Advances in Psychological Science ›› 2025, Vol. 33 ›› Issue (2): 191-201.doi: 10.3724/SP.J.1042.2025.0191
• Conceptual Framework • Next Articles
PAN Yun2,3, YANG Huanyu1,2, ZHU Jun2, JIA Liangzhi2
Received:
2024-08-01
Online:
2025-02-15
Published:
2024-12-06
PAN Yun, YANG Huanyu, ZHU Jun, JIA Liangzhi. Cognitive mechanism and neural basis of groupitizing strategies in numerosity perception[J]. Advances in Psychological Science, 2025, 33(2): 191-201.
[1] 戴隆农, 潘运. (2021). 数字-空间联结的内在机制: 基于工作记忆的视角. [2] 兰哲, 陈霖. (1998). 拓扑性质知觉的大脑半球功能不对称性研究. [3] 刘炜, 张智君, 赵亚军. (2012). 基于数量感知的数量适应. [4] 徐继红, 司继伟, 周新林, 董奇. (2010). 数量估计的研究回顾. [5] 张真, 苏彦捷. (2007). 人类数能力的演化基础——数能力比较研究的启示. [6] 朱滢. (2005). 陈霖的拓扑性质知觉理论. [7] Anobile G., Arrighi R., Castaldi E., & Burr D. C. (2021a). A sensorimotor numerosity system. [8] Anobile G., Arrighi R., Togoli I., & Burr D. C. (2016). A shared numerical representation for action and perception. [9] Anobile G., Castaldi E., Maldonado Moscoso P. A., Arrighi R., & Burr D. (2021b). Groupitizing improves estimation of numerosity of auditory sequences. [10] Anobile G., Castaldi E., Moscoso P. A. M., Burr D. C., & Arrighi R. (2020a). “Groupitizing”: A strategy for numerosity estimation. [11] Anobile G., Domenici N., Togoli I., Burr D., & Arrighi R. (2020b). Distortions of visual time induced by motor adaptation.Journal of Experimental Psychology: General, 149(7), 1333-1343. [12] Barlow, H., & HILL, R. (1964). Evidence for a physiological explanation of the waterfall phenomenon and figural after-effects.Nature, 200, 1345-1347. [13] Burr D., Anobile G., Castaldi E., & Arrighi R. (2021). Numbers in action. [14] Burr, D., & Ross, J. (2008). A visual sense of number. [15] Cai Y., Hofstetter S., Harvey B. M., & Dumoulin S. O. (2022). Attention drives human numerosity-selective responses. [16] Caponi C., Maldonado M. P., Castaldi E., Arrighi R., & Grasso P. A. (2023). EEG signature of grouping strategies in numerosity perception. [17] Cheng X., Lin C., Lou C., Zhang W., Han Y., Ding X., & Fan Z. (2021). Small numerosity advantage for sequential enumeration on RSVP stimuli: An object individuation- based account. [18] Cicchini G. M., Anobile G., Burr D. C., Marchesini P., & Arrighi R. (2023). The role of non-numerical information in the perception of temporal numerosity. [19] Ciccione, L., & Dehaene, S. (2020). Grouping mechanisms in numerosity perception. [20] Czarnecka M., Rączy K., Szewczyk J., Paplińska M., Jednoróg K., Marchewka A., .. Szwed M. (2023). Overlapping but separate number representations in the intraparietal sulcus—Probing format- and modality- independence in sighted Braille readers. [21] de Hevia M. D., Izard V., Coubart A., Spelke E. S., & Streri A. (2014). Representations of space, time, and number in neonates. [22] Dehaene, S., & Changeux, J. (1993). Development of Elementary Numerical abilities: A neuronal model. [23] Dehaene S., Dehaene-Lambertz G., & Cohen L. (1998). Abstract representations of numbers in the animal and human brain. [24] Elder J. H., Oleskiw T. D., & Fruend I. (2018). The role of global cues in the perceptual grouping of natural shapes. [25] Fornaciai M., Togoli I., & Arrighi R. (2018). Motion- induced compression of perceived numerosity. [26] Grasso P. A., Anobile G., Arrighi R., Burr D. C., & Cicchini G. M. (2022). Numerosity perception is tuned to salient environmental features. [27] Guillaume M., Roy E., Van Rinsveld A., Starkey G., Uncapher M., & Mccandliss B. (2022). Groupitizing reflects conceptual developments in math cognition and inequities in math achievement from childhood through adolescence. [28] Harvey B. M., Klein B. P., Petridou N., & Dumoulin S. O. (2013). Topographic representation of numerosity in the human parietal cortex. [29] Hayden A., Bhatt R., & Quinn P. (2006). Infants’ sensitivity to uniform connectedness as a cue for perceptual organization. [30] He L., Zhang J., Zhou T., & Chen L. (2009). Connectedness affects dot numerosity judgment: Implications for configural processing. [31] He L., Zhou K., Zhou T., He S., & Chen L. (2015). Topology-defined units in numerosity perception. [32] Hubbard E., Piazza M., Pinel P., & Dehaene S. (2005). Interactions between number and space in parietal cortex. [33] Humphreys, G. W., & Riddoch, J. (1993). Interactions between object and space systems revealed through neuropsychology. [34] Luna D., Villalba-Garcia C., Montoro P. R., & Hinojosa J. A. (2016). Dominance dynamics of competition between intrinsic and extrinsic grouping cues.Acta Psychologica, 170, 146-154. [35] Maldonado Moscoso P. A., Castaldi E., Burr D. C., Arrighi R., & Anobile G. (2020). Grouping strategies in number estimation extend the subitizing range. [36] Maldonado M. P., Greenlee M. W., Anobile G., Arrighi R., Burr D. C., & Castaldi E. (2021). Groupitizing modifies neural coding of numerosity.Human Brain Mapping, 43(3), 915-928. [37] Malone S. A., Pritchard V. E., Heron-Delaney M., Burgoyne K., Lervåg A., & Hulme C. (2019). The relationship between numerosity discrimination and arithmetic skill reflects the approximate number system and cannot be explained by inhibitory control. [38] Montoro P. R., Villalba-García C., Luna D., & Hinojosa J. A. (2017). Common region wins the competition between extrinsic grouping cues: Evidence from a task without explicit attention to grouping. [39] Palmer, S. E. (1992). Common region: A new principle of perceptual grouping. [40] Palmer, S. E., & Beck, D. M. (2007). The repetition discrimination task: An objective method for studying perceptual grouping. [41] Palmer, S., & Rock, I. (1994). On the nature and order of organizational processing: A reply to Peterson. [42] Pan Y., Yang H., Li M., Zhang J., & Cui L. (2021). Grouping strategies in numerosity perception between intrinsic and extrinsic grouping cues. [43] Pennock I. M. L., Schmidt T. T., Zorbek D., & Blankenburg F. (2021). Representation of visual numerosity information during working memory in humans: An fMRI decoding study. [44] Piazza M., Mechelli A., Butterworth B., & Price C. J. (2002). Are subitizing and counting implemented as separate or functionally overlapping processes? [45] Piazza, M., & Izard, V. (2009). How humans count: Numerosity and the parietal cortex. [46] Revkin S., Piazza M., Izard V., Cohen L., & Dehaene S. (2008). Does subitizing reflect numerical estimation? [47] Simon O., Mangin J., Cohen L., Le Bihan D., & Dehaene S. (2002). Topographical layout of hand, eye, calculation, and language-related areas in the human parietal lobe. [48] Simon, T., & Vaishnavi, S. (1996). Subitizing and counting depend on different attentional mechanisms: Evidence from visual enumeration in afterimages. [49] Soltész F., Szucs D., & Szucs L. (2010). Relationships between magnitude representation, counting and memory in 4- to 7-year-old children: A developmental study. [50] Starkey, G. S., & McCandliss, B. D. (2014). The emergence of “groupitizing” in children’s numerical cognition. [51] Thompson, P., & Burr, D. (2009). Visual aftereffects. [52] Togoli I., Crollen V., Arrighi R., & Collignon O. (2020). The shared numerical representation for action and perception develops independently from vision. [53] Tsouli A., Harvey B. M., Hofstetter S., Cai Y., van der Smagt, M. J., Te P. S., & Dumoulin S. O. (2022). The role of neural tuning in quantity perception. [54] Tudusciuc, O., & Nieder, A. (2007). Neuronal population coding of continuous and discrete quantity in the primate posterior parietal cortex. [55] Wagemans J., Elder J. H., Kubovy M., Palmer S. E., Peterson M. A., Singh M., & von der Heydt, R. (2012). A century of Gestalt psychology in visual perception: I. Perceptual grouping and figure-ground organization. [56] Walsh, V. (2003). A theory of magnitude: Common cortical metrics of time, space and quantity. [57] Wege T., Trezise K., & Inglis M. (2021). Finding the subitizing in groupitizing: Evidence for parallel subitizing of dots and groups in grouped arrays.Psychonomic Bulletin & Review, 29, 476-484. [58] Wender, K., & Rothkegel, R. (2000). Subitizing and its subprocesses. [59] Whalen J., Gallistel C. R., & Gelman R. (2016). Nonverbal Counting in Humans: The Psychophysics of Number Representation. [60] Zhang D., Zhou L., Yang A., Li S., Chang C., Liu J., & Zhou K. (2023). A connectome-based neuromarker of nonverbal number acuity and arithmetic skills. [61] Zorzi M., Stoianov I., & Umiltà C. (2005). Computational modeling of numerical cognition. |
[1] | ZHENG Hao, CHEN Rongrong, MAI Xiaoqin. The cognitive and neural mechanism of third-party punishment [J]. Advances in Psychological Science, 2024, 32(2): 398-412. |
[2] | Jian Xu, Lihong Chen. Neuropsychological Evidence for Action-based Effects on Visual Size Perception [J]. Advances in Psychological Science, 2023, 31(suppl.): 56-56. |
[3] | Baoqi GONG, Wei JIN, Pinglei BAO. Object Space as the Foundation for Object Recognition in the Human Ventral Temporal Cortex [J]. Advances in Psychological Science, 2023, 31(suppl.): 153-153. |
[4] | Nihong Chen, Hailin Ai, Xincheng Lu. Context-dependent Attentional Spotlight in Pulvinar-V1 Interaction [J]. Advances in Psychological Science, 2023, 31(suppl.): 160-160. |
[5] | Yuwei Cui, MiYoung Kwon, Nihong Chen. Learning Improves Peripheral Vision via Enhanced Cortico-cortical Communications [J]. Advances in Psychological Science, 2023, 31(suppl.): 161-161. |
[6] | Xue-Chun Shen, Zhou-Kui-Dong Shan, Shu-Guang Kuai, Li Li. Neural Correlates of the Detection of Real Optic Flow in the Human Brain [J]. Advances in Psychological Science, 2023, 31(suppl.): 169-169. |
[7] | Rongjie Hu, Jie Liang, Yiwen Ding, Shuang Jian, Xiuwen Wu, Yanming Wang, Zhen Liang, Bensheng Qiu, Xiaoxiao Wang. MRGazerII: Camera-free Decoding Eye Movements from Functional Magnetic Resonance Imaging [J]. Advances in Psychological Science, 2023, 31(suppl.): 174-174. |
[8] | Hailin Ai, Weiru Lin, Nihong Chen, Peng Zhang. Mesoscale Functional Organization and Connectivity of Color, Disparity, and Naturalistic Texture in Human Second Visual Area [J]. Advances in Psychological Science, 2023, 31(suppl.): 10-10. |
[9] | LIANG Fei, JIANG Yao, XIAO Tingwei, DONG Jie, WANG Fushun. Basic emotion and its neural basis: Evidence from fMRI and machine-vision studies [J]. Advances in Psychological Science, 2022, 30(8): 1832-1843. |
[10] | YU Jiayu, JIN Yuxi, LIANG Dandan. Brain activation differences in lexical-semantics processing in autistic population: A meta-analysis of fMRI studies [J]. Advances in Psychological Science, 2022, 30(11): 2448-2460. |
[11] | XIE Ying, LIU Yutong, CHEN Mingliang, LIANG Andi. The cognitive psychological process of brand consumption journey: The perspective of neuromarketing [J]. Advances in Psychological Science, 2021, 29(11): 2024-2042. |
[12] | NA Yuting, ZHAO Yuwen, GUAN Lili. The neural mechanism of self-face recognition: An ALE meta-analysis of fMRI studies [J]. Advances in Psychological Science, 2021, 29(10): 1783-1795. |
[13] | YANG Xiaoli, ZOU Yan. Can we really empathize? The influence of vicarious ostracism on individuals and its theoretical explanation [J]. Advances in Psychological Science, 2020, 28(9): 1575-1585. |
[14] | RAN Guangming, LI Rui, ZHANG Qi. Neural mechanism underlying recognition of dynamic emotional faces in social anxiety [J]. Advances in Psychological Science, 2020, 28(12): 1979-1988. |
[15] | Shaobing Gao, Yongjie Li. Combining bottom-up and top-down visual mechanisms for color constancy under varying illumination [J]. Advances in Psychological Science, 2019, 27(suppl.): 96-96. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||