Advances in Psychological Science ›› 2022, Vol. 30 ›› Issue (12): 2708-2717.doi: 10.3724/SP.J.1042.2022.02708
• Regular Articles • Previous Articles Next Articles
CHEN Yutian, CHEN Rui, LI Peng()
Received:
2022-01-13
Online:
2022-12-15
Published:
2022-09-23
Contact:
LI Peng
E-mail:Lee@ynnu.edu.cn
CLC Number:
CHEN Yutian, CHEN Rui, LI Peng. The development of concept and theoretical models of “chunking” in working memory[J]. Advances in Psychological Science, 2022, 30(12): 2708-2717.
[1] | 黄福荣, 和美, 罗劲. (2017). 组块破解形态顿悟的脑认知机理. 科学通报, 62(31), 11. |
[2] | 刘兆敏, 郭春彦. (2013). 工作记忆和长时记忆共享信息表征的ERP证据. 心理学报, 45(3), 276-284. |
[3] | 倪锦诚. (2017). 交互记忆阅读策略对二语工作记忆容量的影响. 外语教学, 38(5), 49-53. |
[4] | 彭聃龄. (2019). 普通心理学 (第5版). 北京师范大学出版社. |
[5] | 张帆, 杨超群, 夏云曼, 桑娜, 王小刚, 毕泰勇, 邱江. (2018). 视觉工作记忆内容维持的大脑神经机制. 科学通报, 63(27), 2883-2895. |
[6] |
Alluhaybi, I., & Witzel, J. (2020). Letter connectedness and Arabic visual word recognition. Quarterly Journal of Experimental Psychology, 73(10), 1660-1674.
doi: 10.1177/1747021820926155 URL |
[7] |
Applin, J. B., & Kibbe, M. M. (2021). Young children monitor the fidelity of visual working memory. Journal of Experimental Psychology. Learning, Memory, and Cognition, 47(5), 808-819.
doi: 10.1037/xlm0000971 URL |
[8] | Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and its control processes1. Psychology of Learning and Motivation, 2, 89-195. |
[9] |
Baddeley, A. (2003). Working memory: Looking back and looking forward. Nature Reviews. Neuroscience, 4(10), 829-839.
pmid: 14523382 |
[10] |
Baddeley, A. D., Hitch, G. J., & Allen, R. J. (2019). From short-term store to multicomponent working memory: The role of the modal model. Memory & Cognition, 47(4), 575-588.
doi: 10.3758/s13421-018-0878-5 URL |
[11] |
Bayliss, D. M., Jarrold, C., Gunn, D. M., & Baddeley, A. D. (2003). The complexities of complex span: Explaining individual differences in working memory in children and adults. Journal of Experimental Psychology: General, 132(1), 71-92.
doi: 10.1037/0096-3445.132.1.71 URL |
[12] | Bennett, D., Gobet, F., & Lane, P. (2020, August).Forming concepts of Mozart and Homer using short-term and long- term memory: A computational model based on chunking. Paper presented at the Proceedings of the 42nd Annual Meeting of the Cognitive Science Society, Virtual. |
[13] |
Berry, E. D. J., Waterman, A. H., Baddeley, A. D., Hitch, G. J., & Allen, R. J. (2018). The limits of visual working memory in children: Exploring prioritization and recency effects with sequential presentation. Developmental Psychology, 54(2), 240-253.
doi: 10.1037/dev0000427 pmid: 29154649 |
[14] |
Bhandari, A., & Badre, D. (2018). Learning and transfer of working memory gating policies. Cognition, 172, 89-100.
doi: S0010-0277(17)30303-7 pmid: 29245108 |
[15] |
Chase, W. G., & Simon, H. A. (1973). Perceptions in chess. Cognitive Psychology, 4(1), 55-81.
doi: 10.1016/0010-0285(73)90004-2 URL |
[16] |
Chekaf, M., Cowan, N., & Mathy, F. (2016). Chunk formation in immediate memory and how it relates to data compression. Cognition, 155, 96-107.
doi: S0010-0277(16)30147-0 pmid: 27367593 |
[17] |
Christensen, W., Sutton, J., & Bicknell, K. (2019). Memory systems and the control of skilled action. Philosophical Psychology, 32(5), 692-718.
doi: 10.1080/09515089.2019.1607279 URL |
[18] | Cowan, N. (1998). Attention and memory: An integrated framework. In Cary (Series Ed.). Oxford psychology series (No. 26). New York: Oxford University Press. |
[19] |
Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. The Behavioral and Brain Sciences, 24(1), 87-114.
doi: 10.1017/S0140525X01003922 URL |
[20] |
Cowan, N. (2010). The magical mystery four: How is working memory capacity limited, and why? Current Directions in Psychological Science, 19(1), 51-57.
pmid: 20445769 |
[21] |
Cowan, N. (2016). The many faces of working memory and short-term storage. Psychonomic Bulletin & Review, 24(4), 1158-1170.
doi: 10.3758/s13423-016-1191-6 URL |
[22] |
Cowan, N. (2019). Short-term memory based on activated long-term memory: A review in response to norris (2017). Psychological Bulletin, 145(8), 822-847.
doi: 10.1037/bul0000199 pmid: 31328941 |
[23] | Cowan, N. (2020). Why and how to study working memory development. L'année psychologique, 120(2), 135-156. |
[24] |
Cowan, N., AuBuchon, A. M., Gilchrist, A. L., Blume, C. L., Boone, A. P., & Saults, J. S. (2021). Developmental change in the nature of attention allocation in a dual task. Developmental Psychology, 57(1), 33-46.
doi: 10.1037/dev0001134 pmid: 33271032 |
[25] |
Cowan, N., Belletier, C., Doherty, J. M., Jaroslawska, A. J., Rhodes, S., Forsberg, A., ... Logie, R. H. (2020). How do scientific views change? Notes from an extended adversarial collaboration. Perspectives on Psychological Science, 15(4), 1011-1025.
doi: 10.1177/1745691620906415 pmid: 32511059 |
[26] |
Cowan, N., Li, Y., Glass, B. A., & Scott Saults, J. (2018). Development of the ability to combine visual and acoustic information in working memory. Developmental Science, 21(5), e12635. http://doi.org/10.1111/desc.12635
doi: 10.1111/desc.12635 URL |
[27] | Darolia, C. R., & Varshney, N. (2016). Role of long-term memory activation in working memory. Indian Journal of Health and Wellbeing, 7(1), 153. |
[28] |
Ding, X., Gao, Z., & Shen, M. (2017). Two equals one: Two human actions during social interaction are grouped as one unit in working memory. Psychological Science, 28(9), 1311-1320.
doi: 10.1177/0956797617707318 pmid: 28719763 |
[29] |
Ericsson, K. A., & Kintsch, W. (1995). Long-term working memory. Psychological Review, 102(2), 211-245.
pmid: 7740089 |
[30] |
Feigenson, L., Libertus, M. E., & Halberda, J. (2013). Links between the intuitive sense of number and formal mathematics ability. Child Development Perspectives, 7(2), 74-79.
pmid: 24443651 |
[31] |
Forsberg, A., Guitard, D., & Cowan, N. (2021). Working memory limits severely constrain long-term retention. Psychonomic Bulletin & Review, 28(2), 537-547.
doi: 10.3758/s13423-020-01847-z URL |
[32] |
Gobet, F. (2005). Chunking models of expertise: Implications for education. Applied Cognitive Psychology, 19(2), 183-204.
doi: 10.1002/acp.1110 URL |
[33] |
Gobet, F., & Clarkson, G. (2004). Chunks in expert memory: Evidence for the magical number four... or is it two? Memory, 12(6), 732-747.
pmid: 15724362 |
[34] |
Gobet, F., Lane, P. C. R., Croker, S., Cheng, P. C., Jones, G., Oliver, I., & Pine, J. M. (2001). Chunking mechanisms in human learning. Trends in Cognitive Sciences, 5(6), 236-243.
pmid: 11390294 |
[35] |
Gobet, F., & Simon, H. A. (1998). Expert chess memory: Revisiting the chunking hypothesis. Memory, 6(3), 225-255.
pmid: 9709441 |
[36] |
Gordon, R., Smith-Spark, J. H., Newton, E. J., & Henry, L. A. (2020). Working memory and high-level cognition in children: An analysis of timing and accuracy in complex span tasks. Journal of Experimental Child Psychology, 191, 104736.
doi: 10.1016/j.jecp.2019.104736 URL |
[37] | Guida, A., Fartoukh, M., & Mathy, F. (2020). The development of working memory spatialization revealed by using the cave paradigm in a two-alternative spatial choice. Annals of the New York Academy of Sciences, 1477(1), 54-70. |
[38] |
Guida, A., Gobet, F., Tardieu, H., & Nicolas, S. (2012). How chunks, long-term working memory and templates offer a cognitive explanation for neuroimaging data on expertise acquisition: A two-stage framework. Brain and Cognition, 79(3), 221-244.
doi: 10.1016/j.bandc.2012.01.010 pmid: 22546731 |
[39] |
Hitch, G. J., Allen, R. J., & Baddeley, A. D. (2019). Attention and binding in visual working memory: Two forms of attention and two kinds of buffer storage. Attention, Perception & Psychophysics, 82(1), 280-293.
doi: 10.3758/s13414-019-01837-x URL |
[40] |
James, W. (1891). The moral philosopher and the moral life. International Journal of Ethics, 1(3), 330-354.
doi: 10.1086/intejethi.1.3.2375309 URL |
[41] |
Kibbe, M. M., & Feigenson, L. (2014). Developmental origins of recoding and decoding in memory. Cognitive Psychology, 75, 55-79.
doi: 10.1016/j.cogpsych.2014.08.001 pmid: 25195153 |
[42] |
Kibbe, M. M., & Leslie, A. M. (2019). Conceptually rich, perceptually sparse: Object representations in 6-month-old infants' working memory. Psychological Science, 30(3), 362-375.
doi: 10.1177/0956797618817754 pmid: 30668927 |
[43] |
Kingo, O. S., & Krøjgaard, P. (2012). Object function facilitates infants' object individuation in a manual search task. Journal of Cognition and Development, 13(2), 152-173.
doi: 10.1080/15248372.2011.575424 URL |
[44] |
Malmberg, K. J., Raaijmakers, J. G. W., & Shiffrin, R. M. (2019). 50 years of research sparked by Atkinson and Shiffrin (1968). Memory & Cognition, 47(4), 561-574.
doi: 10.3758/s13421-019-00896-7 URL |
[45] |
Mathy, F., & Feldman, J. (2012). What’s magic about magic numbers? Chunking and data compression in short-term memory. Cognition, 122(3), 346-362.
doi: 10.1016/j.cognition.2011.11.003 URL |
[46] |
Mclean, R. S., & Gregg, L. W. (1967). Effects of induced chunking on temporal aspects of serial recitation. Journal of Experimental Psychology, 74(4,Pt1), 455-459.
doi: 10.1037/h0024785 URL |
[47] |
Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63(2), 81-97.
doi: 10.1037/h0043158 URL |
[48] | Newport, K. T. (1990, Incorporating survivability considerations directly into the network design process. Paper presented at the Infocom 90, Ninth Joint Conference of the IEEE Computer & Communication Societies the Multiple Facets of Integration, San Francisco, CA, USA: IEEE. |
[49] |
Norris, D. (2017). Short-term memory and long-term memory are still different. Psychological Bulletin, 143(9), 992-1009.
doi: 10.1037/bul0000108 pmid: 28530428 |
[50] |
Peng, P., Barnes, M., Wang, C., Wang, W., Li, S., Swanson, H. L., ... Tao, S. (2018). A meta-analysis on the relation between reading and working memory. Psychological Bulletin, 144(1), 48-76.
doi: 10.1037/bul0000124 pmid: 29083201 |
[51] |
Perfors, A. (2012). When do memory limitations lead to regularization? An experimental and computational investigation. Journal of Memory and Language, 67(4), 486-506.
doi: 10.1016/j.jml.2012.07.009 URL |
[52] |
Pförtner, P., & Hristova, P. (2021). Thematic bootstrapping: Performance differences between expert chess players and novices. Cognition, Brain, Behavior: An Interdisciplinary Journal, 25(1), 55-68.
doi: 10.24193/cbb.2021.25.04 URL |
[53] |
Pluss, M. A., Bennett, K. J. M., Novak, A. R., Panchuk, D., Coutts, A. J., & Fransen, J. (2019). Esports: The chess of the 21st century. Frontiers in Psychology, 10, 156.
doi: 10.3389/fpsyg.2019.00156 pmid: 30761055 |
[54] |
Rosenberg, R. D., & Feigenson, L. (2013). Infants hierarchically organize memory representations. Developmental Science, 16(4), 610-621.
doi: 10.1111/desc.12055 pmid: 23786478 |
[55] |
Sala, G., Burgoyne, A. P., Macnamara, B. N., Hambrick, D. Z., Campitelli, G., & Gobet, F. (2017). Checking the “Academic Selection” argument. Chess players outperform non-chess players in cognitive skills related to intelligence: A meta-analysis. Intelligence, 61, 130-139.
doi: 10.1016/j.intell.2017.01.013 URL |
[56] |
Sala, G., & Gobet, F. (2017). Does far transfer exist? Negative evidence from chess, music, and working memory training. Current Directions in Psychological Science, 26(6), 515-520.
doi: 10.1177/0963721417712760 pmid: 29276344 |
[57] |
Simon, H. A., & Barenfeld, M. (1969). Information- processing analysis of perceptual processes in problem solving. Psychological Review, 76(5), 473-483.
pmid: 5351854 |
[58] |
Smalle, E. H. M., Bogaerts, L., Simonis, M., Duyck, W., Page, M. P. A., Edwards, M. G., & Szmalec, A. (2015). Can chunk size differences explain developmental changes in lexical learning? Frontiers in Psychology, 6, 1925.
doi: 10.3389/fpsyg.2015.01925 pmid: 26779065 |
[59] |
Smith, E. T., Bartlett, J. C., Krawczyk, D. C., & Basak, C. (2021). Are the advantages of chess expertise on visuo- spatial working-memory capacity domain specific or domain general? Memory & Cognition, 49(8), 1600-1616.
doi: 10.3758/s13421-021-01184-z URL |
[60] |
Soederberg Miller, L. M., Gibson, T. N., Applegate, E. A., & de Dios, J. (2011). Mechanisms underlying comprehension of health information in adulthood: The roles of prior knowledge and working memory capacity. Journal of Health Psychology, 16(5), 794-806.
doi: 10.1177/1359105310392090 pmid: 21346017 |
[61] |
Stahl, A. E., & Feigenson, L. (2014). Social knowledge facilitates chunking in infancy. Child Development, 85(4), 1477-1490.
doi: 10.1111/cdev.12217 pmid: 24433226 |
[62] |
Stahl, A. E., & Feigenson, L. (2018). Infants use linguistic group distinctions to chunk items in memory. Journal Of Experimental Child Psychology, 172, 149-167.
doi: S0022-0965(17)30481-2 pmid: 29626755 |
[63] |
Unsworth, N., & Engle, R. W. (2007). The nature of individual differences in working memory capacity: Active maintenance in primary memory and controlled search from secondary memory. Psychological Review, 114(1), 104-132.
doi: 10.1037/0033-295X.114.1.104 pmid: 17227183 |
[64] | Verhaeghen, P., Cerella, J., & Basak, C. (2004). A working memory workout: How to expand the focus of serial attention from one to four items in 10 hours or less. Journal of Experimental Psychology Learning Memory & Cognition, 30(6), 1322-1337. |
[65] | Wang, J. J., & Feigenson, L. (2019). Infants recognize counting as numerically relevant. Developmental Science, 22(6), e12805. http://doi.org/10.1111/desc.12805 |
[1] | ZHANG Caihui, YE Jianqiao, YANG Jing. Brain mechanism underlying learning Chinese as a second language [J]. Advances in Psychological Science, 2023, 31(5): 747-758. |
[2] | RAO Tingting, ZHU Xiaowen, YANG Shenlong, BAI Jie. Compensatory control in public emergencies [J]. Advances in Psychological Science, 2022, 30(5): 1119-1130. |
[3] | WANG Xinlin, QIU Xiaoyue, WENG Xuchu, YANG Ping. Modulating working memory related-oscillation via entrainment of neural oscillation [J]. Advances in Psychological Science, 2022, 30(4): 802-816. |
[4] | CHEN Xingming, FU Tong, LIU Chang, ZHANG Bin, FU Yunfa, LI Enze, ZHANG Jian, CHEN Shengqiang, DANG Caiping. Neuroplasticity induced by working memory training: A spatio-temporal model of decreased distribution in brain regions based on fMRI experiments [J]. Advances in Psychological Science, 2022, 30(2): 255-274. |
[5] | WANG Chundi, WANG Da-hui. Capacity and maintenance mechanism of vibrotactile working memory [J]. Advances in Psychological Science, 2021, 29(7): 1141-1148. |
[6] | ZHANG Zhao, ZHANG Liwei, GONG Ran. The filtering efficiency in visual working memory [J]. Advances in Psychological Science, 2021, 29(4): 635-651. |
[7] | DING Linjie, LI Xu, YIN Shufei. Positivity effects in working memory: The effects of emotional valence and task relevance [J]. Advances in Psychological Science, 2021, 29(4): 652-664. |
[8] | CHE Xinchun, SUN Lijun, MA Xiaolong, YANG Yufang. The influence of tonal structure on tension experience in sonata pieces by Mozart and Beethoven [J]. Advances in Psychological Science, 2021, 29(2): 218-224. |
[9] | HUANG Zhijing, LI Xu. Processing of emotional information in working memory in major depressive disorder [J]. Advances in Psychological Science, 2021, 29(2): 252-267. |
[10] | LIU Yuan. A unification and extension on the multivariate longitudinal models: Examining reciprocal effect and growth trajectory [J]. Advances in Psychological Science, 2021, 29(10): 1755-1772. |
[11] | SUN Lijun, MA Xiaolong, YANG Yufang. The influences of auditory cues and individual differences on the processing of musical tension [J]. Advances in Psychological Science, 2021, 29(1): 70-78. |
[12] | XIE Tingting, WANG Lijuan, WANG Tianze. How is limb movement information stored in working memory? [J]. Advances in Psychological Science, 2021, 29(1): 93-101. |
[13] | LI Wanru, KU Yixuan. The influence of acute stress on working memory: Physiological and psychological mechanisms [J]. Advances in Psychological Science, 2020, 28(9): 1508-1524. |
[14] | ZHANG Jingjing, LIANG Xiaoyue, CHEN Yidi, CHEN Qingrong. The cognitive mechanism of music syntactic processing and the influence of music structure on its processing [J]. Advances in Psychological Science, 2020, 28(6): 883-892. |
[15] | RAN Guangming, LI Rui, ZHANG Qi. Neural mechanism underlying recognition of dynamic emotional faces in social anxiety [J]. Advances in Psychological Science, 2020, 28(12): 1979-1988. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||