Advances in Psychological Science ›› 2021, Vol. 29 ›› Issue (11): 1948-1969.doi: 10.3724/SP.J.1042.2021.01948
• Research Method • Previous Articles Next Articles
ZHENG Shufang, ZHANG Lijin, QIAO Xinyu, PAN Junhao()
Received:
2020-08-25
Online:
2021-11-15
Published:
2021-09-23
Contact:
PAN Junhao
E-mail:panjunh@mail.sysu.edu.cn
CLC Number:
ZHENG Shufang, ZHANG Lijin, QIAO Xinyu, PAN Junhao. Intensive longitudinal data analysis: Models and application[J]. Advances in Psychological Science, 2021, 29(11): 1948-1969.
模型方法 | 优点 | 缺点 |
---|---|---|
MLM/MSEM | 简单易行; 对时间点数量要求相对较低 | 假设不同个体间变量的相互作用机制是同质的; 难以分析个体内部的动态变化过程及机制, 建模不够灵活 |
mlVAR | 对时间点数量要求相对较低; 适用于较多变量间的动态交互; 结果可视性强 | 假设不同个体间变量的相互作用机制是同质的; 不考虑潜变量因子结构 |
DSEM | 可以将随机效应分解为个体和时间两个方面的来源; 在时间节点和随机效应的数量上限制较少; 允许测量时间节点之间间隔不同 | 假设不同个体间变量的相互作用机制是同质的; 需要对被试测量较多时间点 |
(LV-)GIMME | 针对单个被试进行建模, 考虑个体内部的动态变化过程及机制的异质性; 适用于较多变量间的动态交互; 自动化搜索 | 可能出现模型过拟合; 无法将几乎不随时间变化的变量纳入模型; 需要对单个被试测量较多时间点 |
模型方法 | 优点 | 缺点 |
---|---|---|
MLM/MSEM | 简单易行; 对时间点数量要求相对较低 | 假设不同个体间变量的相互作用机制是同质的; 难以分析个体内部的动态变化过程及机制, 建模不够灵活 |
mlVAR | 对时间点数量要求相对较低; 适用于较多变量间的动态交互; 结果可视性强 | 假设不同个体间变量的相互作用机制是同质的; 不考虑潜变量因子结构 |
DSEM | 可以将随机效应分解为个体和时间两个方面的来源; 在时间节点和随机效应的数量上限制较少; 允许测量时间节点之间间隔不同 | 假设不同个体间变量的相互作用机制是同质的; 需要对被试测量较多时间点 |
(LV-)GIMME | 针对单个被试进行建模, 考虑个体内部的动态变化过程及机制的异质性; 适用于较多变量间的动态交互; 自动化搜索 | 可能出现模型过拟合; 无法将几乎不随时间变化的变量纳入模型; 需要对单个被试测量较多时间点 |
[1] | 安媛媛, 徐慰. (2017). 雾霾和知觉压力加重疲劳感: 来自生态瞬时评估的证据. 中国临床心理学杂志, 25(6), 1130-1133. |
[2] | 陈明瑞, 周萍. (2017). 成瘾物质使用的生态瞬时评估与干预. 心理科学进展, 25(2), 247-252. |
[3] | 任杰, 金志成, 何慧. (2010). 日重现法在城市居民主观幸福感测量中的应用. 心理科学, 33(5), 1266-1269. |
[4] | 邵华, 陈奕荣, 郝思哲. (2019). 日常生活中的压力与应对: 一项生态瞬时评估研究. 中国临床心理学杂志, 27(3), 561-565. |
[5] | 唐文清, 张敏强, 方杰. (2020). 时变效应模型及在密集追踪数据分析中的应用. 心理科学, 43(2), 488-497. |
[6] | 张峰, 耿晓伟. (2015). 基于日重现法的农村居民幸福感研究: 情感体验的视角. 心理与行为研究, 13(3), 391-396. |
[7] | 张沥今, 陆嘉琦, 魏夏琰, 潘俊豪. (2019). 贝叶斯结构方程模型及其研究现状. 心理科学进展, 27(11), 1812- 1825. |
[8] | 张银普, 骆南峰, 石伟. (2016). 经验取样法:一种收集“真实”数据的新方法. 心理科学进展, 24(2), 305-316. |
[9] | 郑文倩, 潘康, 陈云云, 宋国萍. (2019). 基于日记法探索正念与限制性饮食:身体意象的中介作用. 心理技术与应用, 7(12), 735-745. |
[10] |
Armstrong, B., Covington, L. B., Unick, G. J., & Black, M. M. (2019). Featured article: Bidirectional effects of sleep and sedentary behavior among toddlers: A dynamic multilevel modeling approach. Journal of Pediatric Psychology, 44(3), 275-285.
doi: 10.1093/jpepsy/jsy089 pmid: 30476202 |
[11] | Asparouhov, T. (2018). Dynamic structural equation modeling of intensive longitudinal data using Mplus Version 8. Retrieved June 2, 2020, from http://www.statmodel.com/download/Part%205%20Asparouhov. |
[12] |
Asparouhov, T., Hamaker, E. L., & Muthén, B. (2017). Dynamic latent class analysis. Structural Equation Modeling: A Multidisciplinary Journal, 24(2), 257-269.
doi: 10.1080/10705511.2016.1253479 URL |
[13] |
Asparouhov, T., Hamaker, E. L., & Muthén, B. (2018). Dynamic structural equation models. Structural Equation Modeling: A Multidisciplinary Journal, 25(3), 359-388.
doi: 10.1080/10705511.2017.1406803 URL |
[14] |
Asparouhov, T., & Muthén, B. (2019a). Latent variable centering of predictors and mediators in multilevel and time-series models. Structural Equation Modeling: A Multidisciplinary Journal, 26(1), 119-142.
doi: 10.1080/10705511.2018.1511375 URL |
[15] | Asparouhov, T., & Muthén, B. (2019b). Comparison of models for the analysis of intensive longitudinal data. Structural Equation Modeling: A Multidisciplinary Journal, 1-23. |
[16] | Baltes, P. B., & Nesselroade, J. R. (1979). History and rationale of longitudinal research. In J. R. Nesselroade & P. B. Baltes (Eds.), Longitudinal research in the study of behavior and development (pp.1-39). New York, NY: Academic. |
[17] |
Beltz, A. M., Beekman, C., Molenaar, P. C. M., & Buss, K. A. (2013). Mapping temporal dynamics in social interactions with unified structural equation modeling: A description and demonstration revealing time-dependent sex differences in play behavior. Applied Developmental Science, 17(3), 152-168.
doi: 10.1080/10888691.2013.805953 URL |
[18] |
Beltz, A. M., & Gates, K. M. (2017). Network mapping with GIMME. Multivariate Behavioral Research, 52(6), 789-804.
doi: 10.1080/00273171.2017.1373014 URL |
[19] | Beltz, A. M., & Molenaar, P. C. M. (2015). A posteriori model validation for the temporal order of directed functional connectivity maps. Frontiers in Neuroscience, 9, 304. |
[20] |
Beltz, A. M., & Molenaar, P. C. M. (2016). Dealing with multiple solutions in structural vector autoregressive models. Multivariate Behavioral Research, 51(2-3), 357-373.
doi: 10.1080/00273171.2014.969364 URL |
[21] |
Beltz, A. M., Wright, A. G. C., Sprague, B. N., & Molenaar, P. C. M. (2016). Bridging the nomothetic and idiographic approaches to the analysis of clinical data. Assessment, 23(4), 447-458.
doi: 10.1177/1073191116648209 URL |
[22] |
Bolger, N., Davis, A., & Rafaeli, E. (2003). Diary methods: Capturing life as it is lived. Annual Review of Psychology, 54(1), 579-616.
doi: 10.1146/psych.2003.54.issue-1 URL |
[23] | Bolger, N., & Laurenceau, J. P. (2013). Intensive longitudinal methods: An introduction to diary and experience sampling research. (pp. 1-9). New York: The Guilford Press |
[24] |
Bouwmans, M. E. J., Beltz, A. M., Bos, E. H., Oldehinkel, A. J., de Jonge, P., & Molenaar, P. C. M. (2018). The person-specific interplay of melatonin, affect, and fatigue in the context of sleep and depression. Personality and Individual Differences, 123, 163-170.
doi: 10.1016/j.paid.2017.11.022 URL |
[25] |
Bringmann, L. F., Ferrer, E., Hamaker, E. L., Borsboom, D., & Tuerlinckx, F. (2018). Modeling nonstationary emotion dynamics in dyads using a time-varying vector- autoregressive model. Multivariate Behavioral Research, 53(3), 293-314.
doi: 10.1080/00273171.2018.1439722 pmid: 29505311 |
[26] |
Bringmann, L. F., Hamaker, E. L., Vigo, D. E., Aubert, A., Borsboom, D., & Tuerlinckx, F. (2017). Changing dynamics: Time-varying autoregressive models using generalized additive modeling. Psychological Methods, 22(3), 409-425.
doi: 10.1037/met0000085 pmid: 27668421 |
[27] | Bringmann, L. F., Lemmens, L. H. J. M., Huibers, M. J. H., Borsboom, D., & Tuerlinckx, F. (2015). Revealing the dynamic network structure of the Beck Depression Inventory-II. Psychological Methods, 45(4), 747-757. |
[28] |
Bringmann, L. F., Pe, M. L., Vissers, N., Ceulemans, E., Borsboom, D., Vanpaemel, W., & Kuppens, P. (2016). Assessing temporal emotion dynamics using networks. Assessment, 23, 425-435.
doi: 10.1177/1073191116645909 pmid: 27141038 |
[29] |
Bringmann, L. F., Vissers, N., Wichers, M., Geschwind, N., Kuppens, P., Peeters, F., ... Tuerlinckx, F. (2013). A network approach to psychopathology: New insights into clinical longitudinal data. Plos One, 8(4), e60188.
doi: 10.1371/journal.pone.0060188 URL |
[30] |
Chen, Y., & Zhang, S. (2020). A Latent Gaussian process model for analysing intensive longitudinal data. British Journal of Mathematical and Statistical Psychology, 73(2), 237-260.
doi: 10.1111/bmsp.v73.2 URL |
[31] | Chow, S. -M., Lu, O., Cohn, J. F., & Messinger, D. S. (2017). Representing self-organization and non-stationarities in dyadic interaction processes using dynamic systems modeling techniques. In A. ovn Davier & P. Kyllonen (Eds.), Innovative assessment of collaboration (pp.269-286). New York, NY: Springer. |
[32] |
Chun, C. A. (2016). The expression of posttraumatic stress symptoms in daily life: A review of experience sampling methodology and daily diary studies. Journal of Psychopathology and Behavioral Assessment, 38(3), 406-420.
doi: 10.1007/s10862-016-9540-3 URL |
[33] | Collins, L. M. (2006). Analysis of longitudinal data: The integration of theoretical model, temporal design, and statistical model. Annual Review of Psychology, 57, 505-528. |
[34] | Cronin, M. A., & Vancouver, J. B. (2019). The only constant is change:Expanding theory by incorporating dynamic properties into one’s models. In S. E. Humphrey & J. M. LeBreton (Eds.), The handbook of multilevel theory, Measurement, and analysis (pp.89-114). Washington, DC: American Psychological Association. |
[35] | Csikszentmihalyi, M., & Larson, R. (2014). Validity and reliability of the experience-sampling method. In M. Csikszentmihalyi (Ed.), Flow and the foundations of positive psychology (pp.35-54). Dordrecht, The Netherlands: Springer Netherlands. |
[36] |
Curran, P. J., & Bauer, D. J. (2011). The disaggregation of within-person and between-person effects in longitudinal models of change. Annual Review of Psychology, 62, 583-619.
doi: 10.1146/psych.2011.62.issue-1 URL |
[37] |
Depaoli, S., & Clifton, J. P. (2015). A Bayesian approach to multilevel structural equation modeling with continuous and dichotomous outcomes. Structural Equation Modeling: A Multidisciplinary Journal, 22(3), 327-351.
doi: 10.1080/10705511.2014.937849 URL |
[38] |
Depaoli, S., & van de Schoot, R. (2017). Improving transparency and replication in Bayesian statistics: The WAMBS-Checklist. Psychological Methods, 22, 240-261.
doi: 10.1037/met0000065 pmid: 26690773 |
[39] | Epskamp, S., Deserno, M., & Bringmann, L. (2016). mlVAR: multi-level vector autoregression. R package version 0. 3.3. |
[40] |
Epskamp, S., Waldorp, L. J., Mottus, R., & Borsboom, D. (2018). The Gaussian graphical model in cross-sectional and time-series data. Multivariate Behavioral Research, 53(4), 453-480.
doi: 10.1080/00273171.2018.1454823 pmid: 29658809 |
[41] |
Ferrer, E., & Nesselroade, J. R. (2003). Modeling affective processes in dyadic relations via dynamic factor analysis. Emotion, 3, 344-360.
doi: 10.1037/1528-3542.3.4.344 URL |
[42] | Fisher, A. J., Medaglia, J. D., & Jeronimus, B. F. (2018). Lack of group-to-individual generalizability is a threat to human subject research. Proceedings of the National Academy of Sciences, 115(27), E6106-E6115. |
[43] |
Fisher, C. D., & To, M. L. (2012). Using experience sampling methodology in organizational behavior. Journal of Organizational Behavior, 33(7), 865-877.
doi: 10.1002/job.1803 URL |
[44] |
Foster, K. T., & Beltz, A. M. (2018). Advancing statistical analysis of ambulatory assessment data in the study of addictive behavior: A primer on three person-oriented techniques. Addictive Behaviors, 83, 25-34.
doi: 10.1016/j.addbeh.2017.12.018 URL |
[45] |
Fraley, R. C., & Hudson, N. W. (2014). Review of intensive longitudinal methods: An introduction to diary and experience sampling research. The Journal of Social Psychology, 154(1), 89-91.
doi: 10.1080/00224545.2013.831300 URL |
[46] |
Gates, K. M., Fisher, Z. F., & Bollen, K. A. (2020). Latent variable GIMME using model implied instrumental variables (MIIVs). Psychological Methods, 25(2), 227-242.
doi: 10.1037/met0000229 URL |
[47] |
Gates, K. M., Lane, S. T., Varangis, E., Giovanello, K., & Guiskewicz, K. (2017). Unsupervised classification during time-series model building. Multivariate Behavioral Research, 52(2), 129-148.
doi: 10.1080/00273171.2016.1256187 URL |
[48] |
Gates, K. M., & Molenaar, P. C. M. (2012). Group search algorithm recovers effective connectivity maps for individuals in homogeneous and heterogeneous samples. Neuroimage, 63(1), 310-319.
doi: 10.1016/j.neuroimage.2012.06.026 URL |
[49] |
Gottfredson, N. C., Panter, A. T., Daye, C. E., Allen, W. F., & Wightman, L. F. (2009). The effects of educational diversity in a national sample of law students: Fitting multilevel latent variable models in data with categorical indicators. Multivariate Behavioral Research, 44, 305-331.
doi: 10.1080/00273170902949719 pmid: 26754399 |
[50] | Hamaker, E. L. (2017). Dynamic structural equation modeling of intensive longitudinal data using Mplus Version 8: Parts 1 and 2. Retrieved June 1, 2020, from https://www.statmodel.com/download/Aug17-18_JH_Slides. |
[51] |
Hamaker, E. L., Asparouhov, T., Brose, A., Schmiedek, F., & Muthén, B. (2018). At the frontiers of modeling intensive longitudinal data: Dynamic structural equation models for the affective measurements from the COGITO study. Multivariate Behavioral Research, 53(6), 820-841.
doi: 10.1080/00273171.2018.1446819 pmid: 29624092 |
[52] | Hamaker, E. L., & Grasman, R. P. P. P. (2015). To center or not to center? Investigating inertia with a multilevel autoregressive model. Frontiers in Psychology, 5, 1492. |
[53] |
Hamaker, E. L., & Wichers, M. (2017). No time like the present: Discovering the hidden dynamics in intensive longitudinal data. Current Directions in Psychological Science, 26, 10-15.
doi: 10.1177/0963721416666518 URL |
[54] | Harvey, A. C. (1989). Forecasting, structural time series models and the Kalman filter. Cambridge, UK: Cambridge University Press. |
[55] | Haslbeck, J. M. B., & Waldorp, L. J. (2020). Mgm: Estimating time-varying mixed graphical models in high-dimensional data. Journal of Statistical Software, 93(8). |
[56] |
Hayes, S. C., Hofmann, S. G., Stanton, C. E., Carpenter, J. K., Sanford, B. T., Curtiss, J. E., & Ciarrochi, J. (2019). The role of the individual in the coming era of process-based therapy. Behaviour Research and Therapy, 117, 40-53.
doi: 10.1016/j.brat.2018.10.005 URL |
[57] | Heck, R. H., & Thomas, S. L. (2015). An introduction to multilevel modeling techniques: MLM and SEM approaches using Mplus. (pp. 70-87). New York: Routledge. |
[58] |
Henry, T. R., Feczko, E., Cordova, M., Earl, E., Williams, S., Nigg, J. T., ... Gates, K. M. (2019). Comparing directed functional connectivity between groups with confirmatory subgrouping GIMME. Neuroimage, 188, 642-653.
doi: 10.1016/j.neuroimage.2018.12.040 URL |
[59] |
Hofmans, J., de Clercq, B., Kuppens, P., Verbeke, L., & Widiger, T. A. (2019). Testing the structure and process of personality using ambulatory assessment data: An overview of within-person and person-specific techniques. Psychological Assessment, 31(4), 432-443.
doi: 10.1037/pas0000562 pmid: 30869962 |
[60] |
Holtmann, J., Koch, T., Lochner, K., & Eid, M. (2016). A comparison of ML, WLSMV, and Bayesian methods for multilevel structural equation models in small samples: A simulation study. Multivariate Behavioral Research, 51(5), 661-680.
pmid: 27594086 |
[61] |
Howland, M., & Rafaeli, E. (2010). Bringing everyday mind reading into everyday life: Assessing empathic accuracy with daily diary data. Journal of Personality, 78(5), 1437-1468.
doi: 10.1111/jopy.2010.78.issue-5 URL |
[62] | Jahng, S. (2008). Multilevel models for intensive longitudinal data with heterogeneous errors structure: Covariance transformation and variance function models, M.A. Thesis. University of Missouri. |
[63] | Jahng, S., & Wood, P. K. (2017). Multilevel models for intensive longitudinal data with heterogeneous autoregressive errors: The effect of misspecification and correction with Cholesky transformation. Frontiers in Psychology, 8, 262. |
[64] | Johnson, J. E., Burlingame, G. M., Olsen, J. A., Davies, D. R., & Gleave, R. L. (2005). Group climate, cohesion, alliance, and empathy in group psychotherapy: Multilevel structural equation models. Journal of Counseling Psychology, 52, 3l0-32l. |
[65] |
Jongerling, J., Laurenceau, J. P., & Hamaker, E. L. (2015). A multilevel AR (1) model: Allowing for inter-individual differences in trait-scores, inertia, and innovation variance. Multivariate Behavioral Research, 50, 334-349.
doi: 10.1080/00273171.2014.1003772 pmid: 26610033 |
[66] |
Kelava, A., & Brandt, H. (2019). A nonlinear dynamic latent class structural equation model. Structural Equation Modeling: A Multidisciplinary Journal, 26(4), 509-528.
doi: 10.1080/10705511.2018.1555692 URL |
[67] |
Ke, Z., Zhang, Q., & Tong, X. (2019). Bayesian Meta-Analytic SEM: A one-stage approach to modeling between-studies heterogeneity in structural parameters. Structural Equation Modeling: A Multidisciplinary Journal, 26(3), 348-370.
doi: 10.1080/10705511.2018.1530059 URL |
[68] |
Kim, J., Zhu, W., Chang, L., Bentler, P. M., & Ernst, T. (2007). Unified structural equation modeling approach for the analysis of multisubject, multivariate functional MRI data. Human Brain Mapping, 28(2), 85-93.
doi: 10.1002/(ISSN)1097-0193 URL |
[69] |
Kleiman, E. M., Glenn, C. R., & Liu, R. T. (2019). Real-time monitoring of suicide risk among adolescents: Potential barriers, possible solutions, and future directions. Journal of Clinical Child and Adolescent Psychology, 48(6), 934-946.
doi: 10.1080/15374416.2019.1666400 pmid: 31560584 |
[70] | Lane, S. T., Gates, K. M., Fisher, Z., Arizmendi, C., & Molenaar, P. (2020). Gimme: Group iterative multiple model estimation. Computer Software. Retrieved April 14, 2020, from https://CRAN.R-project.org/package=gimme |
[71] |
Lane, S. T., Gates, K. M., Pike, H. K., Beltz, A. M., & Wright, A. G. C. (2019). Uncovering general, shared, and unique temporal patterns in ambulatory assessment data. Psychological Methods, 24(1), 54.
doi: 10.1037/met0000192 URL |
[72] | Lanza, S. T., Vasilenko, S. A., Liu, X. Y., Li, R., & Piper, M. E. (2014). Advancing the understanding of craving during smoking cessation attempts: A demonstration of the time-varying effect model. Nicotine & Tobacco Research, 16, S127-S134. |
[73] |
Lau, Y., Tha, P. H., Wong, D. F. K., Wang, Y., Wang, Y., & Yobas, P. (2016). Different perceptions of stress, coping styles, and general well-being among pregnant Chinese women: A structural equation modeling approach. Archives of Women's Mental Health, 19(1), 71-78.
doi: 10.1007/s00737-015-0523-2 URL |
[74] |
Lazarevic, L. B., Bjekic, J., Zivanovic, M., & Knezevic, G. (2020). Ambulatory assessment of language use: Evidence on the temporal stability of electronically activated recorder and stream of consciousness data. Behavior Research Methods, 52, 1817-1835.
doi: 10.3758/s13428-020-01361-z URL |
[75] | Li, R., Root, T. L., & Shiffman, S. (2006). A local linear estimation procedure of functional multilevel modeling. In T. Walls & J. L. Schafer (Eds.), Models for intensive longitudinal data (pp.63-83). New York, NY: Oxford University Press. |
[76] |
Lüdtke, O., Marsh, H. W., Robitzsch, A., Trautwein, U., Asparouhov, T., & Muthén, B. (2008). The multilevel latent covariate model: A new, more reliable approach to group-level effects in contextual studies. Psychological Methods, 13(3), 203-229.
doi: 10.1037/a0012869 URL |
[77] |
Malmberg, L. -E., & Martin, A. J. (2019). Processes of students' effort exertion, competence beliefs and motivation: Cyclic and dynamic effects of learning experiences within school days and school subjects. Contemporary Educational Psychology, 58, 299-309.
doi: 10.1016/j.cedpsych.2019.03.013 URL |
[78] |
McNeish, D. (2017). Challenging conventional wisdom for multivariate statistical models with small samples. Review of Educational Research, 87, 1117-1151.
doi: 10.3102/0034654317727727 URL |
[79] |
McNeish, D. (2019). Two-level dynamic structural equation models with small samples. Structural Equation Modeling: A Multidisciplinary Journal, 26(6), 948-966.
doi: 10.1080/10705511.2019.1578657 URL |
[80] |
McNeish, D., & Hamaker, E. L. (2020). A primer on two-level dynamic structural equation models for intensive longitudinal data in Mplus. Psychological Methods, 25(5), 610-635.
doi: 10.1037/met0000250 URL |
[81] |
Miller, M. B., & van Horn, J. D. (2007). Individual variability in brain activations associated with episodic retrieval: A role for large-scale databases. International Journal of Psychophysiology, 63(2), 205-213.
doi: 10.1016/j.ijpsycho.2006.03.019 URL |
[82] |
Molenaar, P. C. M. (1985). A dynamic factor model for the analysis of multivariate time series. Psychometrika, 50(2), 181-202.
doi: 10.1007/BF02294246 URL |
[83] | Molenaar, P. C. M. (2004). A manifesto on psychology as idiographic science: Bringing the person back into scientific psychology, this time forever. Measurement, 2(4), 201-218. |
[84] |
Molenaar, P. C. M., & Campbell, C. G. (2009). The new person-specific paradigm in psychology. Current Directions in Psychological Science, 18, 112-117.
doi: 10.1111/j.1467-8721.2009.01619.x URL |
[85] | Molenaar, P. C. M., Rovine, M. J., & Corneal, S. E. (1999). Dynamic factor analysis of emotional dispositions of adolescent stepsons towards their stepfathers. In R. K. Silbereisen, & A. von Eye (Eds.). Growing up in times of social change (pp.287-318). Berlin, Germany: de Gruyter. |
[86] |
Munsch, S., Meyer, A. H., Milenkovic, N., Schlup, B., Margraf, J., & Wilhelm, F. H. (2009). Ecological momentary assessment to evaluate cognitive-behavioral treatment for binge eating disorder. International Journal of Eating Disorders, 42(7), 648-657.
doi: 10.1002/eat.v42:7 URL |
[87] | Muthén, L. K., & Muthén, B. O. (1998-2017). Mplus User’s Guide (Eighth Edition). Los Angeles, CA: Muthén & Muthén. |
[88] | Nesselroade, J. R. (1991). Interindividual differences in intraindividual change. In L. M. Collins & J. L. Horn (Eds.), Best methods for the analysis of change (pp. 92-105). Washington, DC: American Psychological Association. |
[89] |
Nickell, S. (1981). Biases in dynamic models with fixed effects. Econometrica: Journal of the Econometric Society, 49(6), 1417-1426.
doi: 10.2307/1911408 URL |
[90] |
O’Brien, E., Coats, A., Owens, P., Petrie, J., Padfield, P. L., Littler, W. A., ... Mee, F. (2000). Use and interpretation of ambulatory blood pressure monitoring: Recommendations of the British Hypertension Society. British Medical Journal, 320(7242), 1128-1134.
doi: 10.1136/bmj.320.7242.1128 URL |
[91] |
Piccirillo, M. L., & Rodebaugh, T. L. (2019). Foundations of idiographic methods in psychology and applications for psychotherapy. Clinical Psychology Review, 71, 90-100.
doi: S0272-7358(18)30301-5 pmid: 30665765 |
[92] |
Preacher, K. J., Zyphur, M. J., & Zhang, Z. (2010). A general multilevel SEM framework for assessing multilevel mediation. Psychological Methods, 15(3), 209-233.
doi: 10.1037/a0020141 URL |
[93] | Rabe-Hesketh, S., Skrondal, A., & Zheng, X. (2007). Multilevel structural equation modeling. In S. -Y. Lee (Ed.), Handbook of latent variable and related models (pp.209-227). Amsterdam, The Netherlands: Elsevier. |
[94] |
Racine, N., Plamondon, A., Hentges, R., Tough, S., & Madigan, S. (2019). Dynamic and bidirectional associations between maternal stress, anxiety, and social support: The critical role of partner and family support. Journal of Affective Disorders, 252, 19-24.
doi: 10.1016/j.jad.2019.03.083 URL |
[95] | Reis, H. T., Gable, S. L., & Maniaci, M. R. (2014). Methods for studying everyday experience in its natural context. In H. T. Reis & C. M. Judd (Eds.), Handbook of research methods in social and personality psychology (2nd edition, pp. 373-403). New York: Cambridge University Press. |
[96] |
Schultzberg, M., & Muthén, B. (2018). Number of subjects and time points needed for multilevel time-series analysis: A simulation study of dynamic structural equation modeling. Structural Equation Modeling: A Multidisciplinary Journal, 25(4), 495-515.
doi: 10.1080/10705511.2017.1392862 URL |
[97] |
Schuurman, N. K., Ferrer, E., de Boer-Sonnenschein, M., & Hamaker, E. L., (2016). How to compare cross-lagged associations in a multilevel autoregressive model. Psychological Methods, 21(2), 206-221.
doi: 10.1037/met0000062 pmid: 27045851 |
[98] |
Schuurman, N. K., Grasman, R. P. P. P., & Hamaker, E. L. (2016). A comparison of inverse-Wishart prior specifications for covariance matrices in multilevel autoregressive models. Multivariate Behavioral Research, 51(2-3), 185-206.
doi: 10.1080/00273171.2014.969364 URL |
[99] | Schwartz, J. E., Stone, A. A., Shiffman, S., & Atienza, A. A. (2007). The analysis of real-time momentary data:A practical guide. In A. Stone, S. Shiffman, A. Arienza, & L. Nebeling (Eds.), The science of real-time data capture: Self-reports in health research. New York: Oxford University Press. |
[100] |
Sened, H., Lazarus, G., Gleason, M. E. J., Rafaeli, E., & Fleeson, W. (2018). The use of intensive longitudinal methods in explanatory personality research. European Journal of Personality, 32(3), 269-285.
doi: 10.1002/per.2143 URL |
[101] | Setodji, C. M., Martino, S. C., Dunbar, M. S., & Shadel, W. G. (2019, April 18). An exponential effect persistence model for intensive longitudinal data. Psychological Methods. Advance Online Publication. 24(5), 622-636. |
[102] |
Shiffman, S. (2009). Ecological momentary assessment (EMA) in studies of substance use. Psychological Assessment, 21(4), 486-497.
doi: 10.1037/a0017074 pmid: 19947783 |
[103] |
Shiyko, M. P., Li, Y., & Rindskopf, D. (2012). Poisson growth mixture modeling of intensive longitudinal data: An application to smoking cessation behavior. Structural Equation Modeling: A Multidisciplinary Journal, 19(1), 65-85.
doi: 10.1080/10705511.2012.634722 URL |
[104] |
Song, H., & Zhang, Z. (2014). Analyzing multiple multivariate time series data using multilevel dynamic factor models. Multivariate Behavioral Research, 49(1), 67-77.
doi: 10.1080/00273171.2013.851018 URL |
[105] |
Spencer, J. P., & Schöner, G. (2003). Bridging the representational gap in the dynamic systems approach to development. Developmental Science, 6, 392-412.
doi: 10.1111/desc.2003.6.issue-4 URL |
[106] |
Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & van der Linde, A. (2002). Bayesian measures of model complexity and fit (with discussion). Journal of the Royal Statistical Society Series B (Statistical Methodology), 64, 583-616.
doi: 10.1111/rssb.2002.64.issue-4 URL |
[107] |
Stone, A. A., & Shiffman, S. (1994). Ecological momentary assessment (EMA) in behavorial medicine. Annals of Behavioral Medicine, 16, 199-202.
doi: 10.1093/abm/16.3.199 URL |
[108] | Stone, A. A., Shiffman, S. S., & DeVries, M. W. (1999). Ecological momentary assessment. In D. Kahneman, E. Diener, & N. Schwarz (Eds.), Well being: The foundations of hedonic psychology (pp.26-39). New York, NY: Russell Sage Foundation. |
[109] |
Sturgeon, J. A., Zautra, A. J., & Arewasikporn, A. (2014). A multilevel structural equation modeling analysis of vulnerabilities and resilience resources influencing affective adaptation to chronic pain. Pain, 155(2), 292- 298.
doi: 10.1016/j.pain.2013.10.007 pmid: 24120460 |
[110] |
Tennen, H., Affleck, G., Armeli, S., & Carney, M. A. (2000). A daily process approach to coping: Linking theory, research, and practice. American Psychologist, 55(6), 626-636.
pmid: 10892205 |
[111] |
Tong, X., & Zhang, Z. (2012). Diagnostics of robust growth curve modeling using student’s t distribution. Multivariate Behavioral Research, 47(4), 493-518.
doi: 10.1080/00273171.2012.692614 pmid: 26777667 |
[112] |
Trull, T. J., & Ebner-Priemer, U. W. (2013). Ambulatory assessment. Annual Review of Clinical Psychology, 9, 151-176.
doi: 10.1146/clinpsy.2013.9.issue-1 URL |
[113] |
Trull, T. J., & Ebner-Priemer, U. W. (2014). The role of ambulatory assessment in psychological science. Current Directions in Psychological Science, 23(6), 466-470.
doi: 10.1177/0963721414550706 URL |
[114] |
Trull, T. J., Solhan, M. B., Tragesser, S. L., Jahng, S., Wood, P. K., Piasecki, T. M., & Watson, D. (2008). Affective instability: Measuring a core feature of borderline personality disorder with ecological momentary assessment. Journal of Abnormal Psychology, 117(3), 647-661.
doi: 10.1037/a0012532 URL |
[115] | Turner, A. E., & Hayes, S. C. (1996). A comparison of response covariation viewed idiothetically and nomothetically. Psicologia Conductual, 4, 231-250. |
[116] |
Vallacher, R. R., Read, S. J., & Nowak, A. (2002). The dynamical perspective in personality and social psychology. Personality and Social Psychology Review, 6, 264-273.
doi: 10.1207/S15327957PSPR0604_01 URL |
[117] |
van de Schoot, R., Broere, J. J., Perryck, K. H., Zondervan- Zwijnenburg, M., & van Loey, N. E. (2015). Analyzing small data sets using Bayesian estimation: The case of posttraumatic stress symptoms following mechanical ventilation in burn survivors. European Journal of Psychotraumatology, 6, 25216.
doi: 10.3402/ejpt.v6.25216 pmid: 25765534 |
[118] |
van de Schoot, R., Kaplan, D., Denissen, J., Asendorpf, J. B., Neyer, F. J., & van Aken, M. A. (2014). A gentle introduction to Bayesian analysis: Applications to developmental research. Child Development, 85, 842-860.
doi: 10.1111/cdev.12169 pmid: 24116396 |
[119] |
van Roekel, E., Keijsers, L., & Chung, J. M. (2019). A review of current ambulatory assessment studies in adolescent samples and practical recommendations. Journal of Research on Adolescence, 29(3), 560-577.
doi: 10.1111/jora.12471 pmid: 31573762 |
[120] |
Voelkle, M. C., Gische, C., Driver, C. C., & Lindenberger, U. (2018). The role of time in the quest for understanding psychological mechanisms. Multivariate Behavioral Research, 53(6), 782-805.
doi: 10.1080/00273171.2018.1496813 pmid: 30668172 |
[121] | Walls, T. A., & Schafer, J. L. (2006). Models for intensive longitudinal data. New York, NY: Oxford University Press. |
[122] | Walls, T. A., Hoppner, B., & Goodwin, M. (2007). Statistical issues in intensive longitudinal data analysis. In A. A. Stone, S. Shiffman, A. A. Atienza, & L. Nebeling (Eds.), The science of real-time data capture: Self-reports in health research (pp.338-360). New York, NY: Oxford University Press. |
[123] |
Weinstock, J., Farney, M. R., Elrod, N. M., Henderson, C. E., & Weiss, E. P. (2017). Exercise as an adjunctive treatment for substance use disorders: Rationale and intervention description. Journal of Substance Abuse Treatment, 72, 40-47.
doi: S0740-5472(16)30094-0 pmid: 27666958 |
[124] |
West, S. G. (2018). Opportunities and issues in modeling intensive longitudinal data: Learning from the COGITO project. Multivariate Behavioral Research, 53(6), 777-781.
doi: 10.1080/00273171.2018.1545631 URL |
[125] |
Windt, J., Ardern, C. L., Gabbett, T. J., Khan, K. M., Cook, C. E., Sporer, B. C., & Zumbo, B. D. (2018). Getting the most out of intensive longitudinal data: A methodological review of workload-injury studies. BMJ Open, 8(10), e022626.
doi: 10.1136/bmjopen-2018-022626 URL |
[126] |
Woods, W. C., Arizmendi, C., Gates, K. M., Stepp, S. D., Pilkonis, P. A., & Wright, A. G. C. (2020). Personalized models of psychopathology as contextualized dynamic processes: An example from individuals with borderline personality disorder. Journal of Consulting and Clinical Psychology, 88(3), 240-254.
doi: 10.1037/ccp0000472 URL |
[127] |
Wright, A. G. C., Hallquist, M. N., Stepp, S. D., Scott, L. N., Beeney, J. E., Lazarus, S. A., & Pilkonis, P. A. (2016). Modeling heterogeneity in momentary interpersonal and affective dynamic processes in borderline personality disorder. Assessment, 23, 484-495.
doi: 10.1177/1073191116653829 pmid: 27317561 |
[128] |
Wright, A. G. C., Hopwood, C. J., & Simms, L. J. (2015). Daily interpersonal and affective dynamics in personality disorder. Journal of Personality Disorders, 29, 503-525.
doi: 10.1521/pedi.2015.29.4.503 pmid: 26200849 |
[129] |
Wright, A. G. C., & Woods, W. C. (2020). Personalized models of psychopathology. Annual Review of Clinical Psychology, 16, 49-74.
doi: 10.1146/annurev-clinpsy-102419-125032 pmid: 32070120 |
[130] |
Zhang, J., & Zheng, Y. (2019). Neuroticism and extraversion are differentially related to between- and within-person variation of daily negative emotion and physical symptoms. Personality and Individual Differences, 141, 138-142.
doi: 10.1016/j.paid.2019.01.003 URL |
[131] |
Zhang, Z. Y. (2013). Bayesian growth curve models with the generalized error distribution. Journal of Applied Statistics, 40(8), 1779-1795.
doi: 10.1080/02664763.2013.796348 URL |
[132] |
Zhang, Z. Y., Lai, K., Lu, Z., & Tong, X. (2013). Bayesian inference and application of robust growth curve models using student’s t distribution. Structural Equation Modeling: A Multidisciplinary Journal, 20(1), 47-78.
doi: 10.1080/10705511.2013.742382 URL |
[133] |
Zhang, Z. Y., & Nesselroade, J. R. (2007). Bayesian estimation of categorical dynamic factor models. Multivariate Behavioral Research, 42(4), 729-756.
doi: 10.1080/00273170701715998 URL |
[134] |
Zhou, L., Wang, M., & Zhang, Z. (2021). Intensive longitudinal data analyses with dynamic structural equation modeling. Organizational Research Methods, 24(2), 219-250. https://doi.org/10.1177/1094428119833164
doi: 10.1177/1094428119833164 URL |
[135] |
Zondervan-Zwijnenburg, M., Peeters, M., Depaoli, S., & van de Schoot, R. (2017). Where do priors come from? Applying guidelines to construct informative priors in small sample research. Research in Human Development, 14, 305-320.
doi: 10.1080/15427609.2017.1370966 URL |
[1] | JIAO Can;XIONG Min-Ping;ZHANG Min-Qiang. Different Types of Data and Statistical Methods in Psychology:Introduction of Functional Data Analysis [J]. , 2010, 18(8): 1314-1320. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||