八论以用户为中心的设计: 一个智能社会技术系统新框架及人因工程研究展望. 应用心理学, 28(5), 387-401 ] | |
[120] | Xu, W. (2024). User-centered design (IX):A "user experience 3.0" paradigm framework in the intelligence era. Chinese Journal of Applied Psychology, 30(2), 99-110. |
[ 许为. (2024). 九论以用户为中心的设计: 智能时代的“用户体验3.0”范式. 应用心理学, 30(2), 99-110. | |
[121] | Xu, W., & Chen, Y. (2012). New progress and applications of human factors in the research and development of civil flight deck. Aeronautical Science & Technology, (6), 18-21. |
[ 许为, 陈勇. (2012). 人机工效学在民用客机研发中应用的新进展及建议. 航空科学技术, (6), 18-21.] | |
[122] | Xu, W., & Chen, Y. (2013). Challenges and strategies of human factors airworthiness certification for civil aircraft. Civil Aircraft Design and Research, (2), 24-30. |
[ 许为, 陈勇. (2013). 民用客机人机工效学适航认证及对策. 民用飞机设计与研究, (2), 24-30.] | |
[123] | Xu, W., & Chen, Y. (2014). Reducing design-induced pilot error in civil flight deck: Perspectives of airworthiness certification and design. Civil Aircraft Design and Research, (3), 5-11. |
[ 许为, 陈勇. (2014). 从驾驶舱设计和适航来减少由设计引发的飞行员人为差错的挑战和途径. 民用飞机设计与研究, (3), 5-11.] | |
[124] | Xu, W., Chen, Y., Dong, W. J., Dong, D. Y., & Ge, L. Z. (2021). Status and prospect of human factors engineering research on single pilot operations for large commercial aircraft. Advances in Aeronautical Science and Engineering, 13(1), 1-18. |
[ 许为, 陈勇, 董文俊, 董大勇, 葛列众. (2021). 大型商用飞机单一飞行员驾驶的人因工程研究进展与展望. 航空工程进展, 13(1), 1-18.] | |
[125] | Xu, W., & Dainoff, M. (2023). Enabling human-centered AI: A new junction and shared journey between AI and HCI communities. Interactions, 30(1), 42-47. |
[126] |
Xu, W., Dainoff, M., Ge, L., & Gao, Z. (2022). From human- computer interaction to human-AI interaction: New challenges and opportunities for enabling human-centered AI. International Journal of Human Computer Interaction, 39 (3), 494-518.
doi: 10.1080/10447318.2022.2041900 URL |
[127] |
Xu, W., Dainoff, M. J., & Mark, L. S. (1999). Facilitate complex search tasks in hypertext by externalizing functional properties of a work domain. International Journal of Human-Computer Interaction, 11(3), 201-229.
doi: 10.1207/S15327590IJHC1103_2 URL |
[128] |
Xu, W., Furie, D., Mahabhaleshwar, M., Suresh, B., & Chouhan, H. (2019). Applications of an interaction, process, integration and intelligence (IPII) design approach for ergonomics solutions. Ergonomics, 62(7), 954-980.
doi: 10.1080/00140139.2019.1588996 pmid: 30836051 |
[129] | Xu, W. & Gao, Z. (2023). Applying HCAI in developing effective human-AI teaming: A perspective from human-AI joint cognitive systems. https://arxiv.org/abs/2307.03913 |
[130] |
Xu, W., & Ge, L. Z. (2018). New trends in human factors. Advances in Psychological Science, 26(9), 1521-1534.
doi: 10.3724/SP.J.1042.2018.01521 |
[ 许为, 葛列众. (2018). 人因学发展的新取向. 心理科学进展, 26(9), 1521-1534.]
doi: 10.3724/SP.J.1042.2018.01521 |
|
[131] |
Xu, W., & Ge, L. Z. (2020). Engineering psychology in the era of artificial intelligence. Advances in Psychological Science, 28(9), 1409-1425.
doi: 10.3724/SP.J.1042.2020.01409 |
[ 许为, 葛列众. (2020). 智能时代的工程心理学. 心理科学进展, 28(9), 1409-1425. ]
doi: 10.3724/SP.J.1042.2020.01409 |
|
[132] | Xu, W., Ge, L. Z., & Gao, Z. F. (2021). Human-AI interaction: An emerging interdisciplinary domain for enabling human-centered AI. CAAI Transactions on Intelligent Systems, 16(4), 604-621. |
[ 许为, 葛列众, 高在峰. (2021). 人-AI交互: 实现“以人为中心 AI”理念的跨学科新领域. 智能系统学报, 16(4), 604-621.] | |
[133] |
Xu, W. & Zhu, Z. (1990). The effects of ambient illumination and target luminance on colour coding in a CRT display. Ergonomics, 33(7), 933-944.
doi: 10.1080/00140139008925301 URL |
[134] | Xu, W., & Zhu, Z. X. (1989). Effects of ambient illuminant intensity, color temperature and target luminance on color coding in a CRT display. Acta Psychologica Sinica, 21(4), 269-277. |
[ 许为, 朱祖祥. (1989). 环境照明强度、色温和目标亮度对CRT显示器颜色编码的影响. 心理学报, 21(4), 269-277.] | |
[135] | Yi, X., Yu, C., & Shi, Y. C. (2018). Bayesian method for intent prediction in pervasive computing environments. Science China Information Sciences, 48(4), 419-432. |
[ 易鑫, 喻纯, 史元春. (2018). 普适计算环境中用户意图推理的Bayes方法. 中国科学: 信息科学, 48(4), 419-432. | |
[136] |
Zanzotto, F. M. (2019). Human-in-the-loop artificial intelligence. Journal of Artificial Intelligence Research, 64(2), 243-252.
doi: 10.1613/jair.1.11345 URL |
[137] | Zheng, N. N., Liu, Z. Y., Ren, P. J., Ma, Y. Q., Chen, S. T., Yu, S. Y.,... Wang, F. Y. (2017). Hybrid-augmented intelligence: Collaboration and cognition. Frontiers of Information Technology & Electronic Engineering, 18(2), 153-179. |
[138] |
Zhu, Y., Gao, T., Fan, L., Huang, S., Edmonds, M., Liu, H.,... Zhu, S. C. (2020). Dark, beyond deep: A paradigm shift to cognitive ai with humanlike common sense. Engineering, 6(3), 310-345.
doi: 10.1016/j.eng.2020.01.011 URL |
[139] | Zong, Z. F., Dai, C. H., & Zhang, D. (2021). Human-machine interaction technology of intelligent vehicles: Current development trends and future directions. China Journal of Highway and Transport, 34(6), 214. |
[ 宗长富, 代昌华, 张东. (2021). 智能汽车的人机共驾技术研究现状和发展趋势. 中国公路学报, 34(6), 214.]
doi: 10.19721/j.cnki.1001-7372.2021.06.021 |
[1] | 何宁, 王紫祎, 林嘉浩, 李梦, 游旭群. 叙述性信息对狭隘合作行为的影响机制[J]. 心理学报, 2025, 57(4): 513-525. |
[2] | 蒯玲, 卫海英, 姚琦, 肖婷文, 谢升成. 时间标志对炫耀性亲社会行为意愿的影响[J]. 心理学报, 2025, 57(4): 526-543. |
[3] | 韩宪国, 金国敏, 李丹, 刘世宏, 吴琴, 刘俊升, 陈欣银. 父母温暖与儿童晚期亲社会行为的关系: 集体取向的作用[J]. 心理学报, 2025, 57(4): 614-630. |
[4] | 林荣茂, 余巧华, 胡添祥, 张九妹, 叶玉珊, 连榕. 敬畏感与亲社会行为关系的三水平和结构方程模型元分析[J]. 心理学报, 2025, 57(4): 631-651. |
[5] | 孟鲁, 田宇浩, 王海飞, 董佳一, 蔺星儒, 籍宏伟, 田启瑞, 周梁. 联结还是疏离:探究疫情死亡凸显对亲社会意愿的影响及其作用机制[J]. 心理学报, 2025, 57(4): 652-670. |
[6] | 许丽颖, 张语嫣, 喻丰. 感知机器人威胁降低亲社会倾向[J]. 心理学报, 2025, 57(4): 671-699. |
[7] | 吴胜涛, 高承海, 胡琬莹, 王宁, 彭凯平. 集体主义促进亲社会正义感:共同责任的作用[J]. 心理学报, 2025, 57(4): 700-719. |
[8] | 冯文婷, 薛舒允, 汪涛. 拟人的品牌更环保?拟人化沟通对促进绿色消费倾向的影响[J]. 心理学报, 2025, 57(4): 720-738. |
[9] | 邓碧琳, 王婷, 张积家, 刘显翠, 刘莎. 裕固族中学生族群认同的容器隐喻和差序格局[J]. 心理学报, 2025, 57(3): 428-446. |
[10] | 任小云, 段锦云, 张茜. 社会阶层成长型心智对大学生学业和职业投入的影响[J]. 心理学报, 2025, 57(3): 447-462. |
[11] | 高学德, 马号云. 中国民众普遍信任的动态变迁——基于年龄-时期-世代效应的分析[J]. 心理学报, 2025, 57(3): 463-478. |
[12] | 王永跃, 王静, 刘军, 金杨华. 辱虐管理变化的动态前因:一个潜变化分数模型[J]. 心理学报, 2025, 57(3): 479-494. |
[13] | 江红艳, 张梦婷, 康春晓, 刘钧文. 动态还是静态?成分图像呈现方式对感知产品功效的影响[J]. 心理学报, 2025, 57(3): 495-510. |
[14] | 冯萌萌, 都旭, 孙世南, 郭秀丽, 林爽, 白学军. 何为成功之母? 绝对和相对反馈情境下失败和成功次数对耐挫的影响[J]. 心理学报, 2025, 57(2): 260-274. |
[15] | 王红丽, 陈政任, 李振, 刘智强, 梁翠琪, 赵彬洁. 何以跳脱时间困境:算法控制对零工工作者影响效应的主观时间边界[J]. 心理学报, 2025, 57(2): 275-297. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 6322
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 2971
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||