Advances in Psychological Science ›› 2022, Vol. 30 ›› Issue (7): 1496-1510.doi: 10.3724/SP.J.1042.2022.01496
• Regular Articles • Previous Articles Next Articles
HAO Xin1,2(), YUAN Zhongping1,2, LIN Shuting1,2, SHEN Ting1,2
Received:
2021-10-18
Online:
2022-07-15
Published:
2022-05-17
Contact:
HAO Xin
E-mail:psyhaoxin@ccnu.edu.cn
CLC Number:
HAO Xin, YUAN Zhongping, LIN Shuting, SHEN Ting. Cognitive neural mechanism of boundary processing in spatial navigation[J]. Advances in Psychological Science, 2022, 30(7): 1496-1510.
中文全称 | 英文全称 | 简称 | |
---|---|---|---|
脑区 | 旁海马位置区 | parahippocampal place area | PPA |
压后皮层联合区 | retrosplenial complex | RSC | |
枕叶位置区 | occipital parietal area | OPA | |
横枕沟 | transverse occipital sulcus | TOS | |
方法 | 功能性磁共振成像 | functional magnetic resonance imaging | fMRI |
支持向量机 | support vector machine | SVM | |
经颅磁刺激 | transcranial magnetic stimulation | TMS |
中文全称 | 英文全称 | 简称 | |
---|---|---|---|
脑区 | 旁海马位置区 | parahippocampal place area | PPA |
压后皮层联合区 | retrosplenial complex | RSC | |
枕叶位置区 | occipital parietal area | OPA | |
横枕沟 | transverse occipital sulcus | TOS | |
方法 | 功能性磁共振成像 | functional magnetic resonance imaging | fMRI |
支持向量机 | support vector machine | SVM | |
经颅磁刺激 | transcranial magnetic stimulation | TMS |
[1] | 费广洪, 潘晓敏. (2013). 儿童空间再定向能力发展的理论之争. 心理科学进展, 21(2), 252-262. |
[2] | 邵意如, 周楚. (2019). 事件切割: 我们如何知觉并记忆日常事件? 心理科学进展, 27(9), 1564-1573. |
[3] | 张家鑫, 海拉干, 李会杰. (2019). 空间导航的测量及其在认知老化中的应用. 心理科学进展, 27(12), 2019-2033. |
[4] |
Alexander, A. S., Carstensen, L. C., Hinman, J. R., Raudies, F., Chapman, G. W., & Hasselmo, M. E. (2020). Egocentric boundary vector tuning of the retrosplenial cortex. Science Advances, 6(8), eaaz2322
doi: 10.1126/sciadv.aaz2322 URL |
[5] | Alexander, A. S., Robinson, J. C., Dannenberg, H., Kinsky, N. R., Levy, S. J., Mau, W., … Hasselmo, M. E. (2020). Neurophysiological coding of space and time in the hippocampus, entorhinal cortex, and retrosplenial cortex. Brain and Neuroscience Advances, 4, 2398212820972871. |
[6] |
Andersson, S. O., Moser, E. I., & Moser, M. B. (2021). Visual stimulus features that elicit activity in object-vector cells. Communications Biology, 4(1), 1-13.
doi: 10.1038/s42003-020-01566-0 URL |
[7] |
Bar, M., & Aminoff, E. (2003). Cortical analysis of visual context. Neuron, 38(2), 347-358.
doi: 10.1016/S0896-6273(03)00167-3 URL |
[8] | Barry, C., Lever, C., Hayman, R., Hartley, T., Burton, S., O'Keefe, J., … Burgess, Ν. (2006). The boundary vector cell model of place cell firing and spatial memory. Reviews in the Neurosciences, 17(12), 71-98. |
[9] |
Bicanski, A., & Burgess, N. (2020). Neuronal vector coding in spatial cognition. Nature Reviews. Neuroscience, 21(9), 453-470.
doi: 10.1038/s41583-020-0336-9 pmid: 32764728 |
[10] |
Bird, C. M., Capponi, C., King, J. A., Doeller, C. F., & Burgess, N. (2010). Establishing the boundaries: The hippocampal contribution to imagining scenes. Journal of Neuroscience, 30(35), 11688-11695.
doi: 10.1523/JNEUROSCI.0723-10.2010 URL |
[11] |
Bonner, M. F., & Epstein, R. A. (2017). Coding of navigational affordances in the human visual system. Proceedings of the National Academy of Sciences, 114(18), 4793-4798.
doi: 10.1073/pnas.1618228114 URL |
[12] |
Brunec, I. K., Moscovitch, M., & Barense, M. D. (2018). Boundaries shape cognitive representations of spaces and events. Trends in Cognitive Sciences, 22(7), 637-650.
doi: S1364-6613(18)30087-1 pmid: 29706557 |
[13] |
Brunec, I. K., Ozubko, J. D., Ander, T., Guo, R., Moscovitch, M., & Barense, M. D. (2020). Turns during navigation act as boundaries that enhance spatial memory and expand time estimation. Neuropsychologia, 141, 107437.
doi: 10.1016/j.neuropsychologia.2020.107437 URL |
[14] |
Buckley, M. G., Smith, A. D., & Haselgrove, M. (2015). Learned predictiveness training modulates biases towards using boundary or landmark cues during navigation. The Quarterly Journal of Experimental Psychology, 68(6), 1183-1202.
doi: 10.1080/17470218.2014.977925 URL |
[15] |
Bullens, J., Nardini, M., Doeller, C. F., Braddick, O., Postma, A., & Burgess, N. (2010). The role of landmarks and boundaries in the development of spatial memory. Development Science, 13(1), 170-180.
doi: 10.1111/j.1467-7687.2009.00870.x URL |
[16] |
Cheng, K., Huttenlocher, J., & Newcombe, N. S. (2013). 25 years of research on the use of geometry in spatial reorientation: A current theoretical perspective. Psychonomic Bulletin & Review, 20(6), 1033-1054.
doi: 10.3758/s13423-013-0416-1 URL |
[17] |
Cheng, K. J. C. (1986). A purely geometric module in the rat's spatial representation. Cognition, 23(2), 149-178.
pmid: 3742991 |
[18] |
Chen, X., McNamara, T. P., Kelly, J. W., & Wolbers, T. (2017). Cue combination in human spatial navigation. Cognitive Psychology, 95, 105-144.
doi: 10.1016/j.cogpsych.2017.04.003 URL |
[19] |
Coughlan, G., Coutrot, A., Khondoker, M., Minihane, A. M., Spiers, H., & Hornberger, M. (2019). Toward personalized cognitive diagnostics of at-genetic-risk Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 116(19), 9285-9292.
doi: 10.1073/pnas.1901600116 pmid: 31015296 |
[20] |
Coughlan, G., Laczó, J., Hort, J., Minihane, A. M., & Hornberger, M. (2018). Spatial navigation deficits - overlooked cognitive marker for preclinical Alzheimer disease? Nature Reviews Neurology, 14(8), 496-506.
doi: 10.1038/s41582-018-0031-x pmid: 29980763 |
[21] |
Coughlan, G., Puthusseryppady, V., Lowry, E., Gillings, R., Spiers, H., Minihane, A. M., & Hornberger, M. (2020). Test-retest reliability of spatial navigation in adults at-risk of Alzheimer's disease. Plos One, 15(9), e0239077.
doi: 10.1371/journal.pone.0239077 URL |
[22] |
Dahmani, L., Patel, R. M., Yang, Y., Chakravarty, M. M., Fellows, L. K., & Bohbot, V. D. (2018). An intrinsic association between olfactory identification and spatial memory in humans. Nature Communications, 9(1), 1-12.
doi: 10.1038/s41467-017-02088-w URL |
[23] |
Deshmukh, S. S., & Knierim, J. J. (2013). Influence of local objects on hippocampal representations: Landmark vectors and memory. Hippocampus, 23(4), 253-267.
doi: 10.1002/hipo.22101 pmid: 23447419 |
[24] |
Dilks, D. D., Julian, J. B., Paunov, A. M., & Kanwisher, N. (2013). The occipital place area is causally and selectively involved in scene perception. Journal of Neuroscience, 33(4), 1331-1336.
doi: 10.1523/JNEUROSCI.4081-12.2013 URL |
[25] |
Dillon, M. R., Persichetti, A. S., Spelke, E. S., & Dilks, D. D. (2018). Places in the brain: Bridging layout and object geometry in scene-selective cortex. Cerebral Cortex, 28(7), 2365-2374.
doi: 10.1093/cercor/bhx139 URL |
[26] | Doeller, C. F., & Burgess, N. (2008). Distinct error- correcting and incidental learning of location relative to landmarks and boundaries. Proceedings of the National Academy of Sciences of the United States of America, 105(15), 5909-5914. |
[27] | Doeller, C. F., King, J. A., & Burgess, N. (2008). Parallel striatal and hippocampal systems for landmarks and boundaries in spatial memory. Proceedings of the National Academy of Sciences of the United States of America, 105(15), 5915-5920. |
[28] |
Epstein, R. A. (2008). Parahippocampal and retrosplenial contributions to human spatial navigation. Trends in Cognitive Sciences, 12(10), 388-396.
doi: 10.1016/j.tics.2008.07.004 URL |
[29] |
Epstein, R. A., & Baker, C. I. (2019). Scene perception in the human brain. Annual Review of Vision Science, 5, 373-397.
doi: 10.1146/annurev-vision-091718-014809 URL |
[30] |
Epstein, R. A., Harris, A., Stanley, D., & Kanwisher, N. (1999). The parahippocampal place area: Recognition, navigation, or encoding? Neuron, 23(1), 115-125.
pmid: 10402198 |
[31] |
Epstein, R. A., & Kanwisher, N. (1998). A cortical representation of the local visual environment. Nature, 392(6676), 598-601.
doi: 10.1038/33402 URL |
[32] |
Ferrara, K., Landau, B., & Park, S. (2019). Impaired behavioral and neural representation of scenes in Williams syndrome. Cortex, 121, 264-276.
doi: 10.1016/j.cortex.2019.09.001 URL |
[33] |
Ferrara, K., & Park, S. (2016). Neural representation of scene boundaries. Neuropsychologia, 89, 180-190.
doi: 10.1016/j.neuropsychologia.2016.05.012 URL |
[34] |
Freedman, D. J., & Ibos, G. (2018). An integrative framework for sensory, motor, and cognitive functions of the posterior parietal cortex. Neuron, 97(6), 1219-1234.
doi: S0896-6273(18)30069-2 pmid: 29566792 |
[35] | Gallistel, C. R. (1990). The organization of learning. Cambridge, MA: MIT Press. |
[36] |
Gianni, E., de Zorzi, L., & Lee, S. A. (2018). The developing role of transparent surfaces in children's spatial representation. Cognitive Psychology, 105, 39-52.
doi: 10.1016/j.cogpsych.2018.05.003 URL |
[37] | Gianni, E., & Lee, S. A. (2017). Defining spatial boundaries: A developmental study. In International Conference on Spatial Information Theory (pp. 49-55). Springer, Cham. |
[38] |
Glöckner, F., Schuck, N. W., & Li, S. C. (2021). Differential prioritization of intramaze cue and boundary information during spatial navigation across the human lifespan. Scientific Reports, 11(1), 1-16.
doi: 10.1038/s41598-020-79139-8 URL |
[39] |
Gofman, X., Tocker, G., Weiss, S., Boccara, C. N., Lu, L., Moser, M. B., … Derdikman, D. (2019). Dissociation between postrhinal cortex and downstream parahippocampal regions in the representation of egocentric boundaries. Current Biology, 29(16), 2751-2757.e4.
doi: S0960-9822(19)30852-8 pmid: 31378610 |
[40] | Gori, M., Cappagli, G., Baud-Bovy, G., & Finocchietti, S. (2017). Shape perception and navigation in blind adults. Frontiers in Psychology, 8, 10. |
[41] |
Grill-Spector, K. (2003). The neural basis of object perception. Current Opinion in Neurobiology, 13(2), 159-166.
pmid: 12744968 |
[42] |
Guderian, S., Dzieciol, A. M., Gadian, D. G., Jentschke, S., Doeller, C. F., Burgess, N., … Vargha-Khadem. (2015). Hippocampal volume reduction in humans predicts impaired allocentric spatial memory in virtual-reality navigation. The Journal of Neuroscience, 35(42), 14123-14131.
doi: 10.1523/JNEUROSCI.0801-15.2015 URL |
[43] |
Hägglund, M., Mørreaunet, M., Moser, M. B., & Moser, E. I. (2019). Grid-cell distortion along geometric borders. Current Biology, 29(6), 1047-1054. e3.
doi: S0960-9822(19)30133-2 pmid: 30853431 |
[44] |
Hao, X., Huang, Y., Song, Y., Kong, X., & Liu, J. (2017). Experience with the cardinal coordinate system contributes to the precision of cognitive maps. Frontiers in Psychology, 8, 1166.
doi: 10.3389/fpsyg.2017.01166 URL |
[45] |
Hao, X., Huang, T., Song, Y., Kong, X., & Liu, J. (2021). Development of navigation network revealed by resting- state and task-state functional connectivity. NeuroImage, 243, 118515.
doi: 10.1016/j.neuroimage.2021.118515 URL |
[46] | Hao, X., Wang, X., Song, Y., Kong, X., & Liu, J. (2018). Dual roles of the hippocampus and intraparietal sulcus in network integration and segregation support scene recognition. Brain Structure and Function, 223(3), 1473-1485. |
[47] |
Harel, A., Kravitz, D. J., & Baker, C. I. (2013). Deconstructing visual scenes in cortex: Gradients of object and spatial layout information. Cerebral Cortex, 23(4), 947-957.
doi: 10.1093/cercor/bhs091 URL |
[48] |
He, Q., & Brown, T. I. (2019). Environmental barriers disrupt grid-like representations in humans during navigation. Current Biology, 29(16), 2718-2722. e3.
doi: 10.1016/j.cub.2019.06.072 URL |
[49] |
Hermer, L., & Spelke, E. S. (1994). A geometric process for spatial reorientation in young children. Nature, 370(6484), 57-59.
doi: 10.1038/370057a0 URL |
[50] |
Hermer, L., & Spelke, E. S. (1996). Modularity and development: The case of spatial reorientation. Cognition, 61(3), 195-232.
pmid: 8990972 |
[51] |
Hinman, J. R., Chapman, G. W., & Hasselmo, M. E. (2019). Neuronal representation of environmental boundaries in egocentric coordinates. Nature Communications, 10(1), 2772.
doi: 10.1038/s41467-019-10722-y pmid: 31235693 |
[52] | Honbolygó, F., Babik, A., & Török, Á. (2014, November). Location learning in virtual environments: The effect of saliency of landmarks and boundaries. In 2014 5th IEEE Conference on Cognitive Infocommunications (pp. 595-598). Vietri sul Mare, Italy |
[53] |
Horner, A. J., Bisby, J. A., Wang, A., Bogus, K., & Burgess, N. (2016). The role of spatial boundaries in shaping long-term event representations. Cognition, 154, 151-164.
doi: S0010-0277(16)30128-7 pmid: 27295330 |
[54] |
Høydal, Ø. A., Skytøen, E. R., Andersson, S. O., Moser, M. B., & Moser, E. I. (2019). Object-vector coding in the medial entorhinal cortex. Nature, 568(7752), 400-404.
doi: 10.1038/s41586-019-1077-7 URL |
[55] |
Jacobs, J., Kahana, M. J., Ekstrom, A. D., Mollison, M. V., & Fried, I. (2010). A sense of direction in human entorhinal cortex. Proceedings of the National Academy of Sciences, 107(14), 6487-6492.
doi: 10.1073/pnas.0911213107 URL |
[56] |
Jeunehomme, O., & D’Argembeau, A. (2020). Event segmentation and the temporal compression of experience in episodic memory. Psychological Research, 84(2), 481-490.
doi: 10.1007/s00426-018-1047-y pmid: 29982966 |
[57] | Julian, J. B., Kamps, F. S., Epstein, R. A., & Dilks, D. D. (2019). Dissociable spatial memory systems revealed by typical and atypical human development. Developmental Science, 22(2), e12737. |
[58] |
Julian, J. B., Keinath, A. T., Frazzetta, G., & Epstein, R. A. (2018). Human entorhinal cortex represents visual space using a boundary-anchored grid. Nature Neuroscience, 21(2), 191-194.
doi: 10.1038/s41593-017-0049-1 URL |
[59] |
Julian, J. B., Keinath, A. T., Marchette, S. A., & Epstein, R. A. (2018). The neurocognitive basis of spatial reorientation. Current Biology, 28(17), R1059-R1073.
doi: 10.1016/j.cub.2018.04.057 URL |
[60] |
Julian, J. B., Ryan, J., Hamilton, R. H., & Epstein, R. A. (2016). The occipital place area is causally involved in representing environmental boundaries during navigation. Current Biology, 26(8), 1104-1109.
doi: 10.1016/j.cub.2016.02.066 URL |
[61] |
Kamps, F. S., Julian, J. B., Kubilius, J., Kanwisher, N., & Dilks, D. D. (2016). The occipital place area represents the local elements of scenes. NeuroImage, 132, 417-424.
doi: 10.1016/j.neuroimage.2016.02.062 URL |
[62] |
Kamps, F. S., Lall, V., & Dilks, D. D. (2016). The occipital place area represents first-person perspective motion information through scenes. Cortex, 83, 17-26.
doi: 10.1016/j.cortex.2016.06.022 URL |
[63] |
Keinath, A. T., Julian, J. B., Epstein, R. A., & Muzzio, I. A. (2017). Environmental geometry aligns the hippocampal map during spatial reorientation. Current Biology, 27(3), 309-317.
doi: S0960-9822(16)31400-2 pmid: 28089516 |
[64] |
Kravitz, D. J., Saleem, K. S., Baker, C. I., & Mishkin, M. (2011). A new neural framework for visuospatial processing. Nature Reviews Neuroscience, 12(4), 217.
doi: 10.1038/nrn3008 pmid: 21415848 |
[65] |
Krupic, J., Bauza, M., Burton, S., Barry, C., & O’Keefe, J. (2015). Grid cell symmetry is shaped by environmental geometry. Nature, 518(7538), 232-235.
doi: 10.1038/nature14153 URL |
[66] |
Kunz, L., Brandt, A., Reinacher, P. C., Staresina, B. P., Reifenstein, E. T., Weidemann, C. T., … Jacobs, J. (2021). A neural code for egocentric spatial maps in the human medial temporal lobe. Neuron, 109(17), 2781-2796.
doi: 10.1016/j.neuron.2021.06.019 URL |
[67] | LaChance, P. A., Todd, T. P., & Taube, J. S. (2019). A sense of space in postrhinal cortex. Science, 365(6449). |
[68] |
Lee, S. A. (2017). The boundary-based view of spatial cognition: A synthesis. Current Opinion in Behavioral Sciences, 16, 58-65.
doi: 10.1016/j.cobeha.2017.03.006 URL |
[69] |
Lee, S. A., Austen, J. M., Sovrano, V. A., Vallortigara, G., McGregor, A., & Lever, C. (2020). Distinct and combined responses to environmental geometry and features in a working-memory reorientation task in rats and chicks. Scientific Reports, 10(1), 7508.
doi: 10.1038/s41598-020-64366-w URL |
[70] |
Lee, S. A., Miller, J. F., Watrous, A. J., Sperling, M. R., Sharan, A., Worrell, G. A., Berry, B. M., … Jacobs, J. (2018). Electrophysiological signatures of spatial boundaries in the human subiculum. The Journal of Neuroscience, 38(13), 3265-3272.
doi: 10.1523/JNEUROSCI.3216-17.2018 URL |
[71] |
Lee, S. A., Sovrano, V. A., & Spelke, E. S. (2012). Navigation as a source of geometric knowledge: Young children's use of length, angle, distance, and direction in a reorientation task. Cognition, 123(1), 144-161.
doi: 10.1016/j.cognition.2011.12.015 URL |
[72] |
Lee, S. A., & Spelke, E. S. (2008). Children's use of geometry for reorientation. Developmental Science, 11(5), 743-749.
doi: 10.1111/j.1467-7687.2008.00724.x URL |
[73] |
Lee, S. A., & Spelke, E. S. (2010). A modular geometric mechanism for reorientation in children. Cognitive Psychology, 61(2), 152-176.
doi: 10.1016/j.cogpsych.2010.04.002 URL |
[74] |
Lee, S. A., & Spelke, E. S. (2011). Young children reorient by computing layout geometry, not by matching images of the environment. Psychonomic Bulletin & Review, 18(1), 192-198.
doi: 10.3758/s13423-010-0035-z URL |
[75] |
Lee, S. A., Winkler-Rhoades, N., & Spelke, E. S. (2012). Spontaneous reorientation is guided by perceived surface distance, not by image matching or comparison. Plos One, 7(12), e51373.
doi: 10.1371/journal.pone.0051373 URL |
[76] | Lever, C., Burton, S., Jeewajee, A., O'Keefe, J., & Burgess, N. (2009). Boundary vector cells in the subiculum of the hippocampal formation. The Journal of Neuroscience: An Official Journal of Society for Neuroscience, 29(31), 9771-9777. |
[77] |
Lew, A. R. (2011). Looking beyond the boundaries: Time to put landmarks back on the cognitive map? Psychological Bulletin, 137(3), 484-507.
doi: 10.1037/a0022315 URL |
[78] |
Logie, M. R., & Donaldson, D. I. (2021). Do doorways really matter: Investigating memory benefits of event segmentation in a virtual learning environment. Cognition, 209, 104578.
doi: 10.1016/j.cognition.2020.104578 URL |
[79] |
Mao, D., Avila, E., Caziot, B., Laurens, J., Dickman, J. D., & Angelaki, D. E. (2021). Spatial modulation of hippocampal activity in freely moving macaques. Neuron, 109(21), 3521-3534.
doi: 10.1016/j.neuron.2021.09.032 URL |
[80] |
Meyer-Lindenberg, A., Mervis, C. B., Sarpal, D., Koch, P., Steele, S., Kohn, P., … Berman, K. F. (2005). Functional, structural, and metabolic abnormalities of the hippocampal formation in Williams syndrome. The Journal of Clinical Investigation, 115(7), 1888-1895.
doi: 10.1172/JCI24892 URL |
[81] |
Mou, W., & Zhou, R. (2013). Defining a boundary in goal localization: Infinite number of points or extended surfaces. Journal of Experimental Psychology: Learning, Memory, and Cognition, 39(4), 1115-1127.
doi: 10.1037/a0030535 URL |
[82] | Negen, J., Sandri, A., Lee, S. A., & Nardini, M. (2019). Boundaries in spatial cognition: Looking like a boundary is more important than being a boundary. Journal of Experimental Psychology: Learning Memory and Cognition, 46(6). |
[83] | Newcombe, N. S., Ratliff, K. R., Plumert, J. M., & Spencer, J. P. (2007). Explaining the development of spatial reorientation: Modularity-plus-language versus the emergence of adaptive combination. The Emerging Spatial Mind, 53-76. |
[84] |
Park, J., & Park, S. (2020). Coding of navigational distance and functional constraint of boundaries in the human scene-selective cortex. The Journal of Neuroscience, 40(18), 3621-3630.
doi: 10.1523/JNEUROSCI.1991-19.2020 URL |
[85] |
Pellencin, E., Paladino, M. P., Herbelin, B., & Serino, A. (2018). Social perception of others shapes one's own multisensory peripersonal space. Cortex, 104, 163-179.
doi: S0010-9452(17)30290-3 pmid: 28965705 |
[86] |
Persichetti, A. S., & Dilks, D. D. (2016). Perceived egocentric distance sensitivity and invariance across scene-selective cortex. Cortex, 77, 155-163.
doi: S0010-9452(16)30008-9 pmid: 26963085 |
[87] |
Pitcher, D., & Ungerleider, L. G. (2021). Evidence for a third visual pathway specialized for social perception. Trends in Cognitive Sciences, 25(2), 100-110.
doi: 10.1016/j.tics.2020.11.006 pmid: 33334693 |
[88] |
Savelli, F., Yoganarasimha, D., & Knierim, J. J. (2008). Influence of boundary removal on the spatial representations of the medial entorhinal cortex. Hippocampus, 18(12), 1270-1282.
doi: 10.1002/hipo.20511 URL |
[89] |
Schuck, N. W., Doeller, C. F., Polk, T. A., Lindenberger, U., & Li, S.-C. (2015). Human aging alters the neural computation and representation of space. NeuroImage, 117, 141-150.
doi: 10.1016/j.neuroimage.2015.05.031 URL |
[90] |
Shine, J. P., Valdes-Herrera, J. P., Tempelmann, C., & Wolbers, T. (2019). Evidence for allocentric boundary and goal direction information in the human entorhinal cortex and subiculum. Nature Communications, 10(1), 1-10.
doi: 10.1038/s41467-018-07882-8 URL |
[91] |
Sjolund, L. A., Kelly, J. W., & McNamara, T. P. (2018). Optimal combination of environmental cues and path integration during navigation. Memory & Cognition, 46(1), 89-99.
doi: 10.3758/s13421-017-0747-7 URL |
[92] |
Solstad, T., Boccara, C. N., Kropff, E., Moser, M. B., & Moser, E. I. (2008). Representation of geometric borders in the entorhinal cortex. Science, 322(5909), 1865-1868.
doi: 10.1126/science.1166466 pmid: 19095945 |
[93] |
Sotelo, M. I., Alcalá, J. A., Bingman, V. P., & Muzio, R. N. (2020). On the transfer of spatial learning between geometrically different shaped environments in the terrestrial toad, Rhinella arenarum. Animal Cognition, 23(1), 55-70.
doi: 10.1007/s10071-019-01315-9 pmid: 31628550 |
[94] |
Spelke, E. S., & Lee, S. A. (2012). Core systems of geometry in animal minds. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1603), 2784-2793.
doi: 10.1098/rstb.2012.0210 URL |
[95] |
Stangl, M., Topalovic, U., Inman, C. S., Hiller, S., Villaroman, D., Aghajan, Z. M., … Suthana, N. (2021). Boundary-anchored neural mechanisms of location- encoding for self and others. Nature, 589(7842), 420-425.
doi: 10.1038/s41586-020-03073-y URL |
[96] | Stewart, S., Jeewajee, A., Wills, T. J., Burgess, N., & Lever, C. (2014). Boundary coding in the rat subiculum. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 369(1635), 20120514. |
[97] | van Wijngaarden, J. B., Babl, S. S., & Ito, H. T. (2019). Representation of distance and direction of nearby boundaries in retrosplenial cortex. bioRxiv, 807453. |
[98] |
van Wijngaarden, J. B., Babl, S. S., & Ito, H. T. (2020). Entorhinal-retrosplenial circuits for allocentric-egocentric transformation of boundary coding. eLife, 9, e59816.
doi: 10.7554/eLife.59816 URL |
[99] |
Wang, C., Chen, X., Lee, H., Deshmukh, S. S., Yoganarasimha, D., Savelli, F., & Knierim, J. J. (2018). Egocentric coding of external items in the lateral entorhinal cortex. Science, 362(6417), 945-949.
doi: 10.1126/science.aau4940 |
[100] |
Wang, L., & Mou, W. (2020). Effect of room size on geometry and features cue preference during reorientation: Modulating encoding strength or cue weighting. Quarterly Journal of Experimental Psychology, 73(2), 225-238.
doi: 10.1177/1747021819872159 URL |
[101] |
Zhang, B., & Naya, Y. (2020). Medial prefrontal cortex represents the object-based cognitive map when remembering an egocentric target location. Cerebral Cortex, 30(10), 5356-5371.
doi: 10.1093/cercor/bhaa117 URL |
[102] |
Zhen, Z., Kong, X. Z., Huang, L., Yang, Z., Wang, X., Hao, X., … Liu, J. (2017). Quantifying the variability of scene- selective regions: Interindividual, interhemispheric, and sex differences. Human Brain Mapping, 38(4), 2260-2275.
doi: 10.1002/hbm.23519 URL |
[103] |
Zhou, R., & Mou, W. (2018). The limits of boundaries: Unpacking localization and cognitive mapping relative to a boundary. Psychological Research, 82(3), 617-633.
doi: 10.1007/s00426-016-0839-1 URL |
[104] |
Zhou, R., & Mou, W. (2019a). The effects of cue placement on the relative dominance of boundaries and landmark arrays in goal localization. Quarterly Journal of Experimental Psychology, 72(11), 2614-2631.
doi: 10.1177/1747021819855354 URL |
[105] |
Zhou, R., & Mou, W. (2019b). Boundary shapes guide selection of reference points in goal localization. Attention, Perception, & Psychophysics, 81(7), 2482-2498.
doi: 10.3758/s13414-019-01776-7 URL |
[1] | KONG Xiang-Zhen, ZHANG Fengxiang, PU Yi. The functional brain network that supports human spatial navigation [J]. Advances in Psychological Science, 2023, 31(3): 330-337. |
[2] | GUO Yudong, OU Qiwen, DUAN Jinyun. Psychological and behavioral responses of leaders toward proactive behaviors from subordinates [J]. Advances in Psychological Science, 2022, 30(5): 1158-1167. |
[3] | JIA Suosuo, GUO Li, CAI Zijun, MAO Jih-Yu. Double-edged-sword effect of performance pressure in organizational contexts [J]. Advances in Psychological Science, 2022, 30(12): 2846-2856. |
[4] | ZHU Junping. How to overcome boundary conditions: Implications from the molecular mechanism of memory strength as a constraint on destabilization [J]. Advances in Psychological Science, 2021, 29(8): 1450-1461. |
[5] | FANG Lan, ZHENG Yuanyi, JIN Han, LI Xiaoqing, YANG Yufang, WANG Ruiming. Prosodic boundaries in speech: A window to spoken language comprehension [J]. Advances in Psychological Science, 2021, 29(3): 425-437. |
[6] | XIE Julan, LIU Xiaomei, LI Jian, CHEN Chunyan, GONG Yanping. Social-to-consumption transition mechanism in social commerce [J]. Advances in Psychological Science, 2020, 28(3): 405-415. |
[7] | YIN Huazhan, CUI Xiaobing, BAI Youling, CAO Gege, DENG Jinxin, LI Dan. The important time parameters and related evidences from dual perspectives of temporal information processing and temporal processing of information [J]. Advances in Psychological Science, 2020, 28(11): 1853-1864. |
[8] | SHAO Yiru, ZHOU Chu. Event segmentation: How do we perceive and remember events? [J]. Advances in Psychological Science, 2019, 27(9): 1564-1573. |
[9] | LIU Peng, SHEN Hongkui. Modulating maladaptive human memory: Evidence from reconsolidation [J]. Advances in Psychological Science, 2019, 27(8): 1417-1426. |
[10] | WANG Honglei, SUN Jianmin. The negative effects of empowering leadership: Theoretical mechanisms and boundary conditions [J]. Advances in Psychological Science, 2019, 27(5): 858-870. |
[11] | ZHANG Jiaxin, HAI Lagan, LI Huijie. Measurement of spatial navigation and application research in cognitive aging [J]. Advances in Psychological Science, 2019, 27(12): 2019-2033. |
[12] | FENG Cailing. Effectiveness and mechanism of leader anger in the workplace [J]. Advances in Psychological Science, 2019, 27(11): 1917-1928. |
[13] | WANG Ting, YANG Fu. Career success: Antecedents and mechanisms [J]. Advances in Psychological Science, 2018, 26(8): 1488-1500. |
[14] | LIAO Huahua; YAN Aimin. Understanding emotional labor from a contingent perspective: A review on moderating variables and mechanisms [J]. Advances in Psychological Science, 2017, 25(3): 500-510. |
[15] | QI Yafei; MO Shuliang. Active mediation of parents in the use of media in children and adolescents [J]. Advances in Psychological Science, 2016, 24(8): 1290-1299. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||