Advances in Psychological Science ›› 2021, Vol. 29 ›› Issue (1): 123-130.doi: 10.3724/SP.J.1042.2021.00123
• Regular Articles • Previous Articles Next Articles
ZHOU Can, ZHOU Linshu(), JIANG Cunmei
Received:
2020-06-16
Online:
2021-01-15
Published:
2020-11-23
Contact:
ZHOU Linshu
E-mail:zhoulinshu@163.com
CLC Number:
ZHOU Can, ZHOU Linshu, JIANG Cunmei. Neural mechanisms underlying the experience of musical pleasure[J]. Advances in Psychological Science, 2021, 29(1): 123-130.
[1] |
Belfi, A. M., Evans, E., Heskje, J., Bruss, J., & Tranel, D. (2017). Musical anhedonia after focal brain damage. Neuropsychologia, 97, 29-37.
doi: 10.1016/j.neuropsychologia.2017.01.030 URL pmid: 28159618 |
[2] |
Belfi, A. M., & Loui, P. (2020). Musical anhedonia and rewards of music listening: Current advances and a proposed model. Annals of the New York Academy of Sciences, 1464(1), 99-114.
doi: 10.1111/nyas.14241 URL pmid: 31549425 |
[3] |
Berridge, K. C., & Kringelbach, M. L. (2008). Affective neuroscience of pleasure: Reward in humans and animals. Psychopharmacology, 199(3), 457-480.
doi: 10.1007/s00213-008-1099-6 URL pmid: 18311558 |
[4] |
Berridge, K. C., & Kringelbach, M. L. (2015). Pleasure systems in the brain. Neuron, 86(3), 646-664.
doi: 10.1016/j.neuron.2015.02.018 URL pmid: 25950633 |
[5] |
Blood, A. J., & Zatorre, R. J. (2001). Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proceedings of the National Academy of Sciences of the United States of America, 98(20), 11818-11823.
doi: 10.1073/pnas.191355898 URL pmid: 11573015 |
[6] |
Brodal, H. P., Osnes, B., & Specht, K. (2017). Listening to rhythmic music reduces connectivity within the basal ganglia and the reward system. Frontiers in Neuroscience, 11, 153.
doi: 10.3389/fnins.2017.00153 URL pmid: 28400717 |
[7] |
Cheung, V. K., Harrison, P. M., Meyer, L., Pearce, M. T., Haynes, J.-D., & Koelsch, S. (2019). Uncertainty and surprise jointly predict musical pleasure and amygdala, hippocampus, and auditory cortex activity. Current Biology, 29(23), 4084-4092.
doi: 10.1016/j.cub.2019.09.067 URL pmid: 31708393 |
[8] |
Clark, C. N., Golden, H. L., McCallion, O., Nicholas, J. M., Cohen, M. H., Slattery, C. F., ... Crutch, S. J. (2018). Music models aberrant rule decoding and reward valuation in dementia. Social Cognitive and Affective Neuroscience, 13(2), 192-202.
doi: 10.1093/scan/nsx140 URL pmid: 29186630 |
[9] |
Conard, N. J., Malina, M., & Münzel, S. C. (2009). New flutes document the earliest musical tradition in southwestern Germany. Nature, 460(7256), 737-740.
doi: 10.1038/nature08169 URL pmid: 19553935 |
[10] |
de Fleurian, R., Harrison, P. M., Pearce, M. T., & Quiroga- Martinez, D. R. (2019). Reward prediction tells us less than expected about musical pleasure. Proceedings of the National Academy of Sciences of the United States of America, 116(42), 20813-20814.
doi: 10.1073/pnas.1913244116 URL pmid: 31537748 |
[11] |
Dubé, L., & Le Bel, J. (2003). The content and structure of laypeople's concept of pleasure. Cognition and Emotion, 17(2), 263-295.
doi: 10.1080/02699930302295 URL pmid: 29715723 |
[12] |
Egerton, A., Mehta, M. A., Montgomery, A. J., Lappin, J. M., Howes, O. D., Reeves, S. J., ... Grasby, P. M. (2009). The dopaminergic basis of human behaviors: A review of molecular imaging studies. Neuroscience & Biobehavioral Reviews, 33(7), 1109-1132.
doi: 10.1016/j.neubiorev.2009.05.005 URL pmid: 19481108 |
[13] |
Ferreri, L., Mas-Herrero, E., Zatorre, R. J., Ripollés, P., Gomez-Andres, A., Alicart, H., ... Rodriguez-Fornells, A. (2019). Dopamine modulates the reward experiences elicited by music. Proceedings of the National Academy of Sciences of the United States of America, 116(9), 3793-3798.
doi: 10.1073/pnas.1811878116 URL pmid: 30670642 |
[14] |
Fletcher, P. D., Downey, L., Witoonpanich, P., & Warren, J. (2013). The brain basis of musicophilia: Evidence from frontotemporal lobar degeneration. Frontiers in Psychology, 4, 347.
doi: 10.3389/fpsyg.2013.00347 URL pmid: 23801975 |
[15] |
Freeman, T. P., Pope, R. A., Wall, M. B., Bisby, J. A., Luijten, M., Hindocha, C., ... Curran, H. V. (2018). Cannabis dampens the effects of music in brain regions sensitive to reward and emotion. International Journal of Neuropsychopharmacology, 21(1), 21-32.
doi: 10.1093/ijnp/pyx082 URL |
[16] |
Gold, B. P., Mas-Herrero, E., Zeighami, Y., Benovoy, M., Dagher, A., & Zatorre, R. J. (2019). Musical reward prediction errors engage the nucleus accumbens and motivate learning. Proceedings of the National Academy of Sciences of the United States of America, 116(8), 3310-3315.
doi: 10.1073/pnas.1809855116 URL pmid: 30728301 |
[17] |
Gold, B. P., Pearce, M. T., Mas-Herrero, E., Dagher, A., & Zatorre, R. J. (2019). Predictability and uncertainty in the pleasure of music: A reward for learning? Journal of Neuroscience, 39(47), 9397-9409.
doi: 10.1523/JNEUROSCI.0428-19.2019 URL pmid: 31636112 |
[18] |
Griffiths, T. D., Warren, J. D., Dean, J. L., & Howard, D. (2004). “When the feeling’s gone”: A selective loss of musical emotion. Journal of Neurology, Neurosurgery & Psychiatry, 75(2), 344-345.
doi: 10.1007/s00415-020-10157-2 URL pmid: 32813052 |
[19] |
Hansen, N. C., Dietz, M. J., & Vuust, P. (2017). Commentary: Predictions and the brain: How musical sounds become rewarding. Frontiers in Human Neuroscience, 11, 168.
doi: 10.3389/fnhum.2017.00168 URL pmid: 28424603 |
[20] |
Hansen, N. C., & Pearce, M. T. (2014). Predictive uncertainty in auditory sequence processing. Frontiers in Psychology, 5, 1052.
doi: 10.3389/fpsyg.2014.01052 URL pmid: 25295018 |
[21] |
Heydari, S., & Holroyd, C. B. (2016). Reward positivity: Reward prediction error or salience prediction error? Psychophysiology, 53(8), 1185-1192.
doi: 10.1111/psyp.12673 URL pmid: 27184070 |
[22] |
Huron, D. (2001). Is music an evolutionary adaptation? Annals of the New York Academy of Sciences, 930(1), 43-61.
doi: 10.1111/j.1749-6632.2001.tb05724.x URL |
[23] |
Jacome, D. E. (1984). Aphasia with elation, hypermusia, musicophilia and compulsive whistling. Journal of Neurology, Neurosurgery & Psychiatry, 47(3), 308-310.
doi: 10.1136/jnnp.47.3.308 URL pmid: 6707680 |
[24] | Juslin, P. N., & Sloboda, J. A. (2013). Music and Emotion. In D. Deutsch (Ed.), The psychology of music (pp.583-645). San Diego, CA: Academic Press. |
[25] | Koelsch, S. (2012). Brain and music. Oxford, UK: Wiley-Blackwell. |
[26] |
Koelsch, S. (2014). Brain correlates of music-evoked emotions. Nature Reviews Neuroscience, 15(3), 170-180.
doi: 10.1038/nrn3666 URL |
[27] |
Koelsch, S., Fritz, T., Schulze, K., Alsop, D., & Schlaug, G. (2005). Adults and children processing music: An fMRI study. NeuroImage, 25(4), 1068-1076.
doi: 10.1016/j.neuroimage.2004.12.050 URL pmid: 15850725 |
[28] |
Koelsch, S., Fritz, T., v. Cramon, D. Y., Müller, K., & Friederici, A. D. (2006). Investigating emotion with music: An fMRI study. Human Brain Mapping, 27(3), 239-250.
doi: 10.1002/hbm.20180 URL pmid: 16078183 |
[29] | Koelsch, S., Vuust, P., & Friston, K. (2019). Predictive processes and the peculiar case of music. Trends in Cognitive Sciences, 23(1), 63-77. |
[30] |
Lehne, M., Rohrmeier, M., & Koelsch, S. (2013). Tension- related activity in the orbitofrontal cortex and amygdala: An fMRI study with music. Social Cognitive and Affective Neuroscience, 9(10), 1515-1523.
doi: 10.1093/scan/nst141 URL pmid: 23974947 |
[31] |
Mallik, A., Chanda, M. L., & Levitin, D. J. (2017). Anhedonia to music and mu-opioids: Evidence from the administration of naltrexone. Scientific Reports, 7, 41952.
doi: 10.1038/srep41952 URL pmid: 28176798 |
[32] |
Martínez-Molina, N., Mas-Herrero, E., Rodríguez-Fornells, A., Zatorre, R. J., & Marco-Pallarés, J. (2016). Neural correlates of specific musical anhedonia. Proceedings of the National Academy of Sciences of the United States of America, 113(46), E7337-E7345.
doi: 10.1073/pnas.1611211113 URL pmid: 27799544 |
[33] |
Martínez-Molina, N., Mas-Herrero, E., Rodríguez-Fornells, A., Zatorre, R. J., & Marco-Pallarés, J. (2019). White matter microstructure reflects individual differences in music reward sensitivity. Journal of Neuroscience, 39(25), 5018-5027.
doi: 10.1523/JNEUROSCI.2020-18.2019 URL pmid: 31000588 |
[34] |
Mas-Herrero, E., Dagher, A., & Zatorre, R. J. (2018). Modulating musical reward sensitivity up and down with transcranial magnetic stimulation. Nature Human Behaviour, 2(1), 27-32.
doi: 10.1038/s41562-017-0241-z URL pmid: 30980048 |
[35] |
Mas-Herrero, E., Karhulahti, M., Marco-Pallares, J., Zatorre, R. J., & Rodriguez-Fornells, A. (2018). The impact of visual art and emotional sounds in specific musical anhedonia. Progress in Brain Research, 237, 399-413.
doi: 10.1016/bs.pbr.2018.03.017 URL pmid: 29779745 |
[36] | Mas-Herrero, E., Marco-Pallares, J., Lorenzo-Seva, U., Zatorre, R. J., & Rodriguez-Fornells, A. (2013). Individual differences in music reward experiences. Music Perception: An Interdisciplinary Journal, 31(2), 118-138. |
[37] |
Mas-Herrero, E., Zatorre, R. J., Rodriguez-Fornells, A., & Marco-Pallarés, J. (2014). Dissociation between musical and monetary reward responses in specific musical anhedonia. Current Biology, 24(6), 699-704.
doi: 10.1016/j.cub.2014.01.068 URL |
[38] |
Mazzoni, M., Moretti, P., Pardossi, L., Vista, M., Muratorio, A., & Puglioli, M. (1993). A case of music imperception. Journal of Neurology, Neurosurgery, and Psychiatry, 56(3), 322.
doi: 10.1136/jnnp.56.3.322 URL pmid: 8459254 |
[39] |
Menon, V., & Levitin, D. J. (2005). The rewards of music listening: Response and physiological connectivity of the mesolimbic system. NeuroImage, 28(1), 175-184.
doi: 10.1016/j.neuroimage.2005.05.053 URL pmid: 16023376 |
[40] | Meyer, L. B. (1956). Emotion and meaning in music. London: University of Chicago Press. |
[41] |
Mitterschiffthaler, M. T., Fu, C. H., Dalton, J. A., Andrew, C. M., & Williams, S. C. (2007). A functional MRI study of happy and sad affective states induced by classical music. Human Brain Mapping, 28(11), 1150-1162.
doi: 10.1002/hbm.20337 URL pmid: 17290372 |
[42] |
Pearce, M. T. (2018). Statistical learning and probabilistic prediction in music cognition: Mechanisms of stylistic enculturation. Annals of the New York Academy of Sciences, 1423(1), 378-395.
doi: 10.1111/nyas.2018.1423.issue-1 URL |
[43] |
Rohrer, J. D., Smith, S. J., & Warren, J. D. (2006). Craving for music after treatment for partial epilepsy. Epilepsia, 47(5), 939-940.
doi: 10.1111/j.1528-1167.2006.00565.x URL pmid: 16686661 |
[44] |
Royal, I., Vuvan, D. T., Zendel, B. R., Robitaille, N., Schönwiesner, M., & Peretz, I. (2016). Activation in the right inferior parietal lobule reflects the representation of musical structure beyond simple pitch discrimination. PLoS One, 11( 5).
doi: 10.1371/journal.pone.0169091 URL pmid: 28036384 |
[45] | Sacks, O. (2007). Musicophilia: Tales of music and the brain. London: Picador. |
[46] |
Salimpoor, V. N., Benovoy, M., Larcher, K., Dagher, A., & Zatorre, R. J. (2011). Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nature Neuroscience, 14(2), 257-262.
doi: 10.1038/nn.2726 URL pmid: 21217764 |
[47] |
Salimpoor, V. N., Benovoy, M., Longo, G., Cooperstock, J. R., & Zatorre, R. J. (2009). The rewarding aspects of music listening are related to degree of emotional arousal. PloS ONE, 4(10):e7487.
doi: 10.1371/journal.pone.0007487 URL pmid: 19834599 |
[48] |
Salimpoor, V. N., van den. Bosch, I., Kovacevic, N., Mcintosh, A. R., Dagher, A., & Zatorre, R. J. (2013). Interactions between the nucleus accumbens and auditory cortices predict music reward value. Science, 340(6129), 216-219.
doi: 10.1126/science.1231059 URL |
[49] |
Salimpoor, V. N., Zald, D. H., Zatorre, R. J., Dagher, A., & McIntosh, A. R. (2015). Predictions and the brain: How musical sounds become rewarding. Trends in Cognitive Sciences, 19(2), 86-91.
doi: 10.1016/j.tics.2014.12.001 URL pmid: 25534332 |
[50] |
Satoh, M., Kato, N., Tabei, K.-I., Nakano, C., Abe, M., Fujita, R., ... Kondo, K. (2016). A case of musical anhedonia due to right putaminal hemorrhage: A disconnection syndrome between the auditory cortex and insula. Neurocase, 22(6), 518-525.
doi: 10.1080/13554794.2016.1264609 URL pmid: 27925501 |
[51] |
Satoh, M., Nakase, T., Nagata, K., & Tomimoto, H. (2011). Musical anhedonia: Selective loss of emotional experience in listening to music. Neurocase, 17(5), 410-417.
doi: 10.1080/13554794.2010.532139 URL pmid: 21714738 |
[52] |
Schubert, E. (2013). Emotion felt by the listener and expressed by the music: Literature review and theoretical perspectives. Frontiers in Psychology, 4, 1-18.
doi: 10.3389/fpsyg.2013.00001 URL pmid: 23382719 |
[53] |
Schultz, W. (2015). Neuronal reward and decision signals: From theories to data. Physiological Reviews, 95(3), 853-951.
doi: 10.1152/physrev.00023.2014 URL pmid: 26109341 |
[54] |
Schultz, W. (2016). Dopamine reward prediction error coding. Dialogues in Clinical Neuroscience, 18(1), 23-32.
URL pmid: 27069377 |
[55] |
Schultz, W. (2017). Reward prediction error. Current Biology, 27(10), R369-R371.
doi: 10.1016/j.cub.2017.02.064 URL pmid: 28535383 |
[56] |
Sescousse, G., Caldú, X., Segura, B., & Dreher, J. C. (2013). Processing of primary and secondary rewards: A quantitative meta-analysis and review of human functional neuroimaging studies. Neuroscience & Biobehavioral Reviews, 37(4), 681-696.
doi: 10.1016/j.neubiorev.2013.02.002 URL pmid: 23415703 |
[57] |
Watabe-Uchida, M., Eshel, N., & Uchida, N. (2017). Neural circuitry of reward prediction error. Annual Review of Neuroscience, 40(1), 373-394.
doi: 10.1146/annurev-neuro-072116-031109 URL |
[58] |
Zatorre, R. J. (2015). Musical pleasure and reward: Mechanisms and dysfunction. Annals of the New York Academy of Sciences, 1337(1), 202-211.
doi: 10.1111/nyas.12677 URL |
[59] | Zatorre, R. J., & Salimpoor, V. N. (2013). From perception to pleasure: Music and its neural substrates. Proceedings of the National Academy of Sciences of the United States of America, 110(Suppl. 2), 10430-10437. |
[1] | GAO Cheng, LIU Chang. How do processing fluency, expectation, and epistemic goals influence aesthetic judgment? A perspective of multi-model integration [J]. Advances in Psychological Science, 2024, 32(11): 1872-1881. |
[2] | ZHOU Bingtao, LIU Yuping, ZHAO Hui, YANG Bo. The pleasurable effect of aggressive behavior [J]. Advances in Psychological Science, 2023, 31(9): 1714-1727. |
[3] | LIU Wenhua, WEN Xiujuan, CHEN Ling, YANG Rui, HU Yiru. Reward-anticipation and outcome-evaluation ERPs and its application in psychiatric disorders [J]. Advances in Psychological Science, 2023, 31(5): 783-799. |
[4] | LIU Peihan, ZHANG Huoyin, ZHANG Xukai, LI Hong, LEI Yi. Effects of acute versus chronic pain on reward processing and the underlying neural mechanisms involved [J]. Advances in Psychological Science, 2023, 31(3): 402-415. |
[5] | KOU Juan, YANG Mengyuan, WEI Zijie, LEI Yi. The social motivation theory of autism spectrum disorder: Exploring mechanisms and interventions [J]. Advances in Psychological Science, 2023, 31(1): 20-32. |
[6] | WANG Songxue, CHENG Si, JIANG Ting, LIU Xun, ZHANG Mingxia. The effect of external rewards on declarative memory [J]. Advances in Psychological Science, 2023, 31(1): 78-86. |
[7] | XU Hui, WANG Tao. Social motivation deficits in individuals with autism spectrum disorders [J]. Advances in Psychological Science, 2022, 30(5): 1050-1061. |
[8] | HUANG Jianping, XU Jingxian, WAN Xiaoang. Influence of associative learning on consumer behavior: From the perspective of product search experience [J]. Advances in Psychological Science, 2022, 30(11): 2414-2423. |
[9] | YAN Wan-Sen, LIU Su-Jiao, ZHANG Ran-Ran, XU Peng. The susceptibility of compulsive traits and neural substrates of the prefrontal and anti-reward systems implicated in drug addiction [J]. Advances in Psychological Science, 2021, 29(8): 1345-1357. |
[10] | QIN Haofang, HUANG Rong, JIA Shiwei. Feedback-related negativity: A biomarker for depression [J]. Advances in Psychological Science, 2021, 29(3): 404-413. |
[11] | YIN Kui, ZHANG Kaili, ZHAO Jing, GONG Zhenxing. The effects of employee empowerment expectation: The underlying theoretical explanations [J]. Advances in Psychological Science, 2021, 29(2): 353-364. |
[12] | WANG Lei, HE Huizhong, BI Xiaobin, ZHOU Li, FAN Xiaozhuang. Social deficits in autism spectrum disorder: A perspective from the social motivation theory [J]. Advances in Psychological Science, 2021, 29(12): 2209-2223. |
[13] | CHEN Lele, HUANG Rong, JIA Shiwei. Feedback-related negativity and addiction [J]. Advances in Psychological Science, 2020, 28(6): 959-968. |
[14] | Mengjiao Xu, Yingtao Fu, Jiahan Yu, Ping Zhu, Mowei Shen, Hui Chen. Source information is inherently linked to working memory representation for auditory but not for visual stimuli [J]. Advances in Psychological Science, 2019, 27(suppl.): 24-24. |
[15] | Ran Zhuang, Yanyan Tu, Hui Li, Huimin Cao, Yanju Ren. Contributions of Reward- and Punishment-Association to Attentional Shifting and Disengagement [J]. Advances in Psychological Science, 2019, 27(suppl.): 72-72. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||