[1] |
Arjona, A., Escudero, M., & Gómez, C. M. ( 2016). Cue validity probability influences neural processing of targets. Biological Psychology, 119, 171-183.
|
[2] |
Baluch, F., & Itti, L. ( 2011). Mechanisms of top-down attention. Trends in Neurosciences, 34( 4), 210-224.
URL
pmid: 21439656
|
[3] |
Bertelson, P., Vroomen, J., de Gelder, B., & Driver, J. ( 2000). The ventriloquist effect does not depend on the direction of deliberate visual attention. Perception & Psychophysics, 62( 2), 321-332.
|
[4] |
Buschman, T. J., & Miller, E. K. ( 2007). Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science, 315( 5820), 1860-1862.
URL
pmid: 17395832
|
[5] |
Busse, L., Roberts, K. C., Crist, R. E., Weissman, D. H., & Woldorff, M. G. ( 2005). The spread of attention across modalities and space in a multisensory object. Proceedings of the National Academy of Sciences of the United States of America, 102( 51), 18751-18756.
|
[6] |
Carrasco, I. ( 2014). Gender gap in innovation: An institutionalist explanation. Management Decision, 52( 2), 410-424.
|
[7] |
Chica, A. B., & Lupiáñez, J. ( 2009). Effects of endogenous and exogenous attention on visual processing: An Inhibition of Return study. Brain Research, 1278, 75-85.
|
[8] |
Dombert, P. L., Kuhns, A., Mengotti, P., Fink, G. R., & Vossel, S. ( 2016). Functional mechanisms of probabilistic inference in feature- and space-based attentional systems. Neuroimage, 142, 553-564.
URL
pmid: 27523448
|
[9] |
Eimer, M. ( 1997). Uninformative symbolic cues may bias visual-spatial attention: Behavioral and electrophysiological evidence. Biological Psychology, 46( 1), 67-71.
URL
pmid: 9255432
|
[10] |
Fairhall, S. L., & Macaluso, E. ( 2009). Spatial attention can modulate audiovisual integration at multiple cortical and subcortical sites. European Journal of Neuroscience, 29( 6), 1247-1257.
|
[11] |
Giard, M. H., & Peronnet, F. ( 1999). Auditory-visual integration during multimodal object recognition in humans: A behavioral and electrophysiological study. Journal of Cognitive Neuroscience, 11( 5), 473-490.
URL
pmid: 10511637
|
[12] |
Jonides, J. ( 1983). Towards a model of the mind's eye's movement. Bulletin of the Psychonomic Society, 21( 4), 247-250.
|
[13] |
Koelewijn, T., Bronkhorst, A., & Theeuwes, J. ( 2010). Attention and the multiple stages of multisensory integration: A review of audiovisual studies. Acta Psychologica, 134( 3), 372-384.
doi: 10.1016/j.actpsy.2010.03.010
URL
pmid: 20427031
|
[14] |
Kuhns, A. B., Dombert, P. L., Mengotti, P., Fink, G. R., & Vossel, S. ( 2017). Spatial attention, motor intention, and Bayesian cue predictability in the human brain. Journal of Neuroscience, 37( 21), 5334-5344.
doi: 10.1523/JNEUROSCI.3255-16.2017
URL
pmid: 28450541
|
[15] |
Laurienti, P. J., Burdette, J. H., Maldjian, J. A., & Wallace, M. T. ( 2006). Enhanced multisensory integration in older adults. Neurobiology of Aging, 27( 8), 1155-1163.
doi: 10.1016/j.neurobiolaging.2005.05.024
URL
pmid: 16039016
|
[16] |
Lewald, J., & Guski, R. ( 2003). Cross-modal perceptual integration of spatially and temporally disparate auditory and visual stimuli. Cognitive Brain Research, 16( 3), 468-478.
|
[17] |
Li, Q., Wu, J. L., & Touge, T. ( 2010). Audiovisual interaction enhances auditory detection in late stage: an event-related potential study. Neuroreport, 21( 3), 173-178.
|
[18] |
Lunn, J., Sjoblom, A., Ward, J., Soto-Faraco, S., & Forster, S. ( 2019). Multisensory enhancement of attention depends on whether you are already paying attention. Cognition, 187, 38-49.
URL
pmid: 30825813
|
[19] |
McCracken, H. S., Murphy, B. A., Glazebrook, C. M., Burkitt, J. J., Karellas, A. M., & Yielder, P. C. ( 2019). Audiovisual multisensory integration and evoked potentials in young adults with and without attention-deficit/hyperactivity disorder. Frontiers in Human Neuroscience, 13, 95.
doi: 10.3389/fnhum.2019.00095
URL
pmid: 30941026
|
[20] |
Mengotti, P., Boers, F., Dombert, P. L., Fink, G. R., & Vossel, S. ( 2018). Integrating modality-specific expectancies for the deployment of spatial attention. Scientific Reports, 8( 1), 1210.
doi: 10.1038/s41598-018-19593-7
URL
pmid: 29352145
|
[21] |
Meredith, M. A., Nemitz, J. W., & Stein, B. E. ( 1987). Determinants of multisensory integration in superior colliculus neurons. I. Temporal factors. Journal of Neuropathology and Experimental Neurology, 7( 10), 3215-3229.
|
[22] |
Meredith, M. A., & Stein, B. E. ( 1986a). Spatial factors determine the activity of multisensory neurons in cat superior colliculus. Brain Research, 365( 2), 350-354.
doi: 10.1016/0006-8993(86)91648-3
URL
pmid: 3947999
|
[23] |
Meredith, M. A., & Stein, B. E. ( 1986b). Visual, auditory, and somatosensory convergence on cells in superior colliculus results in multisensory integration. Journal of Neurophysiology, 56( 3), 640-662.
|
[24] |
Meyer, K. N., Du, F., Parks, E., & Hopfinger, J. B. ( 2018). Exogenous vs. endogenous attention: Shifting the balance of fronto-parietal activity. Neuropsychologia, 111, 307-316.
doi: 10.1016/j.neuropsychologia.2018.02.006
URL
pmid: 29425803
|
[25] |
Miller, J. ( 1982). Divided attention: Evidence for coactivation with redundant signals. Cognitive Psychology, 14( 2), 247-279.
|
[26] |
Miller, J. ( 1986). Timecourse of coactivation in bimodal divided attention. Perception & Psychophysics, 40( 5), 331-343.
|
[27] |
Peelen, M. V., & Kastner, S. ( 2014). Attention in the real world: Toward understanding its neural basis. Trends in Cognitive Sciences, 18( 5), 242-250.
|
[28] |
Posner, M. I. ( 1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32( 1), 3-25.
|
[29] |
Raab, D. H. ( 1962). Statistical facilitation of simple reaction times. Transactions of the New York Academy of Sciences, 24( 5), 574-590.
|
[30] |
Riggio, L., & Kirsner, K. ( 1997). The relationship between central cues and peripheral cues in covert visual orientation. Perception & Psychophysics, 59( 6), 885-899.
URL
pmid: 9270363
|
[31] |
Santangelo, V., Fagioli, S., & Macaluso, E. ( 2010). The costs of monitoring simultaneously two sensory modalities decrease when dividing attention in space. Neuroimage, 49( 3), 2717-2727.
URL
pmid: 19878728
|
[32] |
Santangelo, V., Ho, C., & Spence, C. ( 2008). Capturing spatial attention with multisensory cues. Psychonomic Bulletin & Review, 15( 2), 398-403.
doi: 10.3758/pbr.15.2.398
URL
pmid: 18488658
|
[33] |
Santangelo, V., & Spence, C. ( 2007). Multisensory cues capture spatial attention regardless of perceptual load. Journal of Experimental Psychology: Human Perception and Performance, 33( 6), 1311-1321.
|
[34] |
Stein, B. E., Meredith, M. A., & Wallace, M. T. ( 1993). The visually responsive neuron and beyond: Multisensory integration in cat and monkey. Progress in Brain Research, 95, 79-90.
|
[35] |
Talsma, D., Senkowski, D., Soto-Faraco, S., & Woldorff, M. G. ( 2010). The multifaceted interplay between attention and multisensory integration. Trends in Cognitive Sciences, 14( 9), 400-410.
URL
pmid: 20675182
|
[36] |
Talsma, D., & Woldorff, M. G. ( 2005). Selective attention and multisensory integration: multiple phases of effects on the evoked brain activity. Journal of Cognitive Neuroscience, 17( 7), 1098-1114.
URL
pmid: 16102239
|
[37] |
Tang, X. Y., Gao, Y. L., Yang, W. P., Ren, Y. N., Wu, J. L., Zhang, M., & Wu, Q. ( 2019). Bimodal-divided attention attenuates visually induced inhibition of return with audiovisual targets. Experimental Brain Research, 237( 4), 1093-1107.
|
[38] |
Ulrich, R., Miller, J., & Schröter, H. ( 2007). Testing the race model inequality: An algorithm and computer programs. Behavioural Brain Research, 39( 2), 291-302.
|
[39] |
van den Brink, R. L., Cohen, M. X., van der Burg, E., Talsma, D., Vissers, M. E., & Slagter, H. A. ( 2014). Subcortical, modality-specific pathways contribute to multisensory processing in humans. Cerebral Cortex, 24( 8), 2169-2177.
|
[40] |
van der Burg, E., Olivers, C. N. L., Bronkhorst, A. W., & Theeuwes, J. ( 2008). Pip and pop: Nonspatial auditory signals improve spatial visual search. Journal of Experimental Psychology: Human Perception and Performance, 34( 5), 1053-1065.
|
[41] |
van der Burg, E., Talsma, D., Olivers, C. N. L., Hickey, C., & Theeuwes, J. ( 2011). Early multisensory interactions affect the competition among multiple visual objects. Neuroimage, 55( 3), 1208-1218.
URL
pmid: 21195781
|
[42] |
van der Stigchel, S., Meeter, M., & Theeuwes, J. ( 2007). Top-down influences make saccades deviate away: The case of endogenous cues. Acta Psychologica, 125( 3), 279-290.
URL
pmid: 17022930
|
[43] |
van der Stoep, N., van der Stigchel, S., & Nijboer, T. C. W. ( 2015). Exogenous spatial attention decreases audiovisual integration. Attention Perception & Psychophysics, 77( 2), 464-482.
|
[44] |
van der Stoep, N., van der Stigchel, S., Nijboer, T. C. W., & Spence, C. ( 2017). Visually induced inhibition of return affects the integration of auditory and visual information. Perception, 46( 1), 6-17.
|
[45] |
Vossel, S., Mathys, C., Daunizeau, J., Bauer, M., Driver, J., Friston, K. J., & Stephan, K. E. ( 2014). Spatial attention, precision, and Bayesian inference: A study of saccadic response speed. Cerebral Cortex, 24( 6), 1436-1450.
doi: 10.1093/cercor/bhs418
URL
pmid: 23322402
|
[46] |
Vossel, S., Mathys, C., Stephan, K. E., & Friston, K. J. ( 2015). Cortical coupling reflects Bayesian belief updating in the deployment of spatial attention. Journal of Neuroscience, 35( 33), 11532-11542.
doi: 10.1523/JNEUROSCI.1382-15.2015
URL
pmid: 26290231
|
[47] |
Vossel, S., Thiel, C. M., & Fink, G. R. ( 2006). Cue validity modulates the neural correlates of covert endogenous orienting of attention in parietal and frontal cortex. Neuroimage, 32( 3), 1257-1264.
|
[48] |
Zou, H., Müller, H. J., & Shi, Z. ( 2012). Non-spatial sounds regulate eye movements and enhance visual search. Journal of Vision, 12( 5), 2.
URL
pmid: 22562709
|