Advances in Psychological Science ›› 2025, Vol. 33 ›› Issue (10): 1745-1765.doi: 10.3724/SP.J.1042.2025.1745
• Research Method • Previous Articles Next Articles
Received:2024-12-19
Online:2025-10-15
Published:2025-08-18
Contact:
WANG Guofang
E-mail:wangguofang1968@163.com
CLC Number:
CHEN Zhaojie, WANG Guofang. From mind reading to mind modulation: Applications and mechanisms of neural modulation in brain-computer interfaces from a psychological perspective[J]. Advances in Psychological Science, 2025, 33(10): 1745-1765.
| [1] | 安娟, 牟海荣. (2019). 基于EEG和fNIRS的多模态脑机接口运动想象参数研究. 科学技术创新, 28, 101-102. |
| [2] | 秦云, 刘铁军, 尧德中. (2021). 脑器交互学——脑与外界协同的新学科. 生物医学工程学杂志, 38(3), 507-511. |
| [3] | 王高峰, 张志领. (2022). 算法伦理视域下的脑机接口伦理问题研究. 自然辩证法研究, 38(7), 68-73. |
| [4] | 张喆, 赵旭, 马艺昕, 丁鹏, 南文雅, 龚安民, 伏云发. (2023). 脑机接口技术伦理规范考量. 生物医学工程学杂志, 40(2), 358-364. |
| [5] | Abubaker M., Al Qasem W., Pilátová K., Ježdík P., & Kvašňák E. (2024). Theta-gamma-coupling as predictor of working memory performance in young and elderly healthy people. Molecular Brain, 17(1), 74. https://doi.org/10.1186/s13041-024-01149-8 |
| [6] | Allain P., Foloppe D. A., Besnard J., Yamaguchi T., Etcharry-Bouyx F., Gall D. L.,... Richard P. (2014). Detecting everyday action deficits in Alzheimer's disease using a nonimmersive virtual reality kitchen. Journal of the International Neuropsychological Society, 20(5), 468-477. https://doi.org/10.1017/S1355617714000344 |
| [7] | Ang K. K., Guan C., Phua K. S., Wang C., Zhou L., Tang K. Y., Joseph G. J. E., Kuah C. W. K., & Chua K. S. G. (2014). Brain-computer interface-based robotic end effector system for wrist and hand rehabilitation: Results of a three-armed randomized controlled trial for chronic stroke. Frontiers in Neuroengineering, 7, 30. https://doi.org/10.3389/fneng.2014.00030 |
| [8] |
Aricò P., Borghini G., Di Flumeri G., Sciaraffa N., Colosimo A., & Babiloni F. (2017). Passive BCI in operational environments: Insights, recent advances, and future trends. IEEE Transactions on Bio-Medical Engineering, 64(7), 1431-1436. https://doi.org/10.1109/TBME.2017.2694856
doi: 10.1109/TBME.2017.2694856 URL pmid: 28436837 |
| [9] |
Arns M., Heinrich H., & Strehl U. (2014). Evaluation of neurofeedback in ADHD: The long and winding road. Biological Psychology, 95, 108-115. https://doi.org/10.1016/j.biopsycho.2013.11.013
doi: 10.1016/j.biopsycho.2013.11.013 URL pmid: 24321363 |
| [10] | Arvaneh M., Robertson I. H., & Ward T. E. (2019). A P300-based brain-computer interface for improving attention. Frontiers in Human Neuroscience, 12, Article 524. https://doi.org/10.3389/fnhum.2018.00524 |
| [11] | Axmacher N., Henseler M. M., Jensen O., Weinreich I., Elger C. E., & Fell J. (2010). Cross-frequency coupling supports multi-item working memory in the human hippocampus. Proceedings of the National Academy of Sciences, 107(7), 3228-3233. https://doi.org/10.1073/pnas.0911531107 |
| [12] |
Baddeley A. (2000). The episodic buffer: A new component of working memory? Trends in Cognitive Sciences, 4(11), 417-423. https://doi.org/10.1016/s1364-6613(00)01538-2
doi: 10.1016/s1364-6613(00)01538-2 URL pmid: 11058819 |
| [13] |
Baddeley A. (2012). Working memory: Theories, models, and controversies. Annual Review of Psychology, 63, 1-29. https://doi.org/10.1146/annurev-psych-120710-100422
doi: 10.1146/annurev-psych-120710-100422 URL pmid: 21961947 |
| [14] |
Bagherzadeh Y., Baldauf D., Pantazis D., & Desimone R. (2020). Alpha synchrony and the neurofeedback control of spatial attention. Neuron, 105(3), 577-587.e5. https://doi.org/10.1016/j.neuron.2019.11.001
doi: S0896-6273(19)30964-X URL pmid: 31812515 |
| [15] | Bajaj, V., & Sinha G. R. (Eds.). (2022). Artificial intelligence-based brain-computer interface. Academic Press. https://doi.org/10.1016/C2021-0-00055-9 |
| [16] |
Barnett S. M., & Ceci S. J. (2002). When and where do we apply what we learn? A taxonomy for far transfer. Psychological Bulletin, 128(4), 612-637. https://doi.org/10.1037/0033-2909.128.4.612
doi: 10.1037/0033-2909.128.4.612 URL pmid: 12081085 |
| [17] | Beauchemin N., Charland P., Karran A., Boasen J., Tadson B., Sénécal S., & Léger P. M. (2024). Enhancing learning experiences: EEG-based passive BCI system adapts learning speed to cognitive load in real-time, with motivation as catalyst. Frontiers in Human Neuroscience, 18, Article 1416683. https://doi.org/10.3389/fnhum.2024.1416683 |
| [18] | Berger L. M., Wood G., & Kober S. E. (2022). Effects of virtual reality-based feedback on neurofeedback training performance—A sham-controlled study. Frontiers in Human Neuroscience, 16, Article 952261. https://doi.org/10.3389/fnhum.2022.952261 |
| [19] | Biasiucci A., Leeb R., Iturrate I., Perdikis S., Al-Khodairy A., Corbet T.,... Millán J. D. R. (2018). Brain-actuated functional electrical stimulation elicits lasting arm motor recovery after stroke. Nature Communications, 9(1), 2421. https://doi.org/10.1038/s41467-018-04673-z |
| [20] |
Borghini G., Astolfi L., Vecchiato G., Mattia D., & Babiloni F. (2014). Measuring neurophysiological signals in aircraft pilots and car drivers for the assessment of mental workload, fatigue and drowsiness. Neuroscience and Biobehavioral Reviews, 44, 58-75. https://doi.org/10.1016/j.neubiorev.2012.10.003
doi: 10.1016/j.neubiorev.2012.10.003 URL pmid: 23116991 |
| [21] |
Borhani S., Kilmarx J., Saffo D., Ng L., Abiri R., & Zhao X. (2019). Optimizing prediction model for a noninvasive brain-computer interface platform using channel selection, classification, and regression. IEEE Journal of Biomedical and Health Informatics, 23(6), 2475-2482. https://doi.org/10.1109/JBHI.2019.2892379
doi: 10.1109/JBHI.2019.2892379 URL pmid: 30640636 |
| [22] | Brannigan J. F. M., Liyanage K., Horsfall H. L., Bashford L., Muirhead W., & Fry A. (2024). Brain-computer interfaces patient preferences: A systematic review. Journal of Neural Engineering, 21(6). https://doi.org/10.1088/1741-2552/ad94a6 |
| [23] | Caiado F., & Ukolov A. (2025). The history, current state and future possibilities of the non-invasive brain computer interfaces. Medicine in Novel Technology and Devices, 25, Article 100353. https://doi.org/10.1016/j.medntd.2025.100353 |
| [24] | Campos Campos da Paz, V. K., Garcia A., Campos da Paz Neto A., & Tomaz C.(2018). SMR neurofeedback training facilitates working memory performance in healthy older adults: A behavioral and EEG study. Frontiers in Behavioral Neuroscience, 12, Article 321. https://doi.org/10.3389/fnbeh.2018.00321 |
| [25] | Card N. S., Wairagkar M., Iacobacci C., Hou X., Singer-Clark T., Kunz E. M.,... Stavisky S. D. (2024). An accurate and rapidly calibrating speech neuroprosthesis [Preprint]. medRxiv. https://doi.org/10.1101/2023.12.26.23300110 |
| [26] |
Carrasco M. (2011). Visual attention: The past 25 years. Vision Research, 51(13), 1484-1525. https://doi.org/10.1016/j.visres.2011.04.012
doi: 10.1016/j.visres.2011.04.012 URL pmid: 21549742 |
| [27] | Chai X., Cao T., He Q., Wang N., Zhang X., Shan X.,... Zhao J. (2024). Brain-computer interface digital prescription for neurological disorders. CNS Neuroscience & Therapeutics, 30(2), e14615. https://doi.org/10.1111/cns.14615 |
| [28] | Chandra S., Sharma S., Chaudhuri R., & Fiete I. (2025). Episodic and associative memory from spatial scaffolds in the hippocampus. Nature, 638(8051), 739-751. https://doi.org/10.1038/s41586-024-08392-y |
| [29] | Chang D., Xiang Y., Zhao J., Qian Y., & Li F. (2022). Exploration of brain-computer interaction for supporting children's attention training: A multimodal design based on attention network and gamification design. International Journal of Environmental Research and Public Health, 19(22), 15046. https://doi.org/10.3390/ijerph192215046 |
| [30] | Chao J., Zheng S., Wu H., Wang D., Zhang X., Peng H., & Hu B. (2021). fNIRS evidence for distinguishing patients with major depression and healthy controls. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 29, 2211-2221. https://doi.org/10.1109/TNSRE.2021.3115266 |
| [31] |
Chaudhary U., Birbaumer N., & Ramos-Murguialday A. (2016). Brain-computer interfaces for communication and rehabilitation. Nature Reviews Neurology, 12(9), 513-525. https://doi.org/10.1038/nrneurol.2016.113
doi: 10.1038/nrneurol.2016.113 URL pmid: 27539560 |
| [32] | Chen C., Xiao X., Belkacem A. N., Lu L., Wang X., Yi W.,... Ming D. (2021). Efficacy evaluation of neurofeedback-based anxiety relief. Frontiers in Neuroscience, 15, Article 758068. https://doi.org/10.3389/fnins.2021.758068 |
| [33] | Chen S., Chen M., Wang X., Liu X., Liu B., & Ming D. (2025). Brain-computer interfaces in 2023-2024. Brain-X, 3(1), e70024. https://doi.org/10.1002/brx2.70024 |
| [34] | Chiappalone M., Cota V. R., Carè M., Di Florio M., Beaubois R., Buccelli S.,... Levi T. (2022). Neuromorphic-based neuroprostheses for brain rewiring: State-of-the-art and perspectives in neuroengineering. Brain Sciences, 12(11), 1578. https://doi.org/10.3390/brainsci12111578 |
| [35] | Choi T. Y., Kim J., & Koo J. W. (2024). Transcutaneous auricular vagus nerve stimulation in anesthetized mice induces antidepressant effects by activating dopaminergic neurons in the ventral tegmental area. Molecular Brain, 17(1), 86. https://doi.org/10.1186/s13041-024-01162-x |
| [36] | Das A., Soni P., Huang M. -C., Lin F., & Xu W. (2024). Multimodal speech recognition using EEG and audio signals: A novel approach for enhancing ASR systems. Smart Health, 32, Article 100477. https://doi.org/10.1016/j.smhl.2024.100477 |
| [37] | Défossez A., Caucheteux C., Rapin J., Kabeli O., & King J. -R. (2023). Decoding speech perception from non-invasive brain recordings. Nature Machine Intelligence, 5(10), 1097-1107. https://doi.org/10.1038/s42256-023-00714-5 |
| [38] | Dobbins I. C. S., Bastos M., Ratis R. C., Silva W. C. F. N. D., & Bonini J. S. (2023). Effects of neurofeedback on major depressive disorder: A systematic review. Einstein, 21, eRW0253. https://doi.org/10.31744/einstein_journal/2023RW0253 |
| [39] | Drigas A., & Sideraki A. (2024). Brain neuroplasticity leveraging virtual reality and brain-computer interface technologies. Sensors, 24(17), 5725. https://doi.org/10.3390/s24175725 |
| [40] | Ehrlich S. K., Agres K. R., Guan C., & Cheng G. (2019). A closed-loop, music-based brain-computer interface for emotion mediation. PLOS ONE, 14(3), e0213516. |
| [41] | Enriquez-Geppert S., Huster R. J., & Herrmann C. S. (2017). EEG-neurofeedback as a tool to modulate cognition and behavior: A review tutorial. Frontiers in Human Neuroscience, 11, Article 51. https://doi.org/10.3389/fnhum.2017.00051 |
| [42] |
Eshuis L. V., van Gelderen M. J., van Zuiden M., Nijdam M. J., Vermetten E., Olff M., & Bakker A. (2021). Efficacy of immersive PTSD treatments: A systematic review of virtual and augmented reality exposure therapy and a meta-analysis of virtual reality exposure therapy. Journal of Psychiatric Research, 143, 516-527. https://doi.org/10.1016/j.jpsychires.2020.11.030
doi: 10.1016/j.jpsychires.2020.11.030 URL pmid: 33248674 |
| [43] | Eysenck H. J. (1991). Dimensions of personality: 16, 5 or 3? Criteria for a taxonomic paradigm. Personality and Individual Differences, 12(8), 773-790. https://doi.org/10.1016/0191-8869(91)90144-Z |
| [44] |
Gagnon L., Cooper R. J., Yücel M. A., Perdue K. L., Greve D. N., & Boas D. A. (2012). Short separation channel location impacts the performance of short channel regression in NIRS. NeuroImage, 59(3), 2518-2528. https://doi.org/10.1016/j.neuroimage.2011.08.095
doi: 10.1016/j.neuroimage.2011.08.095 URL pmid: 21945793 |
| [45] | Gall R., Mcdonald N., Huang X., Wears A., Price R. B., Ostadabbas S., Akcakaya M., & Woody M. L. (2024). AttentionCARE: Replicability of a BCI for the clinical application of augmented reality-guided EEG-based attention modification for adolescents at high risk for depression. Frontiers in Human Neuroscience, 18, Article 1360218. https://doi.org/10.3389/fnhum.2024.1360218 |
| [46] |
Gao X., Wang Y., Chen X., & Gao S. (2021). Interface, interaction, and intelligence in generalized brain-computer interfaces. Trends in Cognitive Sciences, 25(8), 671-684. https://doi.org/10.1016/j.tics.2021.04.003
doi: 10.1016/j.tics.2021.04.003 URL pmid: 34116918 |
| [47] | Gordon E. C., & Seth A. K. (2024). Ethical considerations for the use of brain-computer interfaces for cognitive enhancement. PLoS Biology, 22(10), e3002899. https://doi.org/10.1371/journal.pbio.3002899 |
| [48] | Griffiths M. (1999). Internet addiction: Fact or fiction? The Psychologist, 12(5), 246-250. |
| [49] | Gross J. J. (2015). Emotion regulation: Current status and future prospects. Psychological Inquiry, 26(1), 1-26. https://doi.org/10.1080/1047840X.2014.940781 |
| [50] |
Gruzelier J. H. (2014). EEG-neurofeedback for optimising performance. I: A review of cognitive and affective outcome in healthy participants. Neuroscience and Biobehavioral Reviews, 44, 124-141. https://doi.org/10.1016/j.neubiorev.2013.09.015
doi: 10.1016/j.neubiorev.2013.09.015 URL pmid: 24125857 |
| [51] |
Hahn B., Wolkenberg F. A., Ross T. J., Myers C. S., Heishman S. J., Stein D. J., Kurup P. K., & Stein E. A. (2008). Divided versus selective attention: Evidence for common processing mechanisms. Brain Research, 1215, 137-146. https://doi.org/10.1016/j.brainres.2008.03.058
doi: 10.1016/j.brainres.2008.03.058 URL pmid: 18479670 |
| [52] | Herron J. A., Thompson M. C., Brown T., Chizeck H. J., Ojemann J. G., & Ko A. L. (2017). Cortical brain- computer interface for closed-loop deep brain stimulation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25(11), 2180-2187. https://doi.org/10.1109/TNSRE.2017.2705661 |
| [53] | Hu P., Lu Y., Pan B. X., & Zhang W. H. (2022). New insights into the pivotal role of the amygdala in inflammation-related depression and anxiety disorder. International Journal of Molecular Sciences, 23(19), 11076. https://doi.org/10.3390/ijms231911076 |
| [54] | İnan Acı Ç., Kaya M., & Mishchenko Y. (2019). Distinguishing mental attention states of humans via an EEG-based passive BCI using machine learning methods. Expert Systems with Applications, 134, 153-166. https://doi.org/10.1016/j.eswa.2019.05.057 |
| [55] | Ismail L. E., & Karwowski W. (2020). Applications of EEG indices for the quantification of human cognitive performance: A systematic review and bibliometric analysis. PLOS ONE, 15(12), e0242857. https://doi.org/10.1371/journal.pone.0242857 |
| [56] | Jin W., Zhu X., Qian L., Wu C., Yang F., Zhan D.,... Xu G. (2024). Electroencephalogram-based adaptive closed- loop brain-computer interface in neurorehabilitation: A review. Frontiers in Computational Neuroscience, 18, Article 1431815. https://doi.org/10.3389/fncom.2024.1431815 |
| [57] | Kaimara, P., Plerou A., & Deliyannis I. (2020). Cognitive enhancement and brain-computer interfaces:Potential boundaries and risks. In P. Kaimara, A. Plerou, A. D. Tsolis, & I. Deliyannis (Eds.), Advances in experimental medicine and biology: Vol. 1194. Assistive technology: Shaping a sustainable and inclusive world (pp. 275-283). Springer. https://doi.org/10.1007/978-3-030-32622-7_25 |
| [58] | Kamboj S., Carlson E. L., Ander B. P., Hanson K. L., Murray K. D., Fudge J. L.,... Fox A. S. (2024). Translational insights from cell type variation across amygdala subnuclei in rhesus monkeys and humans. The American Journal of Psychiatry, 181(12), 1086-1102. https://doi.org/10.1176/appi.ajp.20230602 |
| [59] | Karran A. J., Demazure T., Leger P. M., Labonte-LeMoyne E., Senecal S., Fredette M., & Babin G. (2019). Toward a hybrid passive BCI for the modulation of sustained attention using EEG and fNIRS. Frontiers in Human Neuroscience, 13, Article 393. https://doi.org/10.3389/fnhum.2019.00393 |
| [60] | Kazdin A. E. (2021). Research design in clinical psychology (5th ed.). Cambridge University Press. https://doi.org/10.1017/9781108993647 |
| [61] |
Keynan J. N., Meir-Hasson Y., Gilam G., Cohen A., Jackont G., Kinreich S.,... Hendler T. (2016). Limbic activity modulation guided by functional magnetic resonance imaging-inspired electroencephalography improves implicit emotion regulation. Biological Psychiatry, 80(6), 490-496. https://doi.org/10.1016/j.biopsych.2015.12.024
doi: S0006-3223(16)00003-2 URL pmid: 26996601 |
| [62] | Kim M. S., Park H., Kwon I., An K. O., Kim H., Park G.,... Shin J. H. (2025). Efficacy of brain-computer interface training with motor imagery-contingent feedback in improving upper limb function and neuroplasticity among persons with chronic stroke: A double-blinded, parallel-group, randomized controlled trial. Journal of Neuroengineering and Rehabilitation, 22(1), 1. https://doi.org/10.1186/s12984-024-01535-2 |
| [63] | Kojima S., & Kanoh S. (2024). An auditory brain-computer interface based on selective attention to multiple tone streams. PLOS ONE, 19(5), e0303565. https://doi.org/10.1371/journal.pone.0303565 |
| [64] | Kwon D. (2022). Brain stimulation leads to long-lasting improvements in memory. Nature. https://doi.org/10.1038/d41586-022-02298-3 |
| [65] | Lee T. -S., Goh S. J., Quek S. Y., Phillips R., Guan C., Cheung Y. B.,... Krishnan R. R. (2013). A brain- computer interface based cognitive training system for healthy elderly: A randomized control pilot study for usability and preliminary efficacy. PLOS ONE, 8(11), e79419. https://doi.org/10.1371/journal.pone.0079419 |
| [66] |
Leuchter A. F., Hunter A. M., Jain F. A., Tartter M., Crump C., & Cook I. A. (2017). Escitalopram but not placebo modulates brain rhythmic oscillatory activity in the first week of treatment of major depressive disorder. Journal of Psychiatric Research, 84, 174-183. https://doi.org/10.1016/j.jpsychires.2016.10.002
doi: S0022-3956(16)30477-0 URL pmid: 27770740 |
| [67] | Li R., Yang D., Fang F., Hong K. S., Reiss A. L., & Zhang Y. (2022). Concurrent fNIRS and EEG for brain function investigation: A systematic, methodology-focused review. Sensors, 22(15), 5865. https://doi.org/10.3390/s22155865 |
| [68] | Li S., Wang H., Chen X., & Wu D. (2025). Multimodal brain-computer interfaces: AI-powered decoding methodologies [Preprint]. arXiv. https://arxiv.org/abs/2502.02830 |
| [69] | Li Y., Wang P. T., Vaidya M. P., Flint R. D., Liu C. Y., Slutzky M. W., & Do A. H. (2021). Electromyogram (EMG) removal by adding sources of EMG (ERASE)-A novel ICA-based algorithm for removing myoelectric artifacts from EEG. Frontiers in Neuroscience, 14, Article 597941. https://doi.org/10.3389/fnins.2020.597941 |
| [70] | Li Y., Yang H., Li J., Chen D., & Du M. (2020). EEG-based intention recognition with deep recurrent- convolution neural network: Performance and channel selection by Grad-CAM. Neurocomputing, 415, 225-233. https://doi.org/10.1016/j.neucom.2020.07.072 |
| [71] | Liang Z., Wang X., Zhao J., & Li X. (2022). Comparative study of attention-related features on attention monitoring systems with a single EEG channel. Journal of Neuroscience Methods, 382, 109711. https://doi.org/10.1016/j.jneumeth.2022.109711 |
| [72] | Linden D. E., Habes I., Johnston S. J., Linden S., Tatineni R., Subramanian L.,... Goebel R. (2012). Real-time self-regulation of emotion networks in patients with depression. PLOS ONE, 7(6), e38115. https://doi.org/10.1371/journal.pone.0038115 |
| [73] | Liu X. Y., Wang W. L., Liu M., Chen M. Y., Pereira T., Doda D. Y.,... Ming D. (2025). Recent applications of EEG-based brain-computer-interface in the medical field. Military Medical Research, 12(1), 14. https://doi.org/10.1186/s40779-025-00598-z |
| [74] | Liu Y., Liu R., Ge J., & Wang Y. (2024). Advancements in brain-machine interfaces for application in the metaverse. Frontiers in Neuroscience, 18, Article 1383319. https://doi.org/10.3389/fnins.2024.1383319 |
| [75] | Lotte F., Congedo M., Lécuyer A., Lamarche F., & Arnaldi B. (2007). A review of classification algorithms for EEG-based brain-computer interfaces. Journal of Neural Engineering, 4(2), R1-R13. https://doi.org/10.1088/1741-2560/4/2/R01 |
| [76] | Luo N., Shi W., Yang Z., Song M., & Jiang T. Z. (2024). Multimodal fusion of brain imaging data: Methods and applications. Machine Intelligence Research, 21, 136-152. https://doi.org/10.1007/s11633-023-1442-8 |
| [77] | Lv Z., Qiao L., Wang Q., & Piccialli F. (2021). Advanced machine-learning methods for brain-computer interfacing. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 18(5), 1688-1698. https://doi.org/10.1109/TCBB.2020.3010014 |
| [78] |
Maddirala A. K., & Veluvolu K. C. (2022). ICA with CWT and k-means for eye-blink artifact removal from fewer channel EEG. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 30, 1361-1373. https://doi.org/10.1109/TNSRE.2022.3176575
doi: 10.1109/TNSRE.2022.3176575 URL pmid: 35604962 |
| [79] | Maiseli B., Abdalla A. T., Massawe L. V., & Juma R. (2023). Brain-computer interface: Trend, challenges, and threats. Brain Informatics, 10, Article 20. https://doi.org/10.1186/s40708-023-00199-3 |
| [80] |
Maples-Keller J. L., Bunnell B. E., Kim S. J., & Rothbaum B. O. (2017). The use of virtual reality technology in the treatment of anxiety and other psychiatric disorders. Harvard Review of Psychiatry, 25(3), 103-113. https://doi.org/10.1097/HRP.0000000000000138
doi: 10.1097/HRP.0000000000000138 URL pmid: 28475502 |
| [81] |
Marzbani H., Marateb H. R., & Mansourian M. (2016). Neurofeedback: A comprehensive review on system design, methodology and clinical applications. Basic and Clinical Neuroscience, 7(2), 143-158. https://doi.org/10.15412/J.BCN.03070208
doi: 10.15412/J.BCN.03070208 URL pmid: 27303609 |
| [82] | Mattioli F., Porcaro C., & Baldassarre G. (2022). A 1D CNN for high accuracy classification and transfer learning in motor imagery EEG-based brain-computer interface. Journal of Neural Engineering, 18(6), 066007. https://doi.org/10.1088/1741-2552/ac4430 |
| [83] | Maye A., Zhang D., Wang Y., Gao S., & Engel A. K. (2011). Multimodal brain-computer interfaces. Tsinghua Science & Technology, 16(2), 133-139. https://doi.org/10.1016/S1007-0214(11)70020-7 |
| [84] |
Meinzer M., Lindenberg R., Antonenko D., Flaisch T., & Flöel A. (2013). Anodal transcranial direct current stimulation temporarily reverses age-associated cognitive decline and functional brain activity changes. Journal of Neuroscience, 33(30), 12470-12478. https://doi.org/10.1523/JNEUROSCI.5743-12.2013
doi: 10.1523/JNEUROSCI.5743-12.2013 URL pmid: 23884951 |
| [85] | Miao Y., Chen S., Zhang X., Jin J., Xu R., Daly I.,... Jung T. P. (2020). BCI-based rehabilitation on the stroke in sequela stage. Neural Plasticity, Article 8882764. https://doi.org/10.1155/2020/8882764 |
| [86] | Micoulaud-Franchi J. A., Jeunet C., Pelissolo A., & Ros T. (2021). EEG neurofeedback for anxiety disorders and post- traumatic stress disorders: A blueprint for a promising brain-based therapy. Current Psychiatry Reports, 23(12), 84. https://doi.org/10.1007/s11920-021-01299-9 |
| [87] | Miller G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63(2), 81-97. https://doi.org/10.1037/h0043158 |
| [88] |
Miyake A., Friedman N. P., Emerson M. J., Witzki A. H., Howerter A., & Wager T. D. (2000). The unity and diversity of executive functions and their contributions to complex "Frontal Lobe" tasks: A latent variable analysis. Cognitive Psychology, 41(1), 49-100. https://doi.org/10.1006/cogp.1999.0734
doi: 10.1006/cogp.1999.0734 URL pmid: 10945922 |
| [89] | Mohan U. R., & Jacobs J. (2024). Why does invasive brain stimulation sometimes improve memory and sometimes impair it? PLoS Biology, 22(10), e3002894. https://doi.org/10.1371/journal.pbio.3002894 |
| [90] |
Mora-Sánchez A., Pulini A. A., Gaume A., Dreyfus G., & Vialatte F. B. (2020). A brain-computer interface for the continuous, real-time monitoring of working memory load in real-world environments. Cognitive Neurodynamics, 14(3), 301-321. https://doi.org/10.1007/s11571-020-09573-x
doi: 10.1007/s11571-020-09573-x URL pmid: 32399073 |
| [91] | Myrden A., & Chau T. (2016). Towards psychologically adaptive brain-computer interfaces. Journal of Neural Engineering, 13(6), 066022. https://doi.org/10.1088/1741-2560/13/6/066022 |
| [92] | Naseer N., & Hong K. S. (2015). fNIRS-based brain-computer interfaces: A review. Frontiers in Human Neuroscience, 9, Article 3. https://doi.org/10.3389/fnhum.2015.00003 |
| [93] |
Nicholson A. A., Rabellino D., Densmore M., Frewen P. A., Paret C., Kluetsch R.,... Lanius R. A. (2017). The neurobiology of emotion regulation in posttraumatic stress disorder: Amygdala downregulation via real-time fMRI neurofeedback. Human Brain Mapping, 38(1), 541-560. https://doi.org/10.1002/hbm.23402
doi: 10.1002/hbm.23402 URL pmid: 27647695 |
| [94] | Norman A. A., Marzuki A. H., Faith F., Hamid S., Abdul Ghani N., & Ravana S. D. (2023). Technology dependency and impact during COVID-19: A systematic literature review and open challenges. IEEE Access, 11, 40741-40760. https://doi.org/10.1109/ACCESS.2023.3250770 |
| [95] | Norman D. A. (2013). The design of everyday things (Revised and expanded ed.). Basic Books. |
| [96] | Papanastasiou G., Drigas A., Skianis C., & Lytras M. (2020). Brain computer interface based applications for training and rehabilitation of students with neurodevelopmental disorders. A literature review. Heliyon, 6(9), e04250. https://doi.org/10.1016/j.heliyon.2020.e04250 |
| [97] | Park H. L., Lee Y., Kim N., Seo D. G., Go G. T., & Lee T. W. (2020). Flexible neuromorphic electronics for computing, soft robotics, and neuroprosthetics. Advanced Materials, 32(15), e1903558. https://doi.org/10.1002/adma.201903558 |
| [98] |
Pascual-Leone A., Amedi A., Fregni F., & Merabet L. B. (2005). The plastic human brain cortex. Annual Review of Neuroscience, 28, 377-401. https://doi.org/10.1146/annurev.neuro.27.070203.144216
URL pmid: 16022601 |
| [99] | Pinti P., Tachtsidis I., Hamilton A., Hirsch J., Aichelburg C., Gilbert S., & Burgess P. W. (2020). The present and future use of functional near-infrared spectroscopy (fNIRS) for cognitive neuroscience. Annals of the New York Academy of Sciences, 1464(1), 5-29. https://doi.org/10.1111/nyas.13948 |
| [100] | Poldrack R. A., & Farah M. J. (2015). Progress and challenges in probing the human brain. Nature, 526(7573), 371-379. https://doi.org/10.1038/nature15692 |
| [101] |
Posner M. I., & Petersen S. E. (1990). The attention system of the human brain. Annual Review of Neuroscience, 13, 25-42. https://doi.org/10.1146/annurev.ne.13.030190.000325
URL pmid: 2183676 |
| [102] | Putze F., Vourvopoulos A., Lécuyer A., Krusienski D., Bermúdez i Badia S., Mullen T., & Herff C. (2020). Editorial: Brain-computer interfaces and augmented/ virtual reality. Frontiers in Human Neuroscience, 14, Article 144. https://doi.org/10.3389/fnhum.2020.00144 |
| [103] | Qiu Y., Liu H., & Zhao M. (2025). A review of brain-computer interface-based language decoding: From signal interpretation to intelligent communication. Applied Sciences, 15(1), 392. https://doi.org/10.3390/app15010392 |
| [104] | Reis J., Portugal A. M., Fernandes L., Afonso N., Pereira M., Sousa N., & Dias N. S. (2016). An Alpha and Theta intensive and short neurofeedback protocol for healthy aging working-memory training. Frontiers in Aging Neuroscience, 8, Article 157. https://doi.org/10.3389/fnagi.2016.00157 |
| [105] | Ren B., Zhou Q., & Chen J. (2023). Assessing cognitive workloads of assembly workers during multi-task switching. Scientific Reports, 13(1), 16356. https://doi.org/10.1038/s41598-023-43477-0 |
| [106] | Restoy D., Oriol-Escudé M., Alonzo-Castillo T., Magán-Maganto M., Canal-Bedia R., Díez-Villoria E.,... Lugo-Marín J. (2024). Emotion regulation and emotion dysregulation in children and adolescents with autism spectrum disorder: A meta-analysis of evaluation and intervention studies. Clinical Psychology Review, 109, 102410. https://doi.org/10.1016/j.cpr.2024.102410 |
| [107] | Riva G., Wiederhold B. K., & Mantovani F. (2019). Neuroscience of virtual reality: From virtual exposure to embodied medicine. Cyberpsychology, Behavior, and Social Networking, 22(1), 82-96. https://doi.org/10.1089/cyber.2017.29099.gri |
| [108] | Rotter J. B. (1966). Generalized expectancies for internal versus external control of reinforcement. Psychological Monographs: General and Applied, 80(1), 1-28. https://doi.org/10.1037/h0092976 |
| [109] | Roy Y., Banville H., Albuquerque I., Gramfort A., Falk T. H., & Faubert J. (2019). Deep learning-based electroencephalography analysis: A systematic review. Journal of Neural Engineering, 16(5), 051001. https://doi.org/10.1088/1741-2552/ab260c |
| [110] | Ryan R. M., & Deci E. L. (2017). Self-determination theory: Basic psychological needs in motivation, development, and wellness. The Guilford Press. https://doi.org/10.1521/978.14625/28806 |
| [111] |
Schoenberg P. L., & David A. S. (2014). Biofeedback for psychiatric disorders: A systematic review. Applied Psychophysiology and Biofeedback, 39(2), 109-135. https://doi.org/10.1007/s10484-014-9246-9
doi: 10.1007/s10484-014-9246-9 URL pmid: 24806535 |
| [112] |
Schultz W. (2015). Neuronal reward and decision signals: From theories to data. Physiological Reviews, 95(3), 853-951. https://doi.org/10.1152/physrev.00023.2014
doi: 10.1152/physrev.00023.2014 URL pmid: 26109341 |
| [113] | Scott S. M., & Raftery C. (2021). Brain-computer interfaces and creative expression: Interface considerations for rehabilitative and therapeutic interactions. Frontiers in Computer Science, 3, Article 718605. https://doi.org/10.3389/fcomp.2021.718605 |
| [114] | Siirtola P., Tamminen S., Chandra G., Ihalapathirana A., & Röning J. (2023). Predicting emotion with biosignals: A comparison of classification and regression models for estimating valence and arousal level using wearable sensors. Sensors (Basel, Switzerland), 23(3), 1598. https://doi.org/10.3390/s23031598 |
| [115] |
Sitaram R., Ros T., Stoeckel L., Haller S., Scharnowski F., Lewis-Peacock J.,... Sulzer J. (2017). Closed-loop brain training: The science of neurofeedback. Nature Reviews Neuroscience, 18(2), 86-100. https://doi.org/10.1038/nrn.2016.164
doi: 10.1038/nrn.2016.164 URL pmid: 28003656 |
| [116] | Słaby, S. (2021). Privacy and security in brain-computer interfaces. In S. Paszkiel (Ed.), Control, computer engineering and neuroscience: ICBCI 2021 (pp. 231-241). Springer. https://doi.org/10.1007/978-3-030-72254-8_19 |
| [117] | Smashna O. (2023). Influence of cognitive functioning on the effectiveness of treatment of veterans with post- traumatic stress disorder and mild traumatic brain injury. International Journal of Medical and Medical Research, 9(2), 30-41. https://doi.org/10.61751/ijmmr/2.2023.30 |
| [118] | Sun X. Y., & Ye B. (2023). The functional differentiation of brain-computer interfaces (BCIs) and its ethical implications. Humanities and Social Sciences Communications, 10(1), Article 878. https://doi.org/10.1057/s41599-023-02419-x |
| [119] | Sun Y., Ayaz H., & Akansu A. N. (2020). Multimodal affective state assessment using fNIRS + EEG and spontaneous facial expression. Brain Sciences, 10(2), 85. https://doi.org/10.3390/brainsci10020085 |
| [120] | Sweller J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12(2), 257-285. https://doi.org/10.1207/s15516709cog1202_4 |
| [121] |
Tang J., LeBel A., Jain S., & Huth A. G. (2023). Semantic reconstruction of continuous language from non-invasive brain recordings. Nature Neuroscience, 26(5), 858-866. https://doi.org/10.1038/s41593-023-01304-9
doi: 10.1038/s41593-023-01304-9 URL pmid: 37127759 |
| [122] |
Thibault R. T., Lifshitz M., & Raz A. (2016). The self-regulating brain and neurofeedback: Experimental science and clinical promise. Cortex, 74, 247-261. https://doi.org/10.1016/j.cortex.2015.10.024
doi: 10.1016/j.cortex.2015.10.024 URL pmid: 26706052 |
| [123] | Tripathi B., & Sharma R. K. (2023). EEG-based emotion classification in financial trading using deep learning: Effects of risk control measures. Sensors, 23(7), 3474. https://doi.org/10.3390/s23073474 |
| [124] | Tsai P. C., Akpan A., Tang K. T., & Lakany H. (2025). Brain computer interfaces for cognitive enhancement in older people - Challenges and applications: A systematic review. BMC Geriatrics, 25(1), 36. https://doi.org/10.1186/s12877-025-05676-4 |
| [125] | Unterrainer M., & Oduncu F. S. (2015). The ethics of deep brain stimulation (DBS). Medicine, Health Care and Philosophy, 18(4), 475-485. https://doi.org/10.1007/s11019-015-9622-0 |
| [126] | Urigüen J. A., & Garcia-Zapirain B. (2015). EEG artifact removal-state-of-the-art and guidelines. Journal of Neural Engineering, 12(3), 031001. https://doi.org/10.1088/1741-2560/12/3/031001 |
| [127] | Vallejo V., Wyss P., Rampa L., Mitache A. V., Müri R. M., Mosimann U. P.,... Nyffeler T. (2017). Evaluation of a novel serious game based assessment tool for patients with Alzheimer's disease. PLOS ONE, 12(4), e0175999. https://doi.org/10.1371/journal.pone.0175999 |
| [128] | van der Heijden A. C., van der Werf Y. D., van den Heuvel O. A., Talamini L. M., & van Marle H. J. F. (2024). Targeted memory reactivation to augment treatment in post-traumatic stress disorder. Current Biology, 34(16), 3735-3746.e5. https://doi.org/10.1016/j.cub.2024.07.019 |
| [129] | van Loenen I., Scholten W., Muntingh A., Smit J., & Batelaan N. (2022). The effectiveness of virtual reality exposure-based cognitive behavioral therapy for severe anxiety disorders, obsessive-compulsive disorder, and posttraumatic stress disorder: Meta-analysis. Journal of Medical Internet Research, 24(2), Article e26736. https://doi.org/10.2196/26736 |
| [130] | van 't Wout-Frank M., Arulpragasam A. R., Faucher C., Aiken E., Shea M. T., Jones R. N., Greenberg B. D., & Philip N. S. (2024). Virtual reality and transcranial direct current stimulation for posttraumatic stress disorder: A randomized clinical trial. JAMA Psychiatry, 81(5), 437-446. https://doi.org/10.1001/jamapsychiatry.2023.5661 |
| [131] |
Violante I. R., Alania K., Cassarà A. M., Neufeld E., Acerbo E., Carron R.,... Grossman N. (2023). Non-invasive temporal interference electrical stimulation of the human hippocampus. Nature Neuroscience, 26(11), 1994-2004. https://doi.org/10.1038/s41593-023-01456-8
doi: 10.1038/s41593-023-01456-8 URL pmid: 37857775 |
| [132] | von Lühmann A., Li X., Müller K. R., Boas D. A., & Yücel M. A. (2020). Improved physiological noise regression in fNIRS: A multimodal extension of the general linear model using temporally embedded canonical correlation analysis. NeuroImage, 208, 116472. https://doi.org/10.1016/j.neuroimage.2019.116472 |
| [133] | Wall K., Stark J., Schillaci A., Saulnier E. T., McLaren E., Striegnitz K., Cohen B. D., Arciero P. J., Kramer A. F., & Anderson-Hanley C. (2018). The enhanced interactive physical and cognitive exercise system (iPACESTM v2.0): Pilot clinical trial of an in-home iPad-based neuro- exergame for mild cognitive impairment (MCI). Journal of Clinical Medicine, 7(9), 249. https://doi.org/10.3390/jcm7090249 |
| [134] | Walter C., Rosenstiel W., Bogdan M., Gerjets P., & Spüler M. (2017). Online EEG-based workload adaptation of an arithmetic learning environment. Frontiers in Human Neuroscience, 11, Article 286. https://doi.org/10.3389/fnhum.2017.00286 |
| [135] | Wang X., Ren Y., Luo Z., He W., Hong J., & Huang Y. (2023). Deep learning-based EEG emotion recognition: Current trends and future perspectives. Frontiers in Psychology, 14, Article 1126994. https://doi.org/10.3389/fpsyg.2023.1126994 |
| [136] | Willett F. R., Kunz E. M., Fan C., Avansino D. T., Wilson G. H., Choi E. Y.,... Henderson J. M. (2023). A high- performance speech neuroprosthesis. Nature, 620(7976), 1031-1036. https://doi.org/10.1038/s41586-023-06377-x |
| [137] | Wolpaw J. R., Birbaumer N., McFarland D. J., Pfurtscheller G., & Vaughan T. M. (2002). Brain- computer interfaces for communication and control. Clinical Neurophysiology, 113(6), 767-791. |
| [138] | Young K. D., Zotev V., Phillips R., Misaki M., Yuan H., Drevets W. C., & Bodurka J. (2014). Real-time fMRI neurofeedback training of amygdala activity in patients with major depressive disorder. PLOS ONE, 9(2), e88785. https://doi.org/10.1371/journal.pone.0088785 |
| [139] | Yue C. (2023). Privacy and ethical concerns of brain- computer interfaces. In 2023 IEEE International Conference on Metaverse Computing, Networking and Applications (MetaCom)(pp.134-138). IEEE. https://doi.org/10.1109/MetaCom57706. 2023.00036 |
| [140] | Yuste R., Goering S., Arcas B. A. Y., Bi G., Carmena J. M., Carter A.,... Wolpaw J. (2017). Four ethical priorities for neurotechnologies and AI. Nature, 551(7679), 159-163. https://doi.org/10.1038/551159a |
| [141] |
Zhu H., Forenzo D., & He B. (2022). On the deep learning models for EEG-based brain-computer interface using motor imagery. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 30, 2283-2291. https://doi.org/10.1109/TNSRE.2022.3198041
doi: 10.1109/TNSRE.2022.3198041 URL pmid: 35951573 |
| [1] | HUANG Jing, LIU Licong, LI Mingyu, LONG Yiming, LI Xiaoli. Investigating differential cognitive aging with eye movement [J]. Advances in Psychological Science, 2024, 32(9): 1408-1415. |
| [2] | Yang YANG, Zhengbo CHEN, Yongchun CAI. Metaplasticity in Short-Term Monocular Deprivation [J]. Advances in Psychological Science, 2023, 31(suppl.): 111-111. |
| [3] | Zhengbo Chen, Yongchun Cai. Attention Modulates Plasticity in Short-Term Monocular Deprivation [J]. Advances in Psychological Science, 2023, 31(suppl.): 119-119. |
| [4] | YAN Yaqin, LING Hui, WONG Sik-Lam. Is exposure necessary? Flash Technique for post-traumatic stress response [J]. Advances in Psychological Science, 2023, 31(8): 1517-1527. |
| [5] | WANG Yongli, GE Shengnan, Lancy Lantin Huang, WAN Qin, LU Haidan. Neural mechanism of speech imagery [J]. Advances in Psychological Science, 2023, 31(4): 608-621. |
| [6] | YU Guanlin, LIU Ruixuan, ZHANG Wencai. Therapeutic metaphors: Theories, empirical efficacy and underlying mechanisms [J]. Advances in Psychological Science, 2022, 30(7): 1546-1560. |
| [7] | WANG Dongmei, XIANG Kejia. Facilitating the client change: A perspective from the therapeutic zone of proximal development [J]. Advances in Psychological Science, 2022, 30(3): 648-659. |
| [8] | HE Jiao, BAI Baoyu, XIA Mian. Dropout in psychotherapy [J]. Advances in Psychological Science, 2020, 28(7): 1187-1198. |
| [9] | CHEN Zichen, JIANG He. Cultural competence in mental health services: Theoretical orientations and practical strategies [J]. Advances in Psychological Science, 2020, 28(4): 661-672. |
| [10] | LIN Yiqi, WANG Xi, PENG Kaiping, NI Shiguang. Virtual reality technology in the psychological treatment for autism spectrum disorders: An systematic review [J]. Advances in Psychological Science, 2018, 26(3): 518-526. |
| [11] | ZHOU Shegang, ZHANG Xiaoyuan. Selecting the best treatment: Client-treatment match [J]. Advances in Psychological Science, 2018, 26(2): 294-305. |
| [12] | WANG Chen-Xi, CHEN Tian-Yong, HAN Bu-Xin. Plasticity of the prefrontal cortex in old age and underlying mechanisms [J]. Advances in Psychological Science, 2018, 26(11): 2003-2012. |
| [13] | XIA Haishuo, DING Qingwen, ZHUANG Yan, CHEN Antao. The brain mechanisms of the physical exercise enhancing cognitive function [J]. Advances in Psychological Science, 2018, 26(10): 1857-1868. |
| [14] | SHE Zhuang, JIANG Guangrong, SUN Qi-wu, SHI Yanwei. Formal feedback in psychotherapy [J]. Advances in Psychological Science, 2017, 25(7): 1197-1207. |
| [15] | YANG Wendeng; ZHANG Xiaoyuan. Common factors vs. specific ingredients in psychotherapy: Controversy and integration [J]. Advances in Psychological Science, 2017, 25(2): 253-264. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
