ISSN 0439-755X
CN 11-1911/B

心理学报 ›› 2013, Vol. 45 ›› Issue (7): 740-751 .doi: 10.3724/SP.J.1041.2013.00740

• 论文 • 上一篇    下一篇



  1. (认知与人格教育部重点实验室(西南大学); 西南大学心理学院, 重庆 400715)
  • 收稿日期:2012-09-13 发布日期:2013-07-25 出版日期:2013-07-25
  • 通讯作者: 张庆林
  • 基金资助:


An fMRI Study for Problem-Finding in Scientific Inventional Situation

TONG Dandan;DAI Tianen;LI Wenfu;QIU Jiang;ZHANG Qinglin   

  1. (Key Laboratory of Cognition and Personality, Ministry of Education (Southwest University); School of Psychology, Southwest University, Chongqing 400715, China)
  • Received:2012-09-13 Online:2013-07-25 Published:2013-07-25
  • Contact: ZHANG Qinglin

摘要: 本研究中, 以76个科学发明问题(36个带有相关的原型, 40个不带有相关的原型)为实验材料,使用功能性磁共振成像(fMRI)技术探讨了科学发明情境中的问题提出以及新近获得的语义对有价值的科学问题提出的启发效应的大脑机制。对有原型提出有价值的科学问题与无原型提出一般问题这两种情况下被试反应的数据进行记录和分析。结果表明两种情况下共同激活的脑区(科学发明情境中问题提出的脑区)为左侧梭状回、左侧内侧额叶、左侧豆状核、右小脑和左侧中央前回。这些共同激活的脑区表明:左侧梭状回也许与各个语句的语义表征有关; 左侧内侧额叶也许与所有语句的整体语义表征以及提出各个语义之间的“问题”有关(左侧豆状核和右小脑配合内侧额叶分别负责控制注意、眼动的指向和注意资源的分配); 左侧中央前回可能负责用语句表述出所提出的语义之间的“问题”。对有原型提出有价值的科学问题和无原型提出有价值的科学问题这两种情况下被试反应的数据进行记录和分析。结果表明有原型提出有价值的科学问题比无原型提出有价值的科学问题显著激活的脑区(科学发明情境中新近获得的语义对有价值的科学问题提出的启发效应的脑区)为左侧楔前叶、左侧额下回、左侧颞中回。这些显著激活的脑区表明:楔前叶与情境记忆的贮存和提取有关; 额中回与认知控制和注意资源的分配有关; 颞中回与新异性原型的成功激活有关。

关键词: 问题提出, 原型, 事件相关fMRI

Abstract: Albert Einstein ever said that the mere formulation of a problem is far more essential than its solution, which may be merely a matter of mathematical or experimental skills. To raise new questions, new possibilities, to regard old problems from a new angle require creative imagination and marks real advances in science. Thus, finding problems is likely to be more valuable than solving problems in our life. There have been many researches about the creative problem solving, especially including about studies of neural mechanisms. However, less attention has been paid on the issue of problem finding. Hence, it’s necessary to research the neural mechanism of problem finding. When facing similar problem situation but different heuristic prototypes, people may find different valuable levels of problem. Scientific problems can lead one to acquire new thoughts on problem solving; Normal problems can only help us to get to know the problem goals but no clue. But whatever problem it finds, it will include the basic process of problem finding. In addition, the heuristic prototypes which participants learned recently or storage in brain previously may have difference in scientific valuable problem finding. As for the neural mechanism, Brain-imaging techniques such as functional magnetic resonance imaging (fMRI) have made it possible for us to record precisely the brain activation associated with problem finding. Therefore, in the present study, using real life scientific innovations materials and fMRI techniques to explore the brain mechanisms of problem finding. In this study, 76 problem situations (on scientific innovation) were selected as materials. Of the 76 problem situations selected, 36 have related prototype and 40 do not have related prototype. The learning-testing paradigm was used to explore the brain mechanisms of problem finding with fMRI. Participants were asked to find a problem based on the given problem situation. Behavior date showed the mean accuracy rate was extremely significant higher for finding scientific problems with heuristic knowledge than without heuristic knowledge [t (17) = 8.12, p < 0.001]. And our fMRI data showed that the contrast between finding scientific problem with heuristic prototype and finding normal problem without heuristic prototype resulted in common activation in the left precentral gyrus (BA 44), the left medial frontal gyrus (BA 6), the left fusiform gyrus (BA 19), the left lentiform nucleus and the right cerebellum; The contrasts between finding scientific problems with related heuristic prototype and finding scientific problems without related heuristic prototype resulted in significant activation in the left precuneus (BA 7), the left inferior frontal gyrus (BA 10) and the left middle temporal gyrus (BA 39). Based on these results above, the common activation showed that: (1) the left fusiform gyrus might be responsive to the semantic processing of each sentence. (2) The left medial frontal gyrus might be associated with the entire semantic processing and “problem finding” existed in inter-semantic (the left lentiform nucleus and the right cerebellum might be separately involved in the directing of attention and allocating attention resources). (3) The left precentral gyrus might be responsible for expressing “the problem” existed in inter-semantic in language sentence; the significant activation showed that: (1) the left precuneus might be involved in the automatic retrieve of episodic memory. (2) The left inferior frontal gyrus might be associated with cognitive control. (3) The left middle temporal gyrus might be related to the automatic activation of novel heuristic prototype.

Key words: problem finding, prototype, event-related fMRI