心理学报 ›› 2021, Vol. 53 ›› Issue (9): 1032-1043.doi: 10.3724/SP.J.1041.2021.01032
收稿日期:
2020-11-02
发布日期:
2021-07-22
出版日期:
2021-09-25
通讯作者:
郭磊
E-mail:happygl1229@swu.edu.cn
基金资助:
Received:
2020-11-02
Online:
2021-07-22
Published:
2021-09-25
Contact:
GUO Lei
E-mail:happygl1229@swu.edu.cn
摘要:
充分挖掘选择题(Multiple-Choice, MC)的诊断信息受到了较多关注, 将干扰项信息考虑在内可以提升诊断精度。为了弥补参数模型基于大样本才能获得可靠估计的不足, 以及适用于班级水平的小样本诊断测验情境, 本研究提出了非参数的多选题诊断方法。模拟和实证研结果表明:(1)当MC测验中题目参数不存在较大差异时,
中图分类号:
郭磊, 周文杰. (2021). 基于选项层面的认知诊断非参数方法. 心理学报, 53(9), 1032-1043.
GUO Lei, ZHOU Wenjie. (2021). Nonparametric methods for cognitive diagnosis to multiple-choice test items. Acta Psychologica Sinica, 53(9), 1032-1043.
| 属性 | |||
---|---|---|---|---|
S1 | S2 | S3 | ||
A | | √ | ||
B | | √ | √ | |
C | | √ | √ | |
D | | √ | √ | √ |
表1 选项编码的分数减法示例
| 属性 | |||
---|---|---|---|---|
S1 | S2 | S3 | ||
A | | √ | ||
B | | √ | √ | |
C | | √ | √ | |
D | | √ | √ | √ |
属性 | 题目 | |||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | |
A1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 2 | 2 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 1 | 3 | 1 | 2 | 2 | 0 | 0 | 0 | 0 |
A2 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 2 | 1 | 1 | 0 | 0 | 0 | 2 | 2 | 1 | 0 | 0 | 0 | 2 | 2 | 2 | 0 |
A3 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 2 | 2 | 0 | 2 | 2 | 0 | 2 |
A4 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 2 | 0 | 0 | 2 | 0 | 2 | 0 | 1 | 0 | 2 | 0 | 2 | 0 | 2 | 2 | 0 | 2 | 2 |
A5 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 2 | 0 | 2 | 2 | 0 | 0 | 1 | 0 | 2 | 2 | 0 | 2 | 2 | 2 |
表2 MC题目中干扰项已编码的Q矩阵
属性 | 题目 | |||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | |
A1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 2 | 2 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 1 | 3 | 1 | 2 | 2 | 0 | 0 | 0 | 0 |
A2 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 2 | 1 | 1 | 0 | 0 | 0 | 2 | 2 | 1 | 0 | 0 | 0 | 2 | 2 | 2 | 0 |
A3 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 2 | 2 | 0 | 2 | 2 | 0 | 2 |
A4 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 2 | 0 | 0 | 2 | 0 | 2 | 0 | 1 | 0 | 2 | 0 | 2 | 0 | 2 | 2 | 0 | 2 | 2 |
A5 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 2 | 0 | 2 | 2 | 0 | 0 | 1 | 0 | 2 | 2 | 0 | 2 | 2 | 2 |
题目质量 | 题目数量 | 样本量 | PCCR | AACCR | ||||||
---|---|---|---|---|---|---|---|---|---|---|
| | MC1 | MC2 | | | MC1 | MC2 | |||
高质量 | 10 | 30 | 0.784 | 0.710 | 0.763 | 0.703 | 0.918 | 0.884 | 0.906 | 0.896 |
50 | 0.783 | 0.701 | 0.749 | 0.690 | 0.916 | 0.883 | 0.900 | 0.889 | ||
100 | 0.789 | 0.703 | 0.757 | 0.704 | 0.922 | 0.888 | 0.902 | 0.896 | ||
20 | 30 | 0.911 | 0.893 | 0.896 | 0.888 | 0.968 | 0.962 | 0.930 | 0.928 | |
50 | 0.911 | 0.895 | 0.879 | 0.863 | 0.976 | 0.962 | 0.918 | 0.970 | ||
100 | 0.912 | 0.895 | 0.905 | 0.896 | 0.973 | 0.963 | 0.921 | 0.968 | ||
30 | 30 | 0.957 | 0.947 | 0.979 | 0.964 | 0.987 | 0.984 | 0.992 | 0.991 | |
50 | 0.951 | 0.934 | 0.973 | 0.966 | 0.986 | 0.980 | 0.992 | 0.989 | ||
100 | 0.954 | 0.940 | 0.976 | 0.970 | 0.986 | 0.982 | 0.993 | 0.983 | ||
低质量 | 10 | 30 | 0.575 | 0.495 | 0.498 | 0.450 | 0.843 | 0.798 | 0.814 | 0.799 |
50 | 0.588 | 0.501 | 0.505 | 0.428 | 0.843 | 0.801 | 0.820 | 0.788 | ||
100 | 0.590 | 0.501 | 0.518 | 0.420 | 0.849 | 0.806 | 0.828 | 0.784 | ||
20 | 30 | 0.802 | 0.768 | 0.742 | 0.655 | 0.933 | 0.919 | 0.917 | 0.888 | |
50 | 0.798 | 0.762 | 0.742 | 0.651 | 0.935 | 0.921 | 0.919 | 0.889 | ||
100 | 0.793 | 0.760 | 0.752 | 0.671 | 0.930 | 0.917 | 0.922 | 0.892 | ||
30 | 30 | 0.865 | 0.849 | 0.820 | 0.757 | 0.964 | 0.959 | 0.952 | 0.935 | |
50 | 0.868 | 0.845 | 0.837 | 0.777 | 0.965 | 0.957 | 0.957 | 0.940 | ||
100 | 0.874 | 0.853 | 0.848 | 0.801 | 0.967 | 0.959 | 0.961 | 0.947 |
表3 两类诊断方法的模式判准率和属性判准率(真模型为MC1)
题目质量 | 题目数量 | 样本量 | PCCR | AACCR | ||||||
---|---|---|---|---|---|---|---|---|---|---|
| | MC1 | MC2 | | | MC1 | MC2 | |||
高质量 | 10 | 30 | 0.784 | 0.710 | 0.763 | 0.703 | 0.918 | 0.884 | 0.906 | 0.896 |
50 | 0.783 | 0.701 | 0.749 | 0.690 | 0.916 | 0.883 | 0.900 | 0.889 | ||
100 | 0.789 | 0.703 | 0.757 | 0.704 | 0.922 | 0.888 | 0.902 | 0.896 | ||
20 | 30 | 0.911 | 0.893 | 0.896 | 0.888 | 0.968 | 0.962 | 0.930 | 0.928 | |
50 | 0.911 | 0.895 | 0.879 | 0.863 | 0.976 | 0.962 | 0.918 | 0.970 | ||
100 | 0.912 | 0.895 | 0.905 | 0.896 | 0.973 | 0.963 | 0.921 | 0.968 | ||
30 | 30 | 0.957 | 0.947 | 0.979 | 0.964 | 0.987 | 0.984 | 0.992 | 0.991 | |
50 | 0.951 | 0.934 | 0.973 | 0.966 | 0.986 | 0.980 | 0.992 | 0.989 | ||
100 | 0.954 | 0.940 | 0.976 | 0.970 | 0.986 | 0.982 | 0.993 | 0.983 | ||
低质量 | 10 | 30 | 0.575 | 0.495 | 0.498 | 0.450 | 0.843 | 0.798 | 0.814 | 0.799 |
50 | 0.588 | 0.501 | 0.505 | 0.428 | 0.843 | 0.801 | 0.820 | 0.788 | ||
100 | 0.590 | 0.501 | 0.518 | 0.420 | 0.849 | 0.806 | 0.828 | 0.784 | ||
20 | 30 | 0.802 | 0.768 | 0.742 | 0.655 | 0.933 | 0.919 | 0.917 | 0.888 | |
50 | 0.798 | 0.762 | 0.742 | 0.651 | 0.935 | 0.921 | 0.919 | 0.889 | ||
100 | 0.793 | 0.760 | 0.752 | 0.671 | 0.930 | 0.917 | 0.922 | 0.892 | ||
30 | 30 | 0.865 | 0.849 | 0.820 | 0.757 | 0.964 | 0.959 | 0.952 | 0.935 | |
50 | 0.868 | 0.845 | 0.837 | 0.777 | 0.965 | 0.957 | 0.957 | 0.940 | ||
100 | 0.874 | 0.853 | 0.848 | 0.801 | 0.967 | 0.959 | 0.961 | 0.947 |
题目质量 | 题目数量 | 样本量 | PCCR | AACCR | ||||||
---|---|---|---|---|---|---|---|---|---|---|
| | MC1 | MC2 | | | MC1 | MC2. | |||
高质量 | 10 | 30 | 0.772 | 0.700 | 0.746 | 0.697 | 0.915 | 0.884 | 0.904 | 0.896 |
50 | 0.781 | 0.700 | 0.747 | 0.701 | 0.917 | 0.880 | 0.900 | 0.893 | ||
100 | 0.788 | 0.705 | 0.753 | 0.705 | 0.921 | 0.889 | 0.903 | 0.897 | ||
20 | 30 | 0.907 | 0.888 | 0.887 | 0.888 | 0.966 | 0.961 | 0.935 | 0.967 | |
50 | 0.909 | 0.892 | 0.884 | 0.905 | 0.965 | 0.959 | 0.923 | 0.972 | ||
100 | 0.911 | 0.896 | 0.886 | 0.916 | 0.967 | 0.961 | 0.923 | 0.971 | ||
30 | 30 | 0.953 | 0.938 | 0.960 | 0.976 | 0.985 | 0.980 | 0.991 | 0.991 | |
50 | 0.949 | 0.938 | 0.966 | 0.973 | 0.985 | 0.981 | 0.989 | 0.992 | ||
100 | 0.952 | 0.936 | 0.972 | 0.973 | 0.986 | 0.981 | 0.987 | 0.993 | ||
低质量 | 10 | 30 | 0.566 | 0.501 | 0.490 | 0.424 | 0.835 | 0.798 | 0.807 | 0.787 |
50 | 0.580 | 0.493 | 0.497 | 0.424 | 0.841 | 0.797 | 0.815 | 0.786 | ||
100 | 0.593 | 0.501 | 0.516 | 0.422 | 0.847 | 0.803 | 0.823 | 0.786 | ||
20 | 30 | 0.787 | 0.752 | 0.723 | 0.642 | 0.931 | 0.917 | 0.915 | 0.886 | |
50 | 0.793 | 0.761 | 0.744 | 0.656 | 0.930 | 0.917 | 0.917 | 0.889 | ||
100 | 0.792 | 0.762 | 0.754 | 0.666 | 0.931 | 0.918 | 0.921 | 0.892 | ||
30 | 30 | 0.872 | 0.849 | 0.830 | 0.759 | 0.964 | 0.957 | 0.954 | 0.935 | |
50 | 0.873 | 0.846 | 0.844 | 0.777 | 0.965 | 0.956 | 0.959 | 0.940 | ||
100 | 0.873 | 0.848 | 0.849 | 0.797 | 0.965 | 0.956 | 0.959 | 0.945 |
表4 两类诊断方法的模式判准率和属性判准率(真模型为MC2)
题目质量 | 题目数量 | 样本量 | PCCR | AACCR | ||||||
---|---|---|---|---|---|---|---|---|---|---|
| | MC1 | MC2 | | | MC1 | MC2. | |||
高质量 | 10 | 30 | 0.772 | 0.700 | 0.746 | 0.697 | 0.915 | 0.884 | 0.904 | 0.896 |
50 | 0.781 | 0.700 | 0.747 | 0.701 | 0.917 | 0.880 | 0.900 | 0.893 | ||
100 | 0.788 | 0.705 | 0.753 | 0.705 | 0.921 | 0.889 | 0.903 | 0.897 | ||
20 | 30 | 0.907 | 0.888 | 0.887 | 0.888 | 0.966 | 0.961 | 0.935 | 0.967 | |
50 | 0.909 | 0.892 | 0.884 | 0.905 | 0.965 | 0.959 | 0.923 | 0.972 | ||
100 | 0.911 | 0.896 | 0.886 | 0.916 | 0.967 | 0.961 | 0.923 | 0.971 | ||
30 | 30 | 0.953 | 0.938 | 0.960 | 0.976 | 0.985 | 0.980 | 0.991 | 0.991 | |
50 | 0.949 | 0.938 | 0.966 | 0.973 | 0.985 | 0.981 | 0.989 | 0.992 | ||
100 | 0.952 | 0.936 | 0.972 | 0.973 | 0.986 | 0.981 | 0.987 | 0.993 | ||
低质量 | 10 | 30 | 0.566 | 0.501 | 0.490 | 0.424 | 0.835 | 0.798 | 0.807 | 0.787 |
50 | 0.580 | 0.493 | 0.497 | 0.424 | 0.841 | 0.797 | 0.815 | 0.786 | ||
100 | 0.593 | 0.501 | 0.516 | 0.422 | 0.847 | 0.803 | 0.823 | 0.786 | ||
20 | 30 | 0.787 | 0.752 | 0.723 | 0.642 | 0.931 | 0.917 | 0.915 | 0.886 | |
50 | 0.793 | 0.761 | 0.744 | 0.656 | 0.930 | 0.917 | 0.917 | 0.889 | ||
100 | 0.792 | 0.762 | 0.754 | 0.666 | 0.931 | 0.918 | 0.921 | 0.892 | ||
30 | 30 | 0.872 | 0.849 | 0.830 | 0.759 | 0.964 | 0.957 | 0.954 | 0.935 | |
50 | 0.873 | 0.846 | 0.844 | 0.777 | 0.965 | 0.956 | 0.959 | 0.940 | ||
100 | 0.873 | 0.848 | 0.849 | 0.797 | 0.965 | 0.956 | 0.959 | 0.945 |
真模型 | 题目数量 | 样本量 | PCCR | AACCR | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | MC1 | MC2 | | | | MC1 | MC2 | |||
MC1 | 10 | 30 | 0.631 | 0.547 | 0.669 | 0.596 | 0.523 | 0.865 | 0.820 | 0.877 | 0.858 | 0.835 |
50 | 0.644 | 0.549 | 0.675 | 0.605 | 0.518 | 0.866 | 0.825 | 0.877 | 0.856 | 0.822 | ||
100 | 0.645 | 0.543 | 0.678 | 0.623 | 0.523 | 0.869 | 0.825 | 0.880 | 0.866 | 0.826 | ||
20 | 30 | 0.839 | 0.812 | 0.888 | 0.857 | 0.796 | 0.945 | 0.935 | 0.964 | 0.958 | 0.937 | |
50 | 0.840 | 0.817 | 0.882 | 0.859 | 0.800 | 0.948 | 0.939 | 0.964 | 0.960 | 0.938 | ||
100 | 0.844 | 0.819 | 0.894 | 0.877 | 0.829 | 0.947 | 0.937 | 0.967 | 0.964 | 0.946 | ||
30 | 30 | 0.904 | 0.878 | 0.938 | 0.930 | 0.906 | 0.975 | 0.968 | 0.986 | 0.984 | 0.978 | |
50 | 0.904 | 0.883 | 0.943 | 0.933 | 0.916 | 0.974 | 0.968 | 0.987 | 0.984 | 0.981 | ||
100 | 0.908 | 0.891 | 0.942 | 0.939 | 0.925 | 0.976 | 0.970 | 0.986 | 0.986 | 0.983 | ||
MC2 | 10 | 30 | 0.623 | 0.546 | 0.647 | 0.578 | 0.512 | 0.866 | 0.820 | 0.868 | 0.847 | 0.825 |
50 | 0.638 | 0.548 | 0.672 | 0.601 | 0.521 | 0.866 | 0.824 | 0.876 | 0.858 | 0.827 | ||
100 | 0.643 | 0.548 | 0.676 | 0.621 | 0.519 | 0.870 | 0.824 | 0.879 | 0.865 | 0.825 | ||
20 | 30 | 0.834 | 0.803 | 0.886 | 0.853 | 0.801 | 0.944 | 0.933 | 0.967 | 0.957 | 0.939 | |
50 | 0.836 | 0.808 | 0.897 | 0.862 | 0.817 | 0.942 | 0.931 | 0.969 | 0.959 | 0.944 | ||
100 | 0.838 | 0.808 | 0.892 | 0.868 | 0.828 | 0.944 | 0.932 | 0.966 | 0.960 | 0.948 | ||
30 | 30 | 0.905 | 0.879 | 0.942 | 0.925 | 0.900 | 0.973 | 0.966 | 0.986 | 0.982 | 0.976 | |
50 | 0.906 | 0.884 | 0.942 | 0.928 | 0.909 | 0.974 | 0.968 | 0.986 | 0.984 | 0.979 | ||
100 | 0.905 | 0.884 | 0.937 | 0.933 | 0.924 | 0.974 | 0.968 | 0.985 | 0.984 | 0.982 |
表5 题目质量存在较大差异时各方法的模式判准率和属性判准率
真模型 | 题目数量 | 样本量 | PCCR | AACCR | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | MC1 | MC2 | | | | MC1 | MC2 | |||
MC1 | 10 | 30 | 0.631 | 0.547 | 0.669 | 0.596 | 0.523 | 0.865 | 0.820 | 0.877 | 0.858 | 0.835 |
50 | 0.644 | 0.549 | 0.675 | 0.605 | 0.518 | 0.866 | 0.825 | 0.877 | 0.856 | 0.822 | ||
100 | 0.645 | 0.543 | 0.678 | 0.623 | 0.523 | 0.869 | 0.825 | 0.880 | 0.866 | 0.826 | ||
20 | 30 | 0.839 | 0.812 | 0.888 | 0.857 | 0.796 | 0.945 | 0.935 | 0.964 | 0.958 | 0.937 | |
50 | 0.840 | 0.817 | 0.882 | 0.859 | 0.800 | 0.948 | 0.939 | 0.964 | 0.960 | 0.938 | ||
100 | 0.844 | 0.819 | 0.894 | 0.877 | 0.829 | 0.947 | 0.937 | 0.967 | 0.964 | 0.946 | ||
30 | 30 | 0.904 | 0.878 | 0.938 | 0.930 | 0.906 | 0.975 | 0.968 | 0.986 | 0.984 | 0.978 | |
50 | 0.904 | 0.883 | 0.943 | 0.933 | 0.916 | 0.974 | 0.968 | 0.987 | 0.984 | 0.981 | ||
100 | 0.908 | 0.891 | 0.942 | 0.939 | 0.925 | 0.976 | 0.970 | 0.986 | 0.986 | 0.983 | ||
MC2 | 10 | 30 | 0.623 | 0.546 | 0.647 | 0.578 | 0.512 | 0.866 | 0.820 | 0.868 | 0.847 | 0.825 |
50 | 0.638 | 0.548 | 0.672 | 0.601 | 0.521 | 0.866 | 0.824 | 0.876 | 0.858 | 0.827 | ||
100 | 0.643 | 0.548 | 0.676 | 0.621 | 0.519 | 0.870 | 0.824 | 0.879 | 0.865 | 0.825 | ||
20 | 30 | 0.834 | 0.803 | 0.886 | 0.853 | 0.801 | 0.944 | 0.933 | 0.967 | 0.957 | 0.939 | |
50 | 0.836 | 0.808 | 0.897 | 0.862 | 0.817 | 0.942 | 0.931 | 0.969 | 0.959 | 0.944 | ||
100 | 0.838 | 0.808 | 0.892 | 0.868 | 0.828 | 0.944 | 0.932 | 0.966 | 0.960 | 0.948 | ||
30 | 30 | 0.905 | 0.879 | 0.942 | 0.925 | 0.900 | 0.973 | 0.966 | 0.986 | 0.982 | 0.976 | |
50 | 0.906 | 0.884 | 0.942 | 0.928 | 0.909 | 0.974 | 0.968 | 0.986 | 0.984 | 0.979 | ||
100 | 0.905 | 0.884 | 0.937 | 0.933 | 0.924 | 0.974 | 0.968 | 0.985 | 0.984 | 0.982 |
题目1 | 题目2 | 题目3 | 题目4 | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
B | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
C | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
D | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |
题目5 | 题目6 | 题目7 | 题目8 | |||||||||||||||||||||
A | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
B | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
C | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
D | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
题目9 | 题目10 | 题目11 | 题目12 | |||||||||||||||||||||
A | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
B | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
C | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |
D | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
题目13 | 题目14 | 题目15 | ||||||||||||||||||||||
A | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | ||||||
B | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | ||||||
C | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | ||||||
D | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
表6 包含干扰项信息的大学英语高级英语阅读测验Q矩阵
题目1 | 题目2 | 题目3 | 题目4 | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
B | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
C | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
D | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |
题目5 | 题目6 | 题目7 | 题目8 | |||||||||||||||||||||
A | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
B | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
C | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
D | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
题目9 | 题目10 | 题目11 | 题目12 | |||||||||||||||||||||
A | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
B | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
C | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |
D | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
题目13 | 题目14 | 题目15 | ||||||||||||||||||||||
A | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | ||||||
B | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | ||||||
C | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | ||||||
D | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
指标 | 平均属性分类一致性指标 (AAR) | 模式分类一致性指标1 (PAR(K = 6)) | 模式分类一致性指标2 (PAR(K ≥ 5)) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
| | MC1 | MC2 | | | MC1 | MC2 | | | MC1 | MC2 | |
| 1 | 1 | 1 | |||||||||
| 0.88 | 1 | 0.61 | 1 | 0.92 | 1 | ||||||
MC1 | 0.85 | 0.86 | 1 | 0.55 | 0.59 | 1 | 0.88 | 0.89 | 1 | |||
MC2 | 0.84 | 0.85 | 0.92 | 1 | 0.51 | 0.57 | 0.71 | 1 | 0.87 | 0.88 | 0.94 | 1 |
表7 各模型间的分类一致性程度
指标 | 平均属性分类一致性指标 (AAR) | 模式分类一致性指标1 (PAR(K = 6)) | 模式分类一致性指标2 (PAR(K ≥ 5)) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
| | MC1 | MC2 | | | MC1 | MC2 | | | MC1 | MC2 | |
| 1 | 1 | 1 | |||||||||
| 0.88 | 1 | 0.61 | 1 | 0.92 | 1 | ||||||
MC1 | 0.85 | 0.86 | 1 | 0.55 | 0.59 | 1 | 0.88 | 0.89 | 1 | |||
MC2 | 0.84 | 0.85 | 0.92 | 1 | 0.51 | 0.57 | 0.71 | 1 | 0.87 | 0.88 | 0.94 | 1 |
[1] |
Bock R.D. (1972). Estimating item parameters and latent ability when responses are scored in two or more nominal categories. Psychometrika, 37, 29-51.
doi: 10.1007/BF02291411 URL |
[2] |
Bradshaw L., & Templin J. (2014). Combining item response theory and diagnostic classification models: a psychometric model for scaling ability and diagnosing misconceptions. Psychometrika, 79(3), 403-425.
doi: 10.1007/s11336-013-9350-4 pmid: 25205005 |
[3] |
Chang Y.-P., Chiu C.-Y., & Tsai R.-C. (2019). Nonparametric CAT for CD in educational settings with small samples. Applied Psychological Measurement, 43(7), 543-561.
doi: 10.1177/0146621618813113 URL |
[4] |
Chiu C.-Y., & Douglas J.A. (2013). A nonparametric approach to cognitive diagnosis by proximity to ideal response patterns. Journal of Classification, 30(2), 225- 250.
doi: 10.1007/s00357-013-9132-9 URL |
[5] |
Chiu C.-Y., Douglas J.A., & Li X.D. (2009). Cluster analysis for cognitive diagnosis: Theory and applications. Psychometrika, 74(4), 633-665.
doi: 10.1007/s11336-009-9125-0 URL |
[6] |
Chiu C.-Y., Sun Y., & Bian Y.H. (2018). Cognitive diagnosis for small educational programs: The general nonparametric classification method. Psychometrika, 83(2), 355-375.
doi: 10.1007/s11336-017-9595-4 URL |
[7] |
de la Torre J.(2009). A cognitive diagnosis model for cognitively based multiple-choice options. Applied Psychological Measurement, 33(3), 163-183.
doi: 10.1177/0146621608320523 URL |
[8] |
de la Torre J.(2011). The generalized DINA model framework. Psychometrika, 76, 179-199.
doi: 10.1007/s11336-011-9207-7 URL |
[9] |
DiBello L.V., Henson R.A., & Stout W.F. (2015). A family of generalized diagnostic classification models for multiple choice option-based scoring. Applied Psychological Measurement, 39(1), 62-79.
doi: 10.1177/0146621614561315 pmid: 29880994 |
[10] | Guo L., Yang J., & Song N.Q. (2018). Application of spectral clustering algorithm under various attribute hierarchical structures for cognitive diagnostic assessment. Journal of Psychological Science, 41(3), 735-742. |
[ 郭磊, 杨静, 宋乃庆. (2018). 谱聚类算法在不同属性层级结构诊断评估中的应用. 心理科学, 41(3), 735-742.] | |
[11] |
Guo L., Yang J., & Song N.Q. (2020). Spectral clustering algorithm for cognitive diagnostic assessment. Fronties in Psychology, 11, 944. doi: 10.3389/fpsyg.2020.00944
doi: 10.3389/fpsyg.2020.00944 |
[12] |
Henson R.A., Templin J.L., & Willse J.T. (2009). Defining a family of cognitive diagnosis models using log-linear models with latent variables. Psychometrika, 74(2), 191-210.
doi: 10.1007/s11336-008-9089-5 URL |
[13] |
Kang C.H., Ren P., & Zeng P.F. (2015). Nonparametric cognitive diagnosis: A cluster diagnostic method based on grade response items. Acta Psychologica Sinica, 47(8), 1077-1088.
doi: 10.3724/SP.J.1041.2015.01077 URL |
[ 康春花, 任平, 曾平飞. (2015). 非参数认知诊断方法:多级评分的聚类分析. 心理学报, 47(8), 1077-1088.] | |
[14] | Kang C.H., Yang Y.K., & Zeng P.F. (2019). Approach to cognitive diagnosis: The manhattan distance discriminating method. Journal of Psychological Science, 42(2), 455-462. |
[ 康春花, 杨亚坤, 曾平飞. (2019). 一种混合计分的非参数认知诊断方法:曼哈顿距离判别法. 心理科学, 42(2), 455-462.] | |
[15] |
Levine M.V., & Drasgow F. (1983). The relation between incorrect option choice and estimated ability. Educational and Psychological Measurement, 43(3), 675-685.
doi: 10.1177/001316448304300301 URL |
[16] | Li S.Z. (2019). Application of back propagation neural network based teaching cognitive diagnosis (Unpublished master’s thesis). Henan Normal University, China. |
[ 李世珍. (2019). 基于BP神经网络的教学认知诊断方法及应用 (硕士学位论文). 河南师范大学.] | |
[17] | Li Y. (2014). The construction for cognitive diagnosis tests of multiple-choice items and the development of multiple- choice cognitive diagnosis model for multiple strategies. (Unpublished doctoral dissertation). Jiangxi Normal University, China. |
[ 李瑜. (2014). 多选题认知诊断测验编制及多策略的多选题认知诊断模型的开发 (博士学位论文). 江西师范大学.] | |
[18] | Liu T. (2016). Using distractor information in computerized adaptive testing (Unpublished doctoral dissertation). Beijing Normal University. |
[ 刘拓. (2016). 干扰项信息在计算机化自适应测验中的利用 (博士学位论文). 北京师范大学.] | |
[19] |
Ma W.C., Iaconangelo C., de la Torre J. & (2016). Model similarity, Model selection, and attribute classification. Applied Psychological Measurement, 40(3), 200-271.
doi: 10.1177/0146621615621717 URL |
[20] | Osterlind S.J. (1998). Constructing test items: Multiple- choice, constructed-response, performance and other formats (2nd ed.). Boston: Kluwer Academic. |
[21] |
Ozaki K. (2015). DINA Models for multiple-choice items with few parameters: Considering incorrect answers. Applied Psychological Measurement, 39(6), 431-447.
doi: 10.1177/0146621615574693 URL |
[22] |
Steven M.D. (2004). Reliability: On the reproducibility of assessment data. Medical Education, 38(9), 1006-1012.
doi: 10.1111/med.2004.38.issue-9 URL |
[23] |
Thissen D.M. (1976). Information in wrong responses to the raven progressive matrices. Journal of Educational Measurement, 13(3), 201-214.
doi: 10.1111/jedm.1976.13.issue-3 URL |
[24] |
Thissen D.M., & Steinberg L. (1984). A response model for multiple-choice items. Psychometrika, 49(4), 501-519.
doi: 10.1007/BF02302588 URL |
[25] |
Thissen D.M., & Wainer H. (1993). Combining multiple- choice and constructed-response test scores: Toward a Marxist theory of test construction. Applied Measurement in Education, 6(2), 103-118.
doi: 10.1207/s15324818ame0602_1 URL |
[26] |
von Davier, M. (2008). A general diagnostic model applied to language testing data. British Journal of Mathematical and Statistical Psychology, 61(2), 287-307.
doi: 10.1348/000711007X193957 URL |
[27] |
Yigit H.D., Sorrel M.A., & de la Torre J.(2019). Computerized adaptive testing for cognitively based multiple-choice data. Applied Psychological Measurement, 43(5), 388-401.
doi: 10.1177/0146621618798665 URL |
[1] | 汪文义;丁树良;宋丽红. 认知诊断中基于条件期望的距离判别方法[J]. 心理学报, 2015, 47(12): 1499-1510. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||