Advances in Psychological Science ›› 2022, Vol. 30 ›› Issue (10): 2321-2337.doi: 10.3724/SP.J.1042.2022.02321
• Regular Articles • Previous Articles Next Articles
HOU Tingting1, CHEN Xiao2, KONG Depeng2, SHAO Xiujun3, LIN Fengxun1, LI Kaiyun1()
Received:
2021-11-02
Online:
2022-10-15
Published:
2022-08-24
Contact:
LI Kaiyun
E-mail:sep_liky@ujn.edu.cn
CLC Number:
HOU Tingting, CHEN Xiao, KONG Depeng, SHAO Xiujun, LIN Fengxun, LI Kaiyun. Application of machine learning in early identification and diagnosis of autistic children[J]. Advances in Psychological Science, 2022, 30(10): 2321-2337.
序号 | 中文名称 | 英文名称(简称) |
---|---|---|
1 | 自闭症脑成像数据 交换数据库 | Autism Brain Imaging Data Exchange (ABIDE) |
2 | 自闭症遗传资源交 换数据库 | Autism Genetic Resource Exchange (AGRE) |
3 | 波士顿自闭症协会 | Boston autism consortium (AC) |
4 | 自闭症治疗网络 | Autism Treatment Network (ATN) |
5 | SSC数据库 | Simons Simplex Collection (SSC) |
6 | Simons VIP数据库 | Simons Variation in Individuals Project (Simons VIP) |
7 | 加州大学欧文分校 知识库 | University of California Irvine Repository (UCI) |
序号 | 中文名称 | 英文名称(简称) |
---|---|---|
1 | 自闭症脑成像数据 交换数据库 | Autism Brain Imaging Data Exchange (ABIDE) |
2 | 自闭症遗传资源交 换数据库 | Autism Genetic Resource Exchange (AGRE) |
3 | 波士顿自闭症协会 | Boston autism consortium (AC) |
4 | 自闭症治疗网络 | Autism Treatment Network (ATN) |
5 | SSC数据库 | Simons Simplex Collection (SSC) |
6 | Simons VIP数据库 | Simons Variation in Individuals Project (Simons VIP) |
7 | 加州大学欧文分校 知识库 | University of California Irvine Repository (UCI) |
一级维度 | 具体指标 |
---|---|
影像 | 功能性磁共振成像(functional Magnetic Resonance Imaging, fMRI), 结构性磁共振成像(structural Magnetic Resonance Imaging, sMRI), 脑电图(electroencephalogram, EEG), 超声波(ultrasonic, UT) |
量表/问卷 | 自闭症诊断观察量表(Autism Diagnostic Observation Schedule, ADOS), 自闭症诊断访谈量表-修订版(Autism Diagnostic Interview—Revised, ADI-R), 精神疾病诊断与统计手册(DSM-IV/ DSM-V), 国际疾病分类(ICD-10), 婴幼儿自闭症观察量表(Autism Observational Scale for Infants, AOSI), 修订版婴幼儿自闭症检核表(Modified Checklist for Autism in Toddlers, M-CHAT), 穆林早期学习量表(Mullen Scales of Early Learning, MSEL), 文兰适应行为量表(Vineland Adaptive Behavior Scales, VABS), 社会反应量表(Social Responsiveness Scale, SRS), 自闭症谱系量表(Autism-spectrum Quotient-10, AQ-10), 儿童行为检核表(Child Behavior Checklist, CBCL), 社交沟通问卷(Social Communication Questionnaire, SCQ), 家长问卷2(2作者注:在传统的诊断过程中, ADOS、ADI-R、DSM-V、ICD-10等主要用于自闭症临床诊断, 但是在本研究参考文献中, 研究者也会将其用作筛查指标参数, 因此正文未做明确划分。) |
典型行为 | 眼动行为, 社会行为, 刻板行为, 姿势控制, 上肢运动等 |
个人特征 | 父母的病史信息, 儿童的个人信息(年龄、性别、惯用手、智商、种族、病史、饮食、睡眠等) |
其他 | DNA, RNA, 代谢物, 语音 |
一级维度 | 具体指标 |
---|---|
影像 | 功能性磁共振成像(functional Magnetic Resonance Imaging, fMRI), 结构性磁共振成像(structural Magnetic Resonance Imaging, sMRI), 脑电图(electroencephalogram, EEG), 超声波(ultrasonic, UT) |
量表/问卷 | 自闭症诊断观察量表(Autism Diagnostic Observation Schedule, ADOS), 自闭症诊断访谈量表-修订版(Autism Diagnostic Interview—Revised, ADI-R), 精神疾病诊断与统计手册(DSM-IV/ DSM-V), 国际疾病分类(ICD-10), 婴幼儿自闭症观察量表(Autism Observational Scale for Infants, AOSI), 修订版婴幼儿自闭症检核表(Modified Checklist for Autism in Toddlers, M-CHAT), 穆林早期学习量表(Mullen Scales of Early Learning, MSEL), 文兰适应行为量表(Vineland Adaptive Behavior Scales, VABS), 社会反应量表(Social Responsiveness Scale, SRS), 自闭症谱系量表(Autism-spectrum Quotient-10, AQ-10), 儿童行为检核表(Child Behavior Checklist, CBCL), 社交沟通问卷(Social Communication Questionnaire, SCQ), 家长问卷2(2作者注:在传统的诊断过程中, ADOS、ADI-R、DSM-V、ICD-10等主要用于自闭症临床诊断, 但是在本研究参考文献中, 研究者也会将其用作筛查指标参数, 因此正文未做明确划分。) |
典型行为 | 眼动行为, 社会行为, 刻板行为, 姿势控制, 上肢运动等 |
个人特征 | 父母的病史信息, 儿童的个人信息(年龄、性别、惯用手、智商、种族、病史、饮食、睡眠等) |
其他 | DNA, RNA, 代谢物, 语音 |
预测 | |||
---|---|---|---|
ASD | Non-ASD | ||
真实 | ASD | 真阳性 (True Positive, TP) | 假阴性 (False Negative, FN) |
Non-ASD | 假阳性 (False Positive, FP) | 真阴性 (True Negative, TN) |
预测 | |||
---|---|---|---|
ASD | Non-ASD | ||
真实 | ASD | 真阳性 (True Positive, TP) | 假阴性 (False Negative, FN) |
Non-ASD | 假阳性 (False Positive, FP) | 真阴性 (True Negative, TN) |
序号 | 国家 | 作者 | 被试 | 主要数据指标 | 算法/方法 | 评价指标 Acc-/Sen-/ Spe-/AUC | ||
---|---|---|---|---|---|---|---|---|
样本量 | 年龄 | 性别(男%) | ||||||
1 | 美国 | Abbas et al.( | 162 (ASD+non) | 18~72个月 | / | 家长问卷, 家庭视频 | RF | -/100%/97.7%/99.7% |
2 | 美国 | Abbas et al.( | 375 (ASD+non) | 18~72个月 | / | 家长问卷, 家庭视频, 医生问卷 | GBDT | -/90%/83%/ 92% |
3 | 伊朗 | Abdolzadegan et al.( | 34ASD, 11HC | 3~12岁 | 88.2; 54.5 | 脑电图 | SVM, KNN | 94.68%/100%/-/- |
4 | 法国 | Abraham et al.( | 871 (ASD+TC) | 6~64岁 | 83.5 | fMRI | SVC, RR | 66.9%/53.2%/78.3%/- |
5 | 美国 | Achenie et al.( | 14995 (ASD+non) | 16~30个月 | 46.51 | 个人信息, M-CHAT-R | fNN | 99.72%/73.8%/99.9%/- |
6 | 美国 | Bahado-Singh et al.( | 14ASD, 10Controls | 新生儿(24~79小时) | / | 白细胞DNA | DL, RF, SVM, GLM, PAM, LDA | -/97.5%/100%/100% |
7 | 以色列 | Ben-Sasson & Yom-Tov( | 189 (LR+MR+HR) | 1.25个月~18岁 | 84.7 | 父母问题 | DT, 最小二乘法 | AUC = 82% |
8 | 美国 | Bone et al.( | 1264ASD, 462 non | 4~55.1岁 | / | ADI-R, SRS | SVM | -/89.2%/59%/- |
9 | 英国 | Bosl et al.( | 99HR, 89LR | 3个月~3岁 | / | 脑电图 | KNN, RF, SVM | -/100%/100%/- |
10 | 荷兰 | Bussu et al.( | 232(HR+LR) | 8~36个月 | 50 | ADOS, AOSI, VABS, MSEL | LSSVM | 57.5%/79.6%/52.2%/71.3% |
11 | 法国 | Caly et al.( | 63ASD, 189NT | 妊娠期 | 81; 48.7 | 超声波, 生物测量 | LASSO, DT, XGBoost | -/41%/96%/- |
12 | 中国 | Dong et al.( | 86ASD, 89TD | 3~6岁 | / | 脑电图 | CNN | Acc- = 100% |
13 | 美国 | Duda & Ma et al.( | 2775ASD, 150ADHD | 13~163个月 | 83.9; 62 | SRS | DT, RF, SVC, LR, LASSO, LDA | AUC = 96.5% |
14 | 美国 | Duda, Daniels, & Wall ( | 222 (ASD+non) | 16个月~17岁 | 76.1 | ADI-R | ADTree | -/89.9%/79.7%/- |
15 | 美国 | Duda et al.( | 200ASD, 114ADHD | 2~17岁 | 80.6; 65.5 | SRS | ENet, LR, SVM, LDA, RR | AUC = 89% |
16 | 美国 | Dickinson et al.( | 36HR, 29LR | 3~18个月 | / | 脑电图 | SVM | r = 0.76 |
17 | 美国 | Emerson et al.( | 59HR | 6~24个月 | 69.5 | fcMRI | SVM | 96.6%/81.8%/100%/- |
18 | 以色列 | Eni et al.( | 56ASD, 6TD, 10Other | av4岁;av3岁;av4岁 | 87.5;83.3;90 | 语音特征 | MLR, SVR, FC-DNN, CNN | r = 0.72(ADOS) |
19 | 中国 | Epalle et al.( | 506ASD, 532TC | av10~35岁 | 87.7; 82.1 | fMRI | MISO-DNN, PNN | Acc- = 79.13% |
20 | 美国 | Eslami et al.( | 550ASD, 485HC | av10~34岁 | 81.5; 88.7 | fMRI | SMOTE, SVM, RF | 68.2%/66.7%/69.4%/74.4% |
21 | 意大利 | Eugenia et al.( | 26ASD, 24CAS, 18TD | 34~74个月 | 77; 75; 72 | sMRI | SVM | AUC = 76% (ASD vs TD); AUC = 64% (ASD vs CAS) |
22 | 美国 | Feczko et al.( | 47ASD, 58TD | 9~13岁 | 80.85; 46.55 | FcMRI | FRF | 72.7%/80.7%/63.1%/- |
序号 | 国家 | 作者 | 被试 | 主要数据指标 | 算法/方法 | 评价指标 Acc-/Sen-/ Spe-/AUC | ||
---|---|---|---|---|---|---|---|---|
样本量 | 年龄 | 性别(男%) | ||||||
1 | 美国 | Abbas et al.( | 162 (ASD+non) | 18~72个月 | / | 家长问卷, 家庭视频 | RF | -/100%/97.7%/99.7% |
2 | 美国 | Abbas et al.( | 375 (ASD+non) | 18~72个月 | / | 家长问卷, 家庭视频, 医生问卷 | GBDT | -/90%/83%/ 92% |
3 | 伊朗 | Abdolzadegan et al.( | 34ASD, 11HC | 3~12岁 | 88.2; 54.5 | 脑电图 | SVM, KNN | 94.68%/100%/-/- |
4 | 法国 | Abraham et al.( | 871 (ASD+TC) | 6~64岁 | 83.5 | fMRI | SVC, RR | 66.9%/53.2%/78.3%/- |
5 | 美国 | Achenie et al.( | 14995 (ASD+non) | 16~30个月 | 46.51 | 个人信息, M-CHAT-R | fNN | 99.72%/73.8%/99.9%/- |
6 | 美国 | Bahado-Singh et al.( | 14ASD, 10Controls | 新生儿(24~79小时) | / | 白细胞DNA | DL, RF, SVM, GLM, PAM, LDA | -/97.5%/100%/100% |
7 | 以色列 | Ben-Sasson & Yom-Tov( | 189 (LR+MR+HR) | 1.25个月~18岁 | 84.7 | 父母问题 | DT, 最小二乘法 | AUC = 82% |
8 | 美国 | Bone et al.( | 1264ASD, 462 non | 4~55.1岁 | / | ADI-R, SRS | SVM | -/89.2%/59%/- |
9 | 英国 | Bosl et al.( | 99HR, 89LR | 3个月~3岁 | / | 脑电图 | KNN, RF, SVM | -/100%/100%/- |
10 | 荷兰 | Bussu et al.( | 232(HR+LR) | 8~36个月 | 50 | ADOS, AOSI, VABS, MSEL | LSSVM | 57.5%/79.6%/52.2%/71.3% |
11 | 法国 | Caly et al.( | 63ASD, 189NT | 妊娠期 | 81; 48.7 | 超声波, 生物测量 | LASSO, DT, XGBoost | -/41%/96%/- |
12 | 中国 | Dong et al.( | 86ASD, 89TD | 3~6岁 | / | 脑电图 | CNN | Acc- = 100% |
13 | 美国 | Duda & Ma et al.( | 2775ASD, 150ADHD | 13~163个月 | 83.9; 62 | SRS | DT, RF, SVC, LR, LASSO, LDA | AUC = 96.5% |
14 | 美国 | Duda, Daniels, & Wall ( | 222 (ASD+non) | 16个月~17岁 | 76.1 | ADI-R | ADTree | -/89.9%/79.7%/- |
15 | 美国 | Duda et al.( | 200ASD, 114ADHD | 2~17岁 | 80.6; 65.5 | SRS | ENet, LR, SVM, LDA, RR | AUC = 89% |
16 | 美国 | Dickinson et al.( | 36HR, 29LR | 3~18个月 | / | 脑电图 | SVM | r = 0.76 |
17 | 美国 | Emerson et al.( | 59HR | 6~24个月 | 69.5 | fcMRI | SVM | 96.6%/81.8%/100%/- |
18 | 以色列 | Eni et al.( | 56ASD, 6TD, 10Other | av4岁;av3岁;av4岁 | 87.5;83.3;90 | 语音特征 | MLR, SVR, FC-DNN, CNN | r = 0.72(ADOS) |
19 | 中国 | Epalle et al.( | 506ASD, 532TC | av10~35岁 | 87.7; 82.1 | fMRI | MISO-DNN, PNN | Acc- = 79.13% |
20 | 美国 | Eslami et al.( | 550ASD, 485HC | av10~34岁 | 81.5; 88.7 | fMRI | SMOTE, SVM, RF | 68.2%/66.7%/69.4%/74.4% |
21 | 意大利 | Eugenia et al.( | 26ASD, 24CAS, 18TD | 34~74个月 | 77; 75; 72 | sMRI | SVM | AUC = 76% (ASD vs TD); AUC = 64% (ASD vs CAS) |
22 | 美国 | Feczko et al.( | 47ASD, 58TD | 9~13岁 | 80.85; 46.55 | FcMRI | FRF | 72.7%/80.7%/63.1%/- |
*为纳入系统分析的文献 | |
[1] | 陈光华, 陶冠澎, 翟璐煜, 白学军. (2022). 自闭症谱系障碍的早期筛查工具. 心理科学进展, 30(4), 738-760. |
[2] | 陈顺森, 白学军, 张日昇. (2011). 自闭症谱系障碍的症状、诊断与干预. 心理科学进展, 19(1), 60-72. |
[3] | 曹正凤. (2014). 随机森林算法优化研究 (博士学位论文). 首都经济贸易大学, 北京. |
[4] | 崔建伟, 赵哲, 杜小勇. (2021). 支撑机器学习的数据管理技术综述. 软件学报, 32(3), 604-621. |
[5] | 董健宇, 韦文棋, 吴珂, 妮娜, 王粲霏, 付莹, 彭歆. (2020). 机器学习在抑郁症领域的应用. 心理科学进展, 28(2), 266-274. |
[6] | 顾曰国. (2013). 论言思情貌整一原则与鲜活话语研究--多模态语料库语言学方法. 当代修辞学, (6), 1-19. |
[7] | 郭利明, 杨现民, 段小莲, 邢蓓蓓. (2019). 人工智能与特殊教育的深度融合设计. 中国远程教育, (8), 10-19+92-93. |
[8] | 韩保祯. (2018). 基于多模态信息融合的脑网络研究及其应用 (硕士学位论文). 电子科技大学, 成都. |
[9] | 胡越, 罗东阳, 花奎, 路海明, 张学工. (2019). 关于深度学习的综述与讨论. 智能系统学报, 14(1), 1-19. |
[10] | 黄碧玉. (2018). 社交机器人对孤独症儿童社交行为诱导效果研究 (硕士学位论文). 浙江工业大学, 杭州. |
[11] | 靳宇倡, 张政, 郑佩璇, 安俊秀. (2022). 远程心理健康服务:应用、优势及挑战. 心理科学进展, 30(1), 141-156. |
[12] | 李航. (2012). 统计学习方法. 北京: 清华大学出版社. |
[13] | 刘笑晗, 陈明隆, 郭静. (2022). 机器学习在儿童创伤后应激障碍识别及转归预测中的应用. 心理科学进展, 30(4), 1-12. |
[14] | 徐建平, 张厚粲. (2005). 质性研究中编码者信度的多种方法考察. 心理科学, 28(6), 1430-1432. |
[15] | 杨剑锋, 乔佩蕊, 李永梅, 王宁. (2019). 机器学习分类问题及算法研究综述. 统计与决策, 35(6), 36-40. |
[16] | 余明华, 冯翔, 祝智庭. (2017). 人工智能视域下机器学习的教育应用与创新探索. 远程教育杂志, 35(3), 11-21. |
[17] |
*Abbas, H., Garberson, F., Glover, E., & Wall, D. P. (2018). Machine learning approach for early detection of autism by combining questionnaire and home video screening. Journal of the American Medical Informatics Association, 25(8), 1000-1007.
doi: 10.1093/jamia/ocy039 pmid: 29741630 |
[18] |
*Abbas, H., Garberson, F., Liu-Mayo, S. Glover, E., & Wall, D. P. (2020). Multi-modular AI approach to streamline autism diagnosis in young children. Scientific Reports, 10(1), 1-8.
doi: 10.1038/s41598-019-56847-4 URL |
[19] |
*Abdolzadegan, D., Moattar, M. H., & Ghoshuni, M. (2020). A robust method for early diagnosis of autism spectrum disorder from EEG signals based on feature selection and DBSCAN method. Biocybernetics and Biomedical Engineering, 40(1), 482-493.
doi: 10.1016/j.bbe.2020.01.008 URL |
[20] |
*Abraham, A., Milham, M. P., Martino, A. D., Craddock, R. C., Samaras, D., Thirion, B., & Varoquaux, G. (2017). Deriving reproducible biomarkers from multi-site resting-state data: An autism-based example. NeuroImage, 147(15), 736-745.
doi: 10.1016/j.neuroimage.2016.10.045 URL |
[21] |
*Achenie, L. E. K., Scarpa, A., Factor, R. S., Wang, T., Robins, D. L., & McCrickard, D. S. (2019). A machine learning strategy for autism screening in toddlers. Journal of Developmental and Behavioral Pediatrics, 40(5), 369-376.
doi: 10.1097/DBP.0000000000000668 pmid: 30985384 |
[22] | Autism Brain Imaging Data Exchange. (2017). Retrieved July 3, 2021, from http://fcon_1000.projects.nitrc.org/indi/abide/abide_I.html |
[23] |
*Bahado-Singh, R. O., Vishweswaraiah, S., Aydas, B., Mishra, N. K., Yilmaz, A., Guda, C., & Radhakrishna, U. (2019). Artificial intelligence analysis of newborn leucocyte epigenomic markers for the prediction of autism. Brain Research, 1724, 146457.
doi: 10.1016/j.brainres.2019.146457 URL |
[24] |
*Bone, D., Bishop, S., Black, M. P., Goodwin, M. S., Lord, C., & Narayanan, S. S. (2016). Use of machine learning to improve autism screening and diagnostic instruments: Effectiveness, efficiency, and multi-instrument fusion. Journal of Child Psychology and Psychiatry, 57(8), 927-937.
doi: 10.1111/jcpp.12559 URL |
[25] |
Bone, D., Goodwin, M. S., Black, M. P., Lee, C., Audhkhasi, K., & Narayanan, S. (2015). Applying machine learning to facilitate autism diagnostics: Pitfalls and promises. Journal of Autism and Developmental Disorders, 45(5), 1121-1136.
doi: 10.1007/s10803-014-2268-6 pmid: 25294649 |
[26] |
*Bosl, W. J., Tager-Flusberg, H., & Nelson, C. A. (2018). EEG analytics for early detection of autism spectrum disorder: A data-driven approach. Scientific Reports, 8(1), 6828.
doi: 10.1038/s41598-018-24318-x pmid: 29717196 |
[27] |
*Ben-Sasson, A., & Yom-Tov, E. (2016). Online concerns of parents suspecting autism spectrum disorder in their child: Content analysis of signs and automated prediction of risk. Journal of Medical Internet Research, 18(11), e300.
doi: 10.2196/jmir.5439 pmid: 27876688 |
[28] |
*Bussu, G., Jones, E. J., Charman, T., Johnson, M. H., & Buitelaar, J. K. (2018). Prediction of autism at 3 years from behavioural and developmental measures in high-risk infants: A longitudinal cross-domain classifier analysis. Journal of Autism and Developmental Disorders, 48(7), 2418-2433.
doi: 10.1007/s10803-018-3509-x pmid: 29453709 |
[29] |
*Caly, H., Rabiei, H., Coste-Mazeau, P., Hantz, S., Alain, S., Eyraud, J. L., … Ben-Ari, Y. (2021). Machine learning analysis of pregnancy data enables early identification of a subpopulation of newborns with ASD. Scientific Reports, 11(1), 6877.
doi: 10.1038/s41598-021-86320-0 pmid: 33767300 |
[30] |
Choi, G. B., Yim, Y. S., Wong, H., Kim, S., Kim, H., Kim, S. V., … Huh, J. R. (2016). The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring. Science, 351(6276), 933-939.
doi: 10.1126/science.aad0314 pmid: 26822608 |
[31] | Cloarec, R., Riffault, B., Dufour, A., Rabiei, H., Gouty-Colomer, L. A., Dumon, C., … Ben-Ari, Y. (2019). Pyramidal neuron growth and increased hippocampal volume during labor and birth in autism. Science Advances, 5(1), eaav0394. |
[32] |
Diehl, J. J., Schmitt, L. M., Villano, M., & Crowell, C. R. (2012). The clinical use of robots for individuals with autism spectrum disorders: A critical review. Research in Autism Spectrum Disorders, 6(1), 249-262.
pmid: 22125579 |
[33] |
*Dickinson, A., Daniel, M., Marin, A., Gaonkar, B., Dapretto, M., McDonald, N. M., & Jeste, S. (2020). Multivariate neural connectivity patterns in early infancy predict later autism symptoms. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 6(1), 59-69.
doi: 10.1016/j.bpsc.2020.06.003 URL |
[34] |
*Dong, H. Y., Chen, D., Zhang, L., Ke, H. J., & Li, X. L. (2021). Subject sensitive EEG discrimination with fast reconstructable CNN driven by reinforcement learning: A case study of ASD evaluation. Neurocomputing, 449, 136-145.
doi: 10.1016/j.neucom.2021.04.009 URL |
[35] |
Dubreuil-Vall, L., Ruffini, G., & Camprodon, J. A. (2020). Deep learning convolutional neural networks discriminate adult ADHD from healthy individuals on the basis of event-related spectral EEG. Frontiers in Neuroscience, 14, 251.
doi: 10.3389/fnins.2020.00251 pmid: 32327965 |
[36] |
*Duda, M., Daniels, J., & Wall, D. P. (2016). Clinical evaluation of a novel and mobile autism risk assessment. Journal of Autism and Developmental Disorders, 46(6), 1953-1961.
doi: 10.1007/s10803-016-2718-4 pmid: 26873142 |
[37] |
*Duda, M., Haber, N., Daniels, J., & Wall, D. P. (2017). Crowdsourced validation of a machine-learning classification system for autism and ADHD. Translational Psychiatry, 7(5), e1133.
doi: 10.1038/tp.2017.86 URL |
[38] |
*Duda, M., Ma, R., Haber, N., & Wall, D. P. (2016). Use of machine learning for behavioral distinction of autism and ADHD. Translational Psychiatry, 6(2), e732.
doi: 10.1038/tp.2015.221 URL |
[39] |
Elsabbagh, M., Mercure, E., Hudry, K., Chandler, S., Pasco, G., Charman, T.,… the BASIS Team. (2012). Infant neural sensitivity to dynamic eye gaze is associated with later emerging autism. Current Biology, 22(4), 338-342.
doi: 10.1016/j.cub.2011.12.056 pmid: 22285033 |
[40] | *Emerson, R. W., Adams, C., Nishino, T., Hazlett, H, C., Wolff, J. J., Zwaigenbaum, L., … Piven, J. (2017). Functional neuroimaging of high-risk 6-month-old infants predicts a diagnosis of autism at 24 months of age. Science Translational Medicine, 9(393). https://doi.org/10.1126/scitranslmed.aag2882 |
[41] |
*Eni, M., Dinstein, I., Ilan, M., Menashe, I., Meiri, G., & Zigel, Y. (2020). Estimating autism severity in young children from speech signals using a deep neural network. IEEE Access, 8, 139489-139500.
doi: 10.1109/ACCESS.2020.3012532 URL |
[42] |
*Epalle, T. M., Song, Y. Q., Liu, Z., & Lu, H. (2021). Multi-atlas classification of autism spectrum disorder with hinge loss trained deep architectures: ABIDE I results. Applied Soft Computing, 107(3), 107375.
doi: 10.1016/j.asoc.2021.107375 URL |
[43] | *Eslami, T., Mirjalili, V., Fong, A., Laird, A. R., & Saeed, F. (2019). ASD-DiagNet: A hybrid learning approach for detection of autism spectrum disorder using fMRI data. Frontiers in Neuroinformatics, 13. https://doi.org/10.3389/fninf.2019.00070 |
[44] |
*Eugenia, C., Alessandra, R., Letizia, P., Spera, G., Bosco, P., Biagi, L., … Calderoni, S. (2020). Autism spectrum disorder and childhood apraxia of speech: Early language-related hallmarks across structural MRI study. Journal of Personalized Medicine, 10(4), 275.
doi: 10.3390/jpm10040275 URL |
[45] |
Falkmer, T., Anderson, K., Falkmer, M., & Horlin, C. (2013). Diagnostic procedures in autism spectrum disorders: A systematic literature review. European Child and Adolescent Psychiatry, 22(6), 329-340.
doi: 10.1007/s00787-013-0375-0 pmid: 23322184 |
[46] | Food and Drug Administration. (2021). FDA authorizes marketing of diagnostic aid for autism spectrum disorder. Retrieved October 21, 2021, from https://www.fda.gov/news-events/press-announcements/fda-authorizes-marketing-diagnostic-aid-autism-spectrum-disorder |
[47] |
*Feczko, E., Balba, N., Miranda-Dominguez, O., Cordova, M., Karalunas, S. L., Irwin, L.,... Fair, D. A. (2017). Subtyping cognitive profiles in autism spectrum disorder using a random forest algorithm. Neuroimage, 172, 674-688.
doi: 10.1016/j.neuroimage.2017.12.044 URL |
[48] |
Geng, X., Kang, X., & Wong, P. C. M. (2020). Autism spectrum disorder risk prediction: A systematic review of behavioral and neural investigations. Progress in Molecular Biology and Translational Science, 173, 91-137.
doi: S1877-1173(20)30059-4 pmid: 32711819 |
[49] |
*Goel, N., Grover, B., Anuj, Gupta, D., Khanna, A., & Sharma, M. (2020). Modified grasshopper optimization algorithm for detection of autism spectrum disorder. Physical Communication, 41, 101115.
doi: 10.1016/j.phycom.2020.101115 URL |
[50] |
*Gök, M. (2018). A novel machine learning model to predict autism spectrum disorders risk gene. Neural Computing and Applications, 31(4), 6711-6717.
doi: 10.1007/s00521-018-3502-5 URL |
[51] |
*Grossi, E., Olivieria, C., & Buscema, M. (2017). Diagnosis of autism through EEG processed by advanced computational algorithms: A pilot study. Computer Methods and Programs in Biomedicine, 142, 73-79.
doi: S0169-2607(16)31208-1 pmid: 28325448 |
[52] |
Guinchat, V., Chamak, B., Bonniau, B., Bodeau, N., Perisse, D., Cohen, D., & Danion, A. (2012). Very early signs of autism reported by parents include many concerns not specific to autism criteria. Research in Autism Spectrum Disorders, 6(2), 589-601.
doi: 10.1016/j.rasd.2011.10.005 URL |
[53] |
*Guo, X. Y., Dominick, K. C., Minai, A. A., Li, H. L., Erickson, C. A., & Lu, L. J. (2017). Diagnosing autism spectrum disorder from brain resting-state functional connectivity patterns using a deep neural network with a novel feature selection method. Frontiers in Neuroscience, 11, 460.
doi: 10.3389/fnins.2017.00460 pmid: 28871217 |
[54] |
Hazlett, H. C., Gu, H., Munsell, B. C., Kim, S. H., Styner, M., Wolff, J. J., … The, IBIS Network. (2017). Early brain development in infants at high risk for autism spectrum disorder. Nature, 542(7641), 348-351.
doi: 10.1038/nature21369 URL |
[55] |
Hosseinzadeh, M., Koohpayehzadeh, J., Bali, A. O., Rad, F. A., Souri, A., Mazaherinezhad, A., … Bohlouli, M. (2021). A review on diagnostic autism spectrum disorder approaches based on the internet of things and machine learning. The Journal of Supercomputing, 77(3), 2590-2608.
doi: 10.1007/s11227-020-03357-0 URL |
[56] |
Hyde, K. K., Novack, M. N., LaHaye, N., Parlett-Pelleriti, C., Anden, R., Dixon, D. R., & Linstead, E. (2019). Applications of supervised machine learning in autism spectrum disorder research: A review. Review Journal of Autism and Developmental Disorders, 6(2), 128-146.
doi: 10.1007/s40489-019-00158-x URL |
[57] |
*Itani, S., & Thanou, D. (2021). Combining anatomical and functional networks for neuropathology identification: A case study on autism spectrum disorder. Medical Image Analysis, 69, 101986.
doi: 10.1016/j.media.2021.101986 URL |
[58] |
*Jun, E., Kang, E., Choi, J., & Suk, H. (2019). Modeling regional dynamics in low-frequency fluctuation and its application to autism spectrum disorder diagnosis. NeuroImage, 184, 669-686.
doi: S1053-8119(18)30828-0 pmid: 30248456 |
[59] |
*Kang, J. N., Han, X. Y., Song, J. J., Niu, Z. K., & Li, X. L. (2020). The identification of children with autism spectrum disorder by SVM approach on EEG and eye-tracking data. Computers in Biology and Medicine, 120(24), 103722.
doi: 10.1016/j.compbiomed.2020.103722 URL |
[60] |
*Kanne, S. M., Carpenter, L. A., & Warren, Z. (2018). Screening in toddlers and preschoolers at risk for autism spectrum disorder: Evaluating a novel mobile-health screening tool. Autism Research, 11(7), 1038-1049.
doi: 10.1002/aur.1959 pmid: 29734507 |
[61] | *Katuwal, G. J., Baum, S. A., Cahill, N. D., & Michael, A. M. (2016). Divide and conquer: Sub-grouping of ASD improves ASD detection based on brain morphometry. Plos One, 11(4), 1-24. |
[62] | Klin, A., Lang, J., Cicchetti, D. V., & Volkmar, F. R. (2000). Brief report: Interrater reliability of clinical diagnosis and DSM-IV criteria for autistic disorder: Results of the DSM-IV autism field trial. Journal of Autism and Developmental Disorders, 30(2), 163-167. |
[63] |
Koumpouros, Y., & Kafazis, T. (2019). Wearables and mobile technologies in autism spectrum disorder interventions: A systematic literature review. Research in Autism Spectrum Disorders, 66, 101405.
doi: 10.1016/j.rasd.2019.05.005 URL |
[64] | *Lai, M., Lee, J., Chiu, S., Charm, J., So, W. Y., Yuen, F. P., … Zee, B. (2020). A machine learning approach for retinal images analysis as an objective screening method for children with autism spectrum disorder. Eclinical Medicine, 28, 100588. |
[65] |
*Levy, S., Duda, M., Haber, N., Wall, D. P. (2017). Sparsifying machine learning models identify stable subsets of predictive features for behavioral detection of autism. Molecular Autism, 8(1), 65.
doi: 10.1186/s13229-017-0180-6 URL |
[66] | *Li, G. Y., Lee, O., & Rabitz, H. (2018). High efficiency classification of children with autism spectrum disorder. Plos One, 13(2), e0192867. |
[67] |
Li, X. W., La, R., Wang, Y., Niu, J. H., Zeng, S., Sun, S., & Zhu, J. (2019). EEG-based mild depression recognition using convolutional neural network. Medical and Biological Engineering and Computing, 57(6), 1341-1352.
doi: 10.1007/s11517-019-01959-2 pmid: 30778842 |
[68] |
*Li, Y. M., Mache, M. A., & Todd, T. A. (2020). Automated identification of postural control for children with autism spectrum disorder using a machine learning approach. Journal of Biomechanics, 113, 110073.
doi: 10.1016/j.jbiomech.2020.110073 URL |
[69] |
*Liaqat, S., Wu, C., Duggirala, P. R., Cheung, S. S., Chuah, C. N., Ozonoff, S., & Young, G. (2021). Predicting ASD diagnosis in children with synthetic and image-based eye gaze data. Signal Processing Image Communication, 94(3), 116198.
doi: 10.1016/j.image.2021.116198 URL |
[70] |
*Liu, W., Li, M., & Li, Y. (2016). Identifying children with autism spectrum disorder based on their face processing abnormality: A machine learning framework. Autism Research, 9(8), 888-898.
doi: 10.1002/aur.1615 pmid: 27037971 |
[71] | Maenner, M. J., Shaw, K. A., Bakian, A.V., Bilder, D. A., Durkin, M. S., Esler, A., … Cogswell, M. E. (2021). Prevalence and characteristics of autism spectrum disorder among children aged 8 years-Autism and developmental disabilities monitoring network, 11 sites, United States, 2018. MMWR Surveillance Summaries. 70(11), 1-16. |
[72] |
*Mazumdar, P., Arru, G., & Battisti, F. (2021). Early detection of children with autism spectrum disorder based on visual exploration of images. Signal Processing Image Communication, 94(3), 116184.
doi: 10.1016/j.image.2021.116184 URL |
[73] | Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., PRISMA Group, & for the PRISMA Group. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ, 339, b2535. |
[74] | *Meera, S. S., Donovan, K., Wolff, J. J., Zwaigenbaum, L., Elison, J. T., Kinh, T.,... IBIS Network. (2020). Towards a data-driven approach to screen for autism risk at 12 months of age. Journal of the American Academy of Child and Adolescent Psychiatry, 60(8), 968-977 |
[75] | Millar, L., Mcconnachie, A., Minnis, H., Wilson, P., Thompson, L., Anzulewicz, A., … Delafield-Butt, J. (2019). Phase 3 diagnostic evaluation of a smart tablet serious game to identify autism in 760 children 3-5 years old in sweden and the united kingdom. BMJ Open, 9(7), e026226. |
[76] | Namdeo, A., & Singh, D. (2021). Challenges in evolutionary algorithm to find optimal parameters of SVM:A review. Materials Today: Proceedings, 3, 288. |
[77] |
*Negin, F., Ozyer, B., Agahian, S., Kacdioglu, S., & Ozyer, G. T. (2021). Vision-assisted recognition of stereotype behaviors for early diagnosis of autism spectrum disorders. Neurocomputing, 446, 145-155.
doi: 10.1016/j.neucom.2021.03.004 URL |
[78] |
Nogay, H. S., & Adeli, H. (2020). Machine learning (ML) for the diagnosis of autism spectrum disorder (ASD) using brain imaging. Reviews in the Neurosciences, 31(8), 825-841.
doi: 10.1515/revneuro-2020-0043 URL |
[79] | Oh, D. H., Kim, I. B., Kim, S. H., & Ahn, D. H. (2017). Predicting autism spectrum disorder using blood-based gene expression signatures and machine learning. Clinical Psychopharmacology and Neuroscience: The Official Scientific Journal of the Korean College of Neuropsychopharmacology, 15(1), 47-52. |
[80] |
Pagnozzi, A. M., Conti, E., Calderoni, S., Fripp, J., & Rose, S. E. (2018). A systematic review of structural MRI biomarkers in autism spectrum disorder: A machine learning perspective. International Journal of Developmental Neuroscience, 71(1), 68-82.
doi: 10.1016/j.ijdevneu.2018.08.010 URL |
[81] |
*Parikh, M. N., Li, H., & He, L. (2019). Enhancing diagnosis of autism with optimized machine learning models and personal characteristic data. Frontiers in Computational Neuroscience, 13, 9.
doi: 10.3389/fncom.2019.00009 pmid: 30828295 |
[82] |
Perera, H., Jeewandara, K. C., Seneviratne, S., & Guruge, C. (2017). Culturally adapted pictorial screening tool for autism spectrum disorder: A new approach. World Journal of Clinical Pediatrics, 6(1), 45-51.
doi: 10.5409/wjcp.v6.i1.45 pmid: 28224095 |
[83] |
Plitt, M., Barnes, K. A., & Martin, A. (2015). Functional connectivity classification of autism identifies highly predictive brain features but falls short of biomarker standards. NeuroImage Clinical, 7(C),359-366.
doi: 10.1016/j.nicl.2014.12.013 URL |
[84] |
*Puerto, E., Aguilar, J., López, C., & Chávez, D. (2019). Using multilayer fuzzy cognitive maps to diagnose autism spectrum disorder. Applied Soft Computing, 75, 58-71.
doi: 10.1016/j.asoc.2018.10.034 URL |
[85] |
*Qiu, N., Tang, C., Zhai, M., Huang, W., Weng, J., Li, C., … Ke, X. (2020). Application of the still-face paradigm in early screening for high-risk autism spectrum disorder in infants and toddlers. Frontiers in Pediatrics, 8, 290.
doi: 10.3389/fped.2020.00290 pmid: 32582594 |
[86] |
Quaak, M., van de Mortel, L., Thomas, R. M., & van Wingen, G. (2021). Deep learning applications for the classification of psychiatric disorders using neuroimaging data: Systematic review and meta-analysis. NeuroImage Clinical, 30, 102584.
doi: 10.1016/j.nicl.2021.102584 URL |
[87] | *Rahman, R., Kodesh, A., Levine, S. Z., Sandin, S., Reichenberg, A., & Schlessinger, A. (2020). Identification of newborns at risk for autism using electronic medical records and machine learning. European Psychiatry. 63(1), e22, 1-7. |
[88] |
Rahman, M. M., Usman, O. L., Muniyandi, R. C., Sahran, S., Mohamed, S., & Razak, R. A. (2020). A review of machine learning methods of feature selection and classification for autism spectrum disorder. Brain Sciences, 10(12), 1-23.
doi: 10.3390/brainsci10010001 URL |
[89] |
*Raj, S., & Masood, S. (2020). Analysis and detection of autism spectrum disorder using machine learning techniques. Procedia Computer Science, 167, 994-1004.
doi: 10.1016/j.procs.2020.03.399 URL |
[90] |
*Rakić, M., Cabezas, M., Kushibar, K., Oliver, A., & Lladó, X. (2020). Improving the detection of autism spectrum disorder by combining structural and functional MRI information. NeuroImage: Clinical, 25, 102181.
doi: 10.1016/j.nicl.2020.102181 URL |
[91] |
Ramírez-Duque, A. A., Frizera-Neto, A., & Bastos, T. F. (2019). Robot-assisted autism spectrum disorder diagnostic based on artificial reasoning. Journal of Intelligent and Robotic Systems, 96(2), 267-281.
doi: 10.1007/s10846-018-00975-y URL |
[92] | *Retico, A., Gori, I., Giuliano, A., Muratori, F., & Calderoni, S. (2016). One-class support vector machines identify the language and default mode regions as common patterns of structural alterations in young children with autism spectrum disorders. Frontiers in Neuroscience, 10(171), 306. |
[93] |
*Salari, V., Sherkatghanad, Z., Akhondzadeh, M., Salari, S., Zomorodi-moghadam, M., Abdar, M., & Khosrowabadi, R. (2019). Automated detection of autism spectrum disorder using convolutional neural network. Frontiers in Neuroscience. 13, 1325.
doi: 10.3389/fnins.2019.01325 pmid: 32009868 |
[94] |
Sanders, S. J., Ercan-Sencicek, A. G., Hus, V., Luo, R., Murtha, M. T., Moreno-De-Luca, D., … State, M. W. (2011). Multiple recurrent de novo CNVs, including duplications of the 7q11.23 Williams syndrome region, are strongly associated with autism. Neuron, 70(5), 863-885.
doi: 10.1016/j.neuron.2011.05.002 pmid: 21658581 |
[95] |
Sekaran, K., & Sudha, M. (2020). Predicting autism spectrum disorder from associative genetic markers of phenotypic groups using machine learning. Journal of Ambient Intelligence and Humanized Computing, 12(3), 3257-3270.
doi: 10.1007/s12652-020-02155-z URL |
[96] | *Sen, B., Borle, N. C., Greiner, R., & Brown, M. R. G. (2018). A general prediction model for the detection of ADHD and autism using structural and functional MRI. Plos One, 13(4), e0194856. |
[97] | *Sewani, H., & Kashef, R. (2020). An autoencoder-based deep learning classifier for efficient diagnosis of autism. Children, 7(10), 0182. |
[98] |
*Shahamiri, S. R., & Thabtah, F. (2020). Autism AI: A new autism screening system based on artificial intelligence. Cognitive Computation, 12, 766-777.
doi: 10.1007/s12559-020-09743-3 URL |
[99] | Sheldrick, R. C., Maye, M. P., & Carter, A. S. (2017). Age at first identification of autism spectrum disorder: An analysis of two US surveys. Journal of the American Academy of Child and Adolescent Psychiatry, 56 (4), 313-320. |
[100] |
Shic, F., Macari, S., & Chawarska, K. (2014). Speech disturbs face scanning in 6-month-old infants who develop autism spectrum disorder. Biological Psychiatry, 75(3), 231-237.
doi: 10.1016/j.biopsych.2013.07.009 pmid: 23954107 |
[101] | *Tariq, Q., Daniels, J., Schwartz, J. N., Washington, P., Kalantarian, H., & Wall, D. P. (2018). Mobile detection of autism through machine learning on home video: A development and prospective validation study. Plos Medicine, 15(11), e1002705. |
[102] |
*Thabtah, F., Kamalov, F., & Rajab, K. (2018). A new computational intelligence approach to detect autistic features for autism screening. International Journal of Medical Informatics, 117(SEP.), 112-124.
doi: S1386-5056(18)30054-6 pmid: 30032959 |
[103] |
*Thabtah, F. (2019). An accessible and efficient autism screening method for behavioural data and predictive analyses. Health Informatics Journal, 25(2), 1739-1755.
doi: 10.1177/1460458218796636 URL |
[104] |
*Thabtah, F., Abdelhamid, N., & Peebles, D. (2019). A machine learning autism classification based on logistic regression analysis. Health Information Science and Systems, 7(1), 12.
doi: 10.1007/s13755-019-0073-5 pmid: 31168365 |
[105] |
*Thabtah, F., & Peebles, D. (2019). A new machine learning model based on induction of rules for autism detection. Health Informatics Journal, 26(1), 264-286.
doi: 10.1177/1460458218824711 URL |
[106] |
Tyzio, R., Nardou, R., Ferrari, D. C., Tsintsadze, T., Shahrokhi, A., Eftekhari, S., … Ben-Ari, Y. (2014). Oxytocin-mediated gaba inhibition during delivery attenuates autism pathogenesis in rodent offspring. Science, 343(6171), 675-679.
doi: 10.1126/science.1247190 pmid: 24503856 |
[107] |
*Wan, G., Kong, X., Sun, B., Yu, S., Tu, Y., Park, J., … Kong, J. (2019). Applying eye tracking to identify autism spectrum disorder in children. Journal of Autism and Developmental Disorders, 49(1), 209-215.
doi: 10.1007/s10803-018-3690-y pmid: 30097760 |
[108] |
Wolff, J. J., Gerig, G., Lewis, J. D., Soda, T., Styner, M. A., Vachet, C.,… the IBIS Network. (2015). Altered corpus callosum morphology associated with autism over the first 2 years of life. Brain, 138(7), 2046-2058.
doi: 10.1093/brain/awv118 URL |
[109] |
*Wedyan, M., Al-Jumaily, A., & Crippa, A. (2019). Using machine learning to perform early diagnosis of autism spectrum disorder based on simple upper limb movements. International Journal of Hybrid Intelligent Systems, 15(4), 195-206.
doi: 10.3233/HIS-190278 URL |
[110] |
Wolff, J. J., Gu, H., Gerig, G., Elison, J. T., Styner, M., Gouttard, S.,… the IBIS Network. (2012). Differences in white matter fiber tract development present from 6 to 24 months in infants with autism. American Journal of Psychiatry, 169(6), 589-600.
doi: 10.1176/appi.ajp.2011.11091447 pmid: 22362397 |
[111] |
*Wingfield, B., Miller, S., Yogarajah, P., Kerr, D., Gardiner, B., Seneviratne, S., … Coleman, S. (2020). A predictive model for paediatric autism screening. Health Informatics Journal, 26(4), 2538-2553.
doi: 10.1177/1460458219887823 URL |
[112] |
*Yang, Y. (2020). A preliminary evaluation of still face images by deep learning: A potential screening test for childhood developmental disabilities. Medical Hypotheses, 144, 109978.
doi: 10.1016/j.mehy.2020.109978 URL |
[1] | CHEN Xinwen, LI Hongjie, DING Yulong. Exploring the neural representation patterns in event-related EEG/MEG signals: The methods based on classification decoding and representation similarity analysis [J]. Advances in Psychological Science, 2023, 31(2): 173-195. |
[2] | KOU Juan, YANG Mengyuan, WEI Zijie, LEI Yi. The social motivation theory of autism spectrum disorder: Exploring mechanisms and interventions [J]. Advances in Psychological Science, 2023, 31(1): 20-32. |
[3] | XU Hui, WANG Tao. Social motivation deficits in individuals with autism spectrum disorders [J]. Advances in Psychological Science, 2022, 30(5): 1050-1061. |
[4] | CHEN Guanghua, TAO Guanpeng, ZHAI Luyu, BAI Xuejun. Early screening tools for Autism Spectrum Disorder in infancy and toddlers [J]. Advances in Psychological Science, 2022, 30(4): 738-760. |
[5] | LIU Xiaohan, CHEN Minglong, GUO Jing. Application of machine learning in prognosis and trajectory of post-traumatic stress disorder in children [J]. Advances in Psychological Science, 2022, 30(4): 851-862. |
[6] | ZHANG Linlin, WEI Kunlin, LI Jing. Interpersonal motor synchronization in children [J]. Advances in Psychological Science, 2022, 30(3): 623-634. |
[7] | LIU Min, HU Yang, LIU Qiaoyun. Potential early identification markers for children with autism spectrum disorder: Unusual vocalizations and theoretical explanations [J]. Advances in Psychological Science, 2022, 30(3): 635-647. |
[8] | YU Jiayu, JIN Yuxi, LIANG Dandan. Brain activation differences in lexical-semantics processing in autistic population: A meta-analysis of fMRI studies [J]. Advances in Psychological Science, 2022, 30(11): 2448-2460. |
[9] | HOU Wenwen, SU Yi (ESTHER). The influence of atypical attention and memory on vocabulary delay in children with autism spectrum disorder [J]. Advances in Psychological Science, 2022, 30(11): 2558-2569. |
[10] | YUAN Yuzhuo, LUO Fang. Early screening and diagnosis of autism spectrum disorder assisted by artificial intelligence [J]. Advances in Psychological Science, 2022, 30(10): 2303-2320. |
[11] | GAN Jiaqun, WANG Enguo. Attentional disengagement in autism spectrum disorders [J]. Advances in Psychological Science, 2022, 30(1): 129-140. |
[12] | JING Wei, ZHANG Jie, FU Jinxia, TIAN Lin, ZHAO Wei. Attention bias to faces in infants and toddlers: Inborn predispositions and developmental changes [J]. Advances in Psychological Science, 2021, 29(7): 1216-1230. |
[13] | WANG Lin, WANG Zhidan, WANG Hongjing. The neural mechanisms of developmental motor disorders in children with autism spectrum disorder [J]. Advances in Psychological Science, 2021, 29(7): 1239-1250. |
[14] | HUO Chao, LI Zuoshan, MENG Jing. Empathy interventions for individuals with autism spectrum disorders: Giving full play to strengths or making up for weaknesses? [J]. Advances in Psychological Science, 2021, 29(5): 849-863. |
[15] | SU Yue, LIU Mingming, ZHAO Nan, LIU Xiaoqian, ZHU Tingshao. Identifying psychological indexes based on social media data: A machine learning method [J]. Advances in Psychological Science, 2021, 29(4): 571-585. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||