Advances in Psychological Science ›› 2021, Vol. 29 ›› Issue (4): 677-696.doi: 10.3724/SP.J.1042.2021.00677
• ·Regular Articles· • Previous Articles Next Articles
LI Suiqing, CHEN Xinling, ZHAI Yuzhu, ZHANG Yijie, ZHANG Zhixing, FENG Chunliang()
Received:
2020-08-10
Online:
2021-04-15
Published:
2021-02-22
CLC Number:
LI Suiqing, CHEN Xinling, ZHAI Yuzhu, ZHANG Yijie, ZHANG Zhixing, FENG Chunliang. The computational and neural substrates underlying social learning[J]. Advances in Psychological Science, 2021, 29(4): 677-696.
[1] | 高青林, 周媛. (2021). 计算模型视角下信任形成的心理和神经机制——基于信任博弈中投资者的角度. 心理科学进展, 29(1),178-189. |
[2] | 张银花, 李红, 吴寅. (2020). 计算模型在道德认知研究中的应用. 心理科学进展, 28(7),1042-1055. |
[3] |
Ahn, W.-Y., Haines, N., & Zhang, L. (2017). Revealing neurocomputational mechanisms of reinforcement learning and decision-making with the hBayesDM package. Computational Psychiatry, 1,24-57.
doi: 10.1162/CPSY_a_00002 URL pmid: 29601060 |
[4] |
Alcalá-López, D., Smallwood, J., Jefferies, E., van Overwalle, F., Vogeley, K., Mars, R. B., ... Bzdok, D. (2018). Computing the social brain connectome across systems and states. Cerebral Cortex, 28(7),2207-2232.
URL pmid: 28521007 |
[5] |
Anderson, C., Brion, S., Moore, D. A., & Kennedy, J. A. (2012). A status-enhancement account of overconfidence. Journal of Personality and Social Psychology, 103(4),718-735.
doi: 10.1037/a0029395 URL pmid: 22800286 |
[6] |
Apps, M. A., Rushworth, M. F., & Chang, S. W. (2016). The anterior cingulate gyrus and social cognition: Tracking the motivation of others. Neuron, 90(4),692-707.
URL pmid: 27196973 |
[7] |
Barrett, L. F., & Satpute, A. B. (2013). Large-scale brain networks in affective and social neuroscience: Towards an integrative functional architecture of the brain. Current Opinion in Neurobiology, 23(3),361-372.
doi: 10.1016/j.conb.2012.12.012 URL pmid: 23352202 |
[8] |
Basile, B. M., Schafroth, J. L., Karaskiewicz, C. L., Chang, S. W., & Murray, E. A. (2020). The anterior cingulate cortex is necessary for forming prosocial preferences from vicarious reinforcement in monkeys. Plos Biology, 18(6),e3000677.
URL pmid: 32530910 |
[9] |
Bassett, D. S., & Sporns, O. (2017). Network neuroscience. Nature Neuroscience, 20(3),353-364.
doi: 10.1038/nn.4502 URL pmid: 28230844 |
[10] |
Behrens, T. E., Hunt, L. T., Woolrich, M. W., & Rushworth, M. F. (2008). Associative learning of social value. Nature, 456(7219),245-249.
URL pmid: 19005555 |
[11] |
Bellucci, G., Molter, F., & Park, S. Q. (2019). Neural representations of honesty predict future trust behavior. Nature Communications, 10(1),1-12.
doi: 10.1038/s41467-018-07882-8 URL pmid: 30602773 |
[12] |
Bellucci, G., & Park, S. Q. (2020). Honesty biases trustworthiness impressions. Journal of Experimental Psychology: General, 149(8),1567-1586.
doi: 10.1037/xge0000730 URL |
[13] |
Blair, K., Marsh, A. A., Morton, J., Vythilingam, M., Jones, M., Mondillo, K., ... Blair, J. R. (2006). Choosing the lesser of two evils, the better of two goods: Specifying the roles of ventromedial prefrontal cortex and dorsal anterior cingulate in object choice. Journal of Neuroscience, 26(44),11379-11386.
doi: 10.1523/JNEUROSCI.1640-06.2006 URL pmid: 17079666 |
[14] |
Boorman, E. D., O'Doherty, J. P., Adolphs, R., & Rangel, A. (2013). The behavioral and neural mechanisms underlying the tracking of expertise. Neuron, 80(6),1558-1571.
doi: 10.1016/j.neuron.2013.10.024 URL |
[15] |
Burke, C. J., Tobler, P. N., Schultz, W., & Baddeley, M. (2010). Striatal BOLD response reflects the impact of herd information on financial decisions. Frontiers in Human Neuroscience, 4,48.
doi: 10.3389/fnhum.2010.00048 URL pmid: 20589242 |
[16] |
Campbell-Meiklejohn, D. K., Simonsen, A., Frith, C. D., & Daw, N. D. (2017). Independent neural computation of value from other people's confidence. Journal of Neuroscience, 37(3),673-684.
doi: 10.1523/JNEUROSCI.4490-15.2016 URL pmid: 28100748 |
[17] |
Chang, L. J., Doll, B. B., van't Wout, M., Frank, M. J., & Sanfey, A. G. (2010). Seeing is believing: Trustworthiness as a dynamic belief. Cognitive Psychology, 61(2),87-105.
doi: 10.1016/j.cogpsych.2010.03.001 URL |
[18] |
Charpentier, C. J., & O'Doherty, J. P. (2018). The application of computational models to social neuroscience: Promises and pitfalls. Social Neuroscience, 13(6),637-647.
doi: 10.1080/17470919.2018.1518834 URL pmid: 30173633 |
[19] |
Chien, S., Wiehler, A., Spezio, M., & Gläscher, J. (2016). Congruence of inherent and acquired values facilitates reward-based decision-making. Journal of Neuroscience, 36(18),5003-5012.
doi: 10.1523/JNEUROSCI.3084-15.2016 URL pmid: 27147653 |
[20] |
Cohen, J. D., Daw, N., Engelhardt, B., Hasson, U., Li, K. Niv, Y., ... Willke, T.L (2017). Computational approaches to fMRI analysis. Nature Neuroscience, 20(3),304-313.
doi: 10.1038/nn.4499 URL pmid: 28230848 |
[21] |
Collins, A. G., & Cockburn, J. (2020). Beyond dichotomies in reinforcement learning. Nature Reviews Neuroscience, 21,576-586.
doi: 10.1038/s41583-020-0355-6 URL pmid: 32873936 |
[22] | Cone, J., Mann, T. C., & Ferguson, M. J. (2017). Changing our implicit minds: How, when, and why implicit evaluations can be rapidly revised. In Advances in experimental social psychology, (Vol. 56, pp.131-199). Elsevier. |
[23] | Corrado, G. S., Sugrue, L. P., Brown, J. R., & Newsome, W. T. (2017). The trouble with choice:Studying decision variables in the brain. Neuroeconomics: Decision making and the brain: Chap. 30 (pp.463-480). Londen, UK: Elsevier Academic Press. |
[24] |
Daunizeau, J., Adam, V., & Rigoux, L. (2014). VBA: A probabilistic treatment of nonlinear models for neurobiological and behavioural data. PLoS Computational biology, 10(1),e1003441.
doi: 10.1371/journal.pcbi.1003441 URL pmid: 24465198 |
[25] |
Daw, N. D., Gershman, S. J., Seymour, B., Dayan, P., & Dolan, R. J. (2011). Model-based influences on humans' choices and striatal prediction errors. Neuron, 69(6),1204-1215.
doi: 10.1016/j.neuron.2011.02.027 URL pmid: 21435563 |
[26] |
Dayan, P., Kakade, S., & Montague, P. R. (2000). Learning and selective attention. Nature Neuroscience, 3(11),1218-1223.
doi: 10.1038/81504 URL |
[27] |
de Martino, B., Bobadilla-Suarez, S., Nouguchi, T., Sharot, T., & Love, B. C. (2017). Social information is integrated into value and confidence judgments according to its reliability. Journal of Neuroscience, 37(25),6066-6074.
doi: 10.1523/JNEUROSCI.3880-16.2017 URL pmid: 28566360 |
[28] |
DeMayo, M. M., Young, L. J., Hickie, I. B., Song, Y. J. C., & Guastella, A. J. (2019). Circuits for social learning: A unified model and application to Autism Spectrum Disorder. Neuroscience & Biobehavioral Reviews, 107,388-398.
doi: 10.1016/j.neubiorev.2019.09.034 URL pmid: 31560922 |
[29] |
Devaine, M., Hollard, G., & Daunizeau, J. (2014). The social Bayesian brain: Does mentalizing make a difference when we learn? PLoS Computational Biology, 10(12),e1003992.
doi: 10.1371/journal.pcbi.1003992 URL pmid: 25474637 |
[30] |
Diaconescu, A. O., Mathys, C., Weber, L. A., Daunizeau, J., Kasper, L., Lomakina, E. I., ... Stephan, K. E. (2014). Inferring on the intentions of others by hierarchical Bayesian learning. PLoS Computational Biology, 10(9),e1003952.
doi: 10.1371/journal.pcbi.1003952 URL |
[31] |
Diaconescu, A. O., Mathys, C., Weber, L. A., Kasper, L., Mauer, J., & Stephan, K. E. (2017). Hierarchical prediction errors in midbrain and septum during social learning. Social Cognitive and Affective Neuroscience, 12(4),618-634.
doi: 10.1093/scan/nsw171 URL pmid: 28119508 |
[32] |
Diaconescu, A. O., Stecy, M., Kasper, L., Burke, C. J., Nagy, Z., Mathys, C., & Tobler, P. (2020). Neural Arbitration between Social and Individual Learning Systems. eLife, 9,e54051.
doi: 10.7554/eLife.54051 URL pmid: 32779568 |
[33] |
Dolan, R. J., & Dayan, P. (2013). Goals and habits in the brain. Neuron, 80(2),312-325.
doi: 10.1016/j.neuron.2013.09.007 URL |
[34] |
FeldmanHall, O., Otto, A. R., & Phelps, E. A. (2018). Learning moral values: Another's desire to punish enhances one's own punitive behavior. Journal of Experimental Psychology: General, 147(8),1211-1224.
doi: 10.1037/xge0000405 URL |
[35] |
Feng, C., Azarian, B., Ma, Y., Feng, X., Wang, L., Luo, Y. J., & Krueger, F. (2017). Mortality salience reduces the discrimination between in‐group and out‐group interactions: A functional MRI investigation using multi‐voxel pattern analysis. Human Brain Mapping, 38(3),1281-1298.
doi: 10.1002/hbm.23454 URL pmid: 27859936 |
[36] |
Ferguson, M. J., Mann, T. C., Cone, J., & Shen, X. (2019). When and how implicit first impressions can be updated. Current Directions in Psychological Science, 28(4),331-336.
doi: 10.1177/0963721419835206 URL |
[37] |
Franklin, N. T., & Frank, M. J. (2015). A cholinergic feedback circuit to regulate striatal population uncertainty and optimize reinforcement learning. eLife, 4,e12029.
URL pmid: 26705698 |
[38] |
Garvert, M. M., Moutoussis, M., Kurth-Nelson, Z., Behrens, T. E., & Dolan, R. J. (2015). Learning-induced plasticity in medial prefrontal cortex predicts preference malleability. Neuron, 85(2),418-428.
URL pmid: 25611512 |
[39] |
Gershman, S. J. (2015). A unifying probabilistic view of associative learning. PLoS Computational Biology, 11(11),e1004567.
URL pmid: 26535896 |
[40] | Gläscher, J. P., & O'Doherty, J. P. (2010). Model‐based approaches to neuroimaging: Combining reinforcement learning theory with fMRI data. Wiley Interdisciplinary Reviews: Cognitive Science, 1(4),501-510. |
[41] |
Gmytrasiewicz, P. J., & Doshi, P. (2005). A framework for sequential planning in multi-agent settings. Journal of Artificial Intelligence Research, 24,49-79.
doi: 10.1613/jair.1579 URL |
[42] | Greaves, C. J., & Farbus, L. (2006). Effects of creative and social activity on the health and well-being of socially isolated older people: Outcomes from a multi-method observational study. The Journal of the Royal Society for the Promotion of Health, 126(3),134-142. |
[43] |
Gu, X., Wang, X., Hula, A., Wang, S., Xu, S., Lohrenz, T. M., ... Montague, P. R. (2015). Necessary, yet dissociable contributions of the insular and ventromedial prefrontal cortices to norm adaptation: Computational and lesion evidence in humans. Journal of Neuroscience, 35(2),467-473.
URL pmid: 25589742 |
[44] | Hackel, L. M., Doll, B. B., & Amodio, D. M. (2015). Instrumental learning of traits versus rewards: Dissociable neural correlates and effects on choice. Nature Neuroscience, 18(9),1233-1235. |
[45] |
Hackel, L. M., & Zaki, J. (2018). Propagation of economic inequality through reciprocity and reputation. Psychological Science, 29(4),604-613.
URL pmid: 29474134 |
[46] | Hampton, A. N., Bossaerts, P., & O'Doherty, J. P. (2008). Neural correlates of mentalizing-related computations during strategic interactions in humans. Proceedings of the National Academy of Sciences, 105(18),6741-6746. |
[47] | Hedge, C., Bompas, A., & Sumner, P. (2020). Task reliability considerations in computational psychiatry. Biological psychiatry: Cognitive Neuroscience and Neuroimaging, 5, (9),837-839. |
[48] | Henco, L., Brandi, M.-L., Lahnakoski, J. M., Diaconescu, A. O., Mathys, C., & Schilbach, L. (2020). Bayesian modelling captures inter-individual differences in social belief computations in the putamen and insula. Cortex, 131,221-236. |
[49] |
Hétu, S., Luo, Y., D'Ardenne, K., Lohrenz, T., & Montague, P. R. (2017). Human substantia nigra and ventral tegmental area involvement in computing social error signals during the ultimatum game. Social Cognitive and Affective Neuroscience, 12,1972-1982.
URL pmid: 28981876 |
[50] | Hill, C. A., Suzuki, S., Polania, R., Moisa, M., O'Doherty, J. P., & Ruff, C. C. (2017). A causal account of the brain network computations underlying strategic social behavior. Nature Neuroscience, 20(8),1142-1149. |
[51] | Hill, M. R., Boorman, E. D., & Fried, I. (2016). Observational learning computations in neurons of the human anterior cingulate cortex. Nature Communications, 7(1),1-12. |
[52] |
Hula, A., Montague, P. R., & Dayan, P. (2015). Monte carlo planning method estimates planning horizons during interactive social exchange. PLoS Computational Biology, 11(6),e1004254.
URL pmid: 26053429 |
[53] | Hula, A., Vilares, I., Lohrenz, T., Dayan, P., & Montague, P. R. (2018). A model of risk and mental state shifts during social interaction. PLoS Computational Biology, 14(2),e1005935. |
[54] | Ivanchei, I. I., Moroshkina, N., Tikhonov, R., & Ovchinnikova, I. (2019). Implicit learning in attractiveness evaluation: The role of conformity and analytical processing. Journal of Experimental Psychology: General, 148(9),1505-1516. |
[55] |
Jocham, G., Klein, T. A., & Ullsperger, M. (2011). Dopamine-mediated reinforcement learning signals in the striatum and ventromedial prefrontal cortex underlie value-based choices. Journal of Neuroscience, 31(5),1606-1613.
URL pmid: 21289169 |
[56] | Joiner, J., Piva, M., Turrin, C., & Chang, S. W. (2017). Social learning through prediction error in the brain. NPJ Science of Learning, 2(1),1-9. |
[57] |
Jones, R. M., Somerville, L. H., Li, J., Ruberry, E. J., Libby, V., Glover, G., ... Casey, B.. (2011). Behavioral and neural properties of social reinforcement learning. Journal of Neuroscience, 31(37),13039-13045.
URL pmid: 21917787 |
[58] | Khalvati, K., Mirbagheri, S., Park, S. A., Dreher, J. -C., & Rao, R. P. (2019). A Bayesian theory of conformity in collective decision making. Paper presented at the Advances in Neural Information Processing Systems, |
[59] |
Khalvati, K., Park, S. A., Mirbagheri, S., Philippe, R., Sestito, M., Dreher, J. -C., & Rao, R. P. (2019). Modeling other minds: Bayesian inference explains human choices in group decision-making. Science Advances, 5(11),eaax8783.
URL pmid: 31807706 |
[60] | Kumar, S., Rusch, T., Doshi, P., Spezio, M., & Gläscher, J. (2019). Modeling cooperative and competitive decision-making in the Tiger Task. Paper presented at the The Multidisciplinary Conference on Reinforcement Learning and Decision Making, |
[61] |
Kumaran, D., Banino, A., Blundell, C., Hassabis, D., & Dayan, P. (2016). Computations underlying social hierarchy learning: Distinct neural mechanisms for updating and representing self-relevant information. Neuron, 92(5),1135-1147.
URL pmid: 27930904 |
[62] |
Kuss, K., Falk, A., Trautner, P., Elger, C. E., Weber, B., & Fliessbach, K. (2013). A reward prediction error for charitable donations reveals outcome orientation of donators. Social Cognitive and Affective Neuroscience, 8(2),216-223.
doi: 10.1093/scan/nsr088 URL pmid: 22198972 |
[63] |
Lamba, A., Frank, M. J., & FeldmanHall, O. (2020). Anxiety impedes adaptive social learning under uncertainty. Psychological Science, 31(5),592-603.
URL pmid: 32343637 |
[64] |
Lawson, R. P., Mathys, C., & Rees, G. (2017). Adults with autism overestimate the volatility of the sensory environment. Nature Neuroscience, 20(9),1293-1299.
URL pmid: 28758996 |
[65] | Lee, M. D., Criss, A. H., Devezer, B., Donkin, C., Etz, A., Leite, F. P., ... Vandekerckhove, J. (2019). Robust modeling in cognitive science. Computational Brain & Behavior, 2(3-4),141-153. |
[66] | Leong, Y. C., & Zaki, J. (2018). Unrealistic optimism in advice taking: A computational account. Journal of Experimental Psychology: General, 147(2),170-189. |
[67] |
Li, L., Li, K. K., & Li, J. (2019). Private but not social information validity modulates social conformity bias. Human Brain Mapping, 40(8),2464-2474.
URL pmid: 30697880 |
[68] |
Ligneul, R., Obeso, I., Ruff, C. C., & Dreher, J.-C. (2016). Dynamical representation of dominance relationships in the human rostromedial prefrontal cortex. Current Biology, 26(23),3107-3115.
URL pmid: 28094034 |
[69] | Lockwood, P. L., Apps, M. A., Valton, V., Viding, E., & Roiser, J. P. (2016). Neurocomputational mechanisms of prosocial learning and links to empathy. Proceedings of the National Academy of Sciences, 113(35),9763-9768. |
[70] |
Lockwood, P. L., Apps, M.A. J., & Chang, S.W. C. (2020). Is There a ‘Social' Brain? Implementations and Algorithms. Trends in Cognitive Sciences, 24(10),802-813.
URL pmid: 32736965 |
[71] |
Lockwood, P. L., Klein-Flügge, M. C., Abdurahman, A., & Crockett, M. J. (2020). Model-free decision making is prioritized when learning to avoid harming others. Proceedings of the National Academy of Sciences, 117(44),27719-27730.
doi: 10.1073/pnas.2010890117 URL |
[72] |
Lockwood, P. L., O'Nell, K. C., & Apps, M. A. (2020). Anterior cingulate cortex: A brain system necessary for learning to reward others? Plos Biology, 18(6),e3000735.
doi: 10.1371/journal.pbio.3000735 URL pmid: 32530924 |
[73] |
Lockwood, P. L., Wittmann, M. K., Apps, M. A., Klein-Flügge, M. C., Crockett, M. J., Humphreys, G. W., & Rushworth, M. F. (2018). Neural mechanisms for learning self and other ownership. Nature Communications, 9(1),1-11.
doi: 10.1038/s41467-017-02088-w URL |
[74] |
Loughrey, D. G., Feeney, J., Kee, F., Lawlor, B. A., Woodside, J. V., Setti, A., & Power, J. M. (2020). Social factors may mediate the relationship between subjective age-related hearing loss and episodic memory. Aging & Mental Health,1-8.
URL pmid: 33719753 |
[75] | Madva, A., & Brownstein, M. (2018). Stereotypes, prejudice, and the taxonomy of the implicit social mind1. Noûs, 52(3),611-644. |
[76] |
Maia, T. V., Huys, Q. J., & Frank, M. J. (2017). Theory-based computational psychiatry. Biological Psychiatry, 82(6),382-384.
doi: 10.1016/j.biopsych.2017.07.016 URL pmid: 28838466 |
[77] |
Mathys, C., Daunizeau, J., Friston, K. J., & Stephan, K. E. (2011). A Bayesian foundation for individual learning under uncertainty. Frontiers in Human Neuroscience, 5,39.
URL pmid: 21629826 |
[78] |
Mathys, C. D., Lomakina, E. I., Daunizeau, J., Iglesias, S., Brodersen, K. H., Friston, K. J., & Stephan, K. E. (2014). Uncertainty in perception and the Hierarchical Gaussian Filter. Frontiers in Human Neuroscience, 8,825.
doi: 10.3389/fnhum.2014.00825 URL pmid: 25477800 |
[79] |
Meshi, D., Biele, G., Korn, C. W., & Heekeren, H. R. (2012). How expert advice influences decision making. PloS One, 7(11),e49748.
doi: 10.1371/journal.pone.0049748 URL pmid: 23185425 |
[80] |
Miletić, S., Boag, R. J., & Forstmann, B. U. (2020). Mutual benefits: Combining reinforcement learning with sequential sampling models. Neuropsychologia, 136,107261.
doi: 10.1016/j.neuropsychologia.2019.107261 URL pmid: 31733237 |
[81] |
Montague, P. R., Berns, G. S., Cohen, J. D., McClure, S. M., Pagnoni, G., Dhamala, M., ... Fisher, R. E. (2002). Hyperscanning: Simultaneous fMRI during linked social interactions. NeuroImage, 16(4),1159-1164.
URL pmid: 12202103 |
[82] |
Morris, R. W., Dezfouli, A., Griffiths, K. R., Le Pelley, M. E., & Balleine, B. W. (2017). The algorithmic neuroanatomy of action-outcome learning. bioRxiv, 137851.
doi: 10.1101/2021.03.22.436465 URL pmid: 33791707 |
[83] |
Nosek, B. A., Hawkins, C. B., & Frazier, R. S. (2011). Implicit social cognition: From measures to mechanisms. Trends in Cognitive Sciences, 15(4),152-159.
URL pmid: 21376657 |
[84] |
O'Doherty, J. P., Cockburn, J., & Pauli, W. M. (2017). Learning, reward, and decision making. Annual Review of Psychology, 68,73-100.
URL pmid: 27687119 |
[85] |
O'Doherty, J. P., Dayan, P., Schultz, J., Deichmann, R., Friston, K., & Dolan, R. J. (2004). Dissociable roles of ventral and dorsal striatum in instrumental conditioning. Science, 304(5669),452-454.
URL pmid: 15087550 |
[86] | O'Doherty, J. P., Hampton, A., & Kim, H. (2007). Model‐based fMRI and its application to reward learning and decision making. Annals of the New York Academy of Sciences, 1104(1),35-53. |
[87] | Ottaway, S. A., Hayden, D. C., & Oakes, M. A. (2001). Implicit attitudes and racism: Effects of word familiarity and frequency on the implicit association test. Social Cognition, 19(2),97-144. |
[88] | Palminteri, S., Khamassi, M., Joffily, M., & Coricelli, G. (2015). Contextual modulation of value signals in reward and punishment learning. Nature Communications, 6(1),1-14. |
[89] | Palminteri, S., Wyart, V., & Koechlin, E. (2017). The importance of falsification in computational cognitive modeling. Trends in Cognitive Sciences, 21(6),425-433. |
[90] | Panagopoulos, C., & van der Linden, S. (2016). Conformity to implicit social pressure: The role of political identity. Social Influence, 11(3),177-184. |
[91] |
Park, S. A., Goïame, S., O'Connor, D. A., & Dreher, J.-C. (2017). Integration of individual and social information for decision-making in groups of different sizes. PLoS Biology, 15(6),e2001958.
URL pmid: 28658252 |
[92] | Park, S. A., Miller, D. S., Nili, H., Ranganath, C., & Boorman, E. D. (2020). Map making: Constructing, combining, and inferring on abstract cognitive maps. Neuron, 107(6),1-13. |
[93] |
Park, S. A., Sestito, M., Boorman, E. D., & Dreher, J.-C. (2019). Neural computations underlying strategic social decision-making in groups. Nature Communications, 10(1),1-12.
doi: 10.1038/s41467-018-07882-8 URL pmid: 30602773 |
[94] | Paulus, M. P., Huys, Q. J., & Maia, T. V. (2016). A roadmap for the development of applied computational psychiatry. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 1(5),386-392. |
[95] | Pedersen, M. L., & Frank, M. J. (2020). Simultaneous Hierarchical Bayesian Parameter Estimation for Reinforcement Learning and Drift Diffusion Models: A Tutorial and Links to Neural Data. Computational Brain & Behavior, 3,458-471. |
[96] |
Piray, P., Dezfouli, A., Heskes, T., Frank, M. J., & Daw, N. D. (2019). Hierarchical Bayesian inference for concurrent model fitting and comparison for group studies. PLoS Computational Biology, 15(6),e1007043.
URL pmid: 31211783 |
[97] |
Piray, P., & Daw, N. D. (2020). A simple model for learning in volatile environments. PLoS Computational Biology. 16(7),e1007963.
doi: 10.1371/journal.pcbi.1007963 URL pmid: 32609755 |
[98] |
Powers, A. R., Mathys, C., & Corlett, P. (2017). Pavlovian conditioning-induced hallucinations result from overweighting of perceptual priors. Science, 357(6351),596-600.
doi: 10.1126/science.aan3458 URL pmid: 28798131 |
[99] |
Pulcu, E., & Browning, M. (2019). The misestimation of uncertainty in affective disorders. Trends in Cognitive Sciences, 23(10),865-875.
doi: 10.1016/j.tics.2019.07.007 URL pmid: 31431340 |
[100] |
Ratcliff, R., Smith, P. L., Brown, S. D., & McKoon, G. (2016). Diffusion decision model: Current issues and history. Trends in Cognitive Sciences, 20(4),260-281.
doi: 10.1016/j.tics.2016.01.007 URL pmid: 26952739 |
[101] | Reiter, A. M., Suzuki, S., O'Doherty, J. P., Li, S.-C., & Eppinger, B., (2019). Risk contagion by peers affects learning and decision-making in adolescents. Journal of Experimental Psychology: General, 148(9),1494-1504. |
[102] | Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. Classical Conditioning II: Current Research and Theory, 2,64-99. |
[103] |
Ruff, C. C., & Fehr, E. (2014). The neurobiology of rewards and values in social decision making. Nature Reviews Neuroscience, 15(8),549-562.
URL pmid: 24986556 |
[104] |
Rusch, T., Steixner-Kumar, S., Doshi, P., Spezio, M., & Gläscher, J. (2020). Theory of mind and decision science: Towards a typology of tasks and computational models. Neuropsychologia, 146,107488.
URL pmid: 32407906 |
[105] | Seppala, E., Rossomando, T., & Doty, J. R. (2013). Social connection and compassion: Important predictors of health and well-being. Social Research: An International Quarterly, 80(2),411-430. |
[106] |
Siegel, J. Z., Mathys, C., Rutledge, R. B., & Crockett, M. J. (2018). Beliefs about bad people are volatile. Nature Human Behaviour, 2(10),750-756.
URL pmid: 31406285 |
[107] |
Soltani, A., & Izquierdo, A. (2019). Adaptive learning under expected and unexpected uncertainty. Nature Reviews Neuroscience, 20(10),635-644.
doi: 10.1038/s41583-019-0180-y URL pmid: 31147631 |
[108] | Soon, V. (2020). Implicit bias and social schema: A transactive memory approach. Philosophical Studies, 177(7),1857-1877. |
[109] | Stanley, D. A. (2016). Getting to know you: General and specific neural computations for learning about people. Social Cognitive and Affective Neuroscience, 11(4),525-536. |
[110] | Steingroever, H., Wetzels, R., & Wagenmakers, E.-J. (2014). Absolute performance of reinforcement-learning models for the Iowa Gambling Task. Decision, 1(3),161-183. |
[111] | Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. Cambridge, MA: MIT press, |
[112] |
Suzuki, S., Adachi, R., Dunne, S., Bossaerts, P., & O'Doherty, J. P. (2015). Neural mechanisms underlying human consensus decision-making. Neuron, 86(2),591-602.
URL pmid: 25864634 |
[113] |
Suzuki, S., Harasawa, N., Ueno, K., Gardner, J. L., Ichinohe, N., Haruno, M., ... Nakahara, H. (2012). Learning to simulate others' decisions. Neuron, 74(6),1125-1137.
doi: 10.1016/j.neuron.2012.04.030 URL pmid: 22726841 |
[114] |
Suzuki, S., Jensen, E. L., Bossaerts, P., & O'Doherty, J. P. (2016). Behavioral contagion during learning about another agent's risk-preferences acts on the neural representation of decision-risk. Proceedings of the National Academy of Sciences, 113(14),3755-3760.
doi: 10.1073/pnas.1600092113 URL |
[115] |
Suzuki, S., & O'Doherty, J. P. (2020). Breaking human social decision making into multiple components and then putting them together again. Cortex, 127,221-230.
doi: 10.1016/j.cortex.2020.02.014 URL pmid: 32224320 |
[116] | Thornton, M. A., & Tamir, D. I. (2017). Mental models accurately predict emotion transitions. Proceedings of the National Academy of Sciences, 114(23),5982-5987. |
[117] |
Toelch, U., Bach, D. R., & Dolan, R. J. (2014). The neural underpinnings of an optimal exploitation of social information under uncertainty. Social Cognitive and Affective Neuroscience, 9(11),1746-1753.
doi: 10.1093/scan/nst173 URL pmid: 24194580 |
[118] |
Toyokawa, W., Whalen, A., & Laland, K. N. (2019). Social learning strategies regulate the wisdom and madness of interactive crowds. Nature Human Behaviour, 3(2),183-193.
doi: 10.1038/s41562-018-0518-x URL pmid: 30944445 |
[119] |
Tump, A. N., Pleskac, T. J., & Kurvers, R. H. (2020). Wise or mad crowds? The cognitive mechanisms underlying information cascades. Science Advances, 6(29),eabb0266.
doi: 10.1126/sciadv.abb0266 URL pmid: 32832634 |
[120] |
van, Baar, J.M., Chang, L. J., & Sanfey, A. G. (2019). The computational and neural substrates of moral strategies in social decision-making. Nature Communications, 10(1),1-14.
doi: 10.1038/s41467-018-07882-8 URL pmid: 30602773 |
[121] |
Wang, Y., & Olson, I. R. (2018). The original social network: White matter and social cognition. Trends in Cognitive Sciences, 22(6),504-516.
doi: 10.1016/j.tics.2018.03.005 URL pmid: 29628441 |
[122] |
Wilson, R. C., & Collins, A. G. (2019). Ten simple rules for the computational modeling of behavioral data. Elife, 8,e49547.
URL pmid: 31769410 |
[123] |
Wittmann, M. K., Kolling, N., Faber, N. S., Scholl, J., Nelissen, N., & Rushworth, M. F. (2016). Self-other mergence in the frontal cortex during cooperation and competition. Neuron, 91(2),482-493.
doi: 10.1016/j.neuron.2016.06.022 URL pmid: 27477020 |
[124] |
Xiang, T., Lohrenz, T., & Montague, P. R. (2013). Computational substrates of norms and their violations during social exchange. Journal of Neuroscience, 33(3),1099-1108.
URL pmid: 23325247 |
[125] |
Xiang, T., Ray, D., Lohrenz, T., Dayan, P., & Montague, P. R. (2012). Computational phenotyping of two-person interactions reveals differential neural response to depth-of-thought. PLoS Computational Biology, 8(12),e1002841.
doi: 10.1371/journal.pcbi.1002841 URL pmid: 23300423 |
[126] |
Yang, J., Zhang, H., Ni, J., de Dreu, C. K., & Ma, Y. (2020). Within-group synchronization in the prefrontal cortex associates with intergroup conflict. Nature Neuroscience, 23(6),754-760.
URL pmid: 32341541 |
[127] |
Yoshida, W., Seymour, B., Friston, K. J., & Dolan, R. J. (2010). Neural mechanisms of belief inference during cooperative games. Journal of Neuroscience, 30(32),10744-10751.
doi: 10.1523/JNEUROSCI.5895-09.2010 URL pmid: 20702705 |
[128] | Yu, A., & Dayan, P. (2003). Expected and unexpected uncertainty: ACh and NE in the neocortex. Paper presented at the Advances in neural information processing systems. |
[129] |
Zhang, L., & Gläscher, J. (2020). A brain network supporting social influences in human decision-making. Science Advances, 6(34),eabb4159.
doi: 10.1126/sciadv.abb4159 URL pmid: 32875112 |
[130] |
Zhang, L., Lengersdorff, L., Mikus, N., Gläscher, J., & Lamm, C. (2020). Using reinforcement learning models in social neuroscience: Frameworks, pitfalls and suggestions of best practices. Social Cognitive and Affective Neuroscience, 15(6),695-707.
doi: 10.1093/scan/nsaa089 URL pmid: 32608484 |
[131] | Zhu, L., Mathewson, K. E., & Hsu, M. (2012). Dissociable neural representations of reinforcement and belief prediction errors underlie strategic learning. Proceedings of the National Academy of Sciences, 109(5),1419-1424. |
[1] | YU Jie, CHEN Youguo. Spatiotemporal interference effect: An explanation based on Bayesian models [J]. Advances in Psychological Science, 2023, 31(4): 597-607. |
[2] | WANG Haizhen, GENG Zizhen, DING Lin, SHAN Chunxia. Antecedents of abusive supervision [J]. Advances in Psychological Science, 2022, 30(4): 906-921. |
[3] | GAO Qinglin, ZHOU Yuan. Psychological and neural mechanisms of trust formation: A perspective from computational modeling based on the decision of investor in the trust game [J]. Advances in Psychological Science, 2021, 29(1): 178-189. |
[4] | LI Jingjing, ZHANG Jian, TIAN Huirong, Jeffrey B. VANCOUVER. Application of computational modeling in organizational behavior research [J]. Advances in Psychological Science, 2020, 28(2): 368-380. |
[5] | CHEN Weiyang, XIE Tian. The cognitive perspective of cultural evolution: Exploring cultural dynamics from the view of social learning [J]. Advances in Psychological Science, 2020, 28(12): 2137-2149. |
[6] | YAN Yu, LI Tong. An analysis of the reverse mechanism how the victim turn into an instigator on workplace incivility [J]. Advances in Psychological Science, 2018, 26(7): 1307-1318. |
[7] | HUO Lijuan, ZHENG Zhiwei, LI Jin, LI Juan. The plasticity of aging brain: Evidence from cognitive training [J]. Advances in Psychological Science, 2018, 26(5): 846-858. |
[8] | LI Liang, ZHENG Yingjun, WU Chao, LI Juanhua, ZHANG Changxin, LU Lingxi. The brain network mechanisms underlying perceptual unmasking cue-induced improvement of speech recognition under cocktail-party listening conditions [J]. Advances in Psychological Science, 2017, 25(12): 2099-2110. |
[9] | WANG Yi-Nan. Neurophysiological mechanism of self-esteem [J]. Advances in Psychological Science, 2016, 24(9): 1422-1426. |
[10] | ZHANG Qi; YIN Tianzi; RAN Guangming. Psychological and Neural Mechanisms for the Superiority Effect of Dynamic Facial Expressions [J]. Advances in Psychological Science, 2015, 23(9): 1514-1522. |
[11] | HU Chuanpeng; DI Xin; LI Jiawei; SUI Jie; PENG Kaiping. Meta-analysis of Neuroimaging Studies [J]. Advances in Psychological Science, 2015, 23(7): 1118-1129. |
[12] | YANG Tianliang; XIN Fei; LEI Xu. Gender Differences in the Human Brain Structure and Function: Evidence from Neuroimaging Studies [J]. Advances in Psychological Science, 2015, 23(4): 571-581. |
[13] | RAN Guangming;ZHANG Qi;ZHAO Le;MA Jianling;CHEN Xu;PAN Yangu;MA Jing. Neural Mechanism and Neurobiological Basis of Harm Avoidance [J]. Advances in Psychological Science, 2013, 21(3): 468-479. |
[14] | RAN Guang-Ming;CHEN Xu;MA Jian-Ling;PAN Yan-Gu;HU Tian-Qiang. Neural Mechanism of Apraxia Agraphia [J]. Advances in Psychological Science, 2012, 20(9): 1393-1400. |
[15] | ZHANG Yao-Hua;ZHU Li-Qi. Impression Formation Based on Face: From the Perspective of Neuroscience [J]. , 2012, 20(7): 1031-1039. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||