Advances in Psychological Science ›› 2020, Vol. 28 ›› Issue (6): 945-958.doi: 10.3724/SP.J.1042.2020.00945
• Regular Articles • Previous Articles Next Articles
ZHONG Chupeng1, QU Zhe1(), DING Yulong2
Received:
2019-05-05
Online:
2020-06-15
Published:
2020-04-22
Contact:
QU Zhe
E-mail:quzhe@mail.sysu.edu.cn
CLC Number:
ZHONG Chupeng, QU Zhe, DING Yulong. The influences of prestimulus alpha oscillation on visual perception[J]. Advances in Psychological Science, 2020, 28(6): 945-958.
[1] | 武侠, 钟楚鹏, 丁玉珑, 曲折 . (2018). 利用时频分析研究非相位锁定脑电活动. 心理科学进展, 26(8), 1349-1364. |
[2] | Achim, A., Bouchard, J., & Braun, C. M. J . (2013). EEG amplitude spectra before near threshold visual presentations differentially predict detection/omission and short-long reaction time outcomes. International Journal of Psychophysiology, 89(1), 88-98. |
[3] | Babiloni, C., Vecchio, F., Bultrini, A., Luca Romani, G., & Rossini, P. M . (2005). Pre-and poststimulus alpha rhythms are related to conscious visual perception: A high-resolution EEG study. Cerebral Cortex, 16(12), 1690-1700. |
[4] | Bae, G.-Y., & Luck, S. J . (2018). Dissociable decoding of spatial attention and working memory from EEG oscillations and sustained potentials. Journal of Neuroscience, 38(2), 409-422. |
[5] | Bahramisharif, A., van Gerven,, M. A. J, Aarnoutse,, E. J., Mercier, M. R., Schwartz, T. H., Foxe, J. J., ... Jensen, O . (2013). Propagating neocortical gamma bursts are coordinated by traveling alpha waves. Journal of Neuroscience, 33(48), 18849-18854. |
[6] | Bastiaansen, M. C. M., Posthuma, D., Groot, P. F. C., & de Geus, E. J. C . (2002). Event-related alpha and theta responses in a visuo-spatial working memory task. Clinical Neurophysiology, 113(12), 1882-1893. |
[7] | Benwell, C. S. Y., Tagliabue, C. F., Veniero, D., Cecere, R., Savazzi, S., & Thut, G . (2017). Prestimulus EEG power predicts conscious awareness but not objective visual performance. eNeuro, 4(6). |
[8] | Bernat, E., Shevrin, H., & Snodgrass, M . (2001). Subliminal visual oddball stimuli evoke a P300 component. Clinical Neurophysiology, 112(1), 159-171. |
[9] | Bonaiuto, J. J., Meyer, S. S., Little, S., Rossiter, H., Callaghan, M. F., Dick, F., ... Bestmann, S . (2018). Lamina-specific cortical dynamics in human visual and sensorimotor cortices. eLife, 7, e33977. |
[10] | Bonnefond, M., & Jensen, O . (2012). Alpha oscillations serve to protect working memory maintenance against anticipated distracters. Current Biology, 22(20), 1969-1974. |
[11] | Brüers, S., & VanRullen, R . (2017). At what latency does the phase of brain oscillations influence perception?. eNeuro, 4(3). |
[12] | Busch, N. A., Dubois, J., & VanRullen, R . (2009). The phase of ongoing EEG oscillations predicts visual perception. Journal of Neuroscience, 29(24), 7869-7876. |
[13] |
Busch, N. A., & VanRullen, R . (2010). Spontaneous EEG oscillations reveal periodic sampling of visual attention. Proceedings of the National Academy of Sciences, 107(37), 16048-16053.
doi: 10.1073/pnas.1004801107 URL |
[14] | Callaway, E., & Yeager, C. L . (1960). Relationship between reaction time and electroencephalographic alpha phase. Science, 132(3441), 1765-1766. |
[15] | Chaumon, M., & Busch, N. A . (2014). Prestimulus neural oscillations inhibit visual perception via modulation of response gain. Journal of Cognitive Neuroscience, 26(11), 2514-2529. |
[16] | Cohen, M. X . (2017). Where does EEG come from and what does it mean?. Trends in Neurosciences, 40(4), 208-218. |
[17] | Dalal, S. S., Vidal, J. R., Hamamé, C. M., Ossandón, T., Bertrand, O., Lachaux, J. P., & Jerbi, K . (2011). Spanning the rich spectrum of the human brain: Slow waves to gamma and beyond. Brain Structure and Function, 216(2), 77-84. |
[18] |
de Pesters, A., Coon, W. G., Brunner, P., Gunduz, A., Ritaccio, A. L., Brunet, N. M., ... Schalk, G . (2016). Alpha power indexes task-related networks on large and small scales: A multimodal ECoG study in humans and a non-human primate. Neuroimage, 134, 122-131.
doi: 10.1016/j.neuroimage.2016.03.074 URL |
[19] | Devrim, M., Demiralp, T., & Kurt, A . (1997). The effects of subthreshold visual stimulation on P300 response. Neuroreport, 8(14), 3113-3117. |
[20] | Dougherty, K., Cox, M. A., Ninomiya, T., Leopold, D. A., & Maier, A . (2017). Ongoing alpha activity in V1 regulates visually driven spiking responses. Cerebral Cortex, 27(2), 1113-1124. |
[21] | Drewes, J., & VanRullen, R . (2011). This is the rhythm of your eyes: The phase of ongoing electroencephalogram oscillations modulates saccadic reaction time. Journal of Neuroscience, 31(12), 4698-4708. |
[22] | Dugué, L., Marque, P., & VanRullen, R . (2011). The phase of ongoing oscillations mediates the causal relation between brain excitation and visual perception. Journal of Neuroscience, 31(33), 11889-11893. |
[23] | Dustman, R. E., & Beck, E. C . (1965). Phase of alpha brain waves, reaction time and visually evoked potentials. Electroencephalography and Clinical Neurophysiology, 18(5), 433-440. |
[24] | Ergenoglu, T., Demiralp, T., Bayraktaroglu, Z., Ergen, M., Beydagi, H., & Uresin, Y . (2004). Alpha rhythm of the EEG modulates visual detection performance in humans. Cognitive Brain Research, 20(3), 376-383. |
[25] |
Foster, J. J., & Awh, E . (2018). The role of alpha oscillations in spatial attention: Limited evidence for a suppression account. Current Opinion in Psychology, 29, 34-40.
doi: 10.1016/j.copsyc.2018.11.001 URL |
[26] | Foster, J. J., Bsales, E. M., Jaffe, R. J., & Awh, E . (2017). Alpha-band activity reveals spontaneous representations of spatial position in visual working memory. Current Biology, 27(20), 3216-3223. |
[27] | Foster, J. J., Sutterer, D. W., Serences, J. T., Vogel, E. K., & Awh, E . (2017). Alpha-band oscillations enable spatially and temporally resolved tracking of covert spatial attention. Psychological Science, 28(7), 929-941. |
[28] | Gruber, W. R., Zauner, A., Lechinger, J., Schabus, M., Kutil, R., & Klimesch, W . (2014). Alpha phase, temporal attention, and the generation of early event related potentials. Neuroimage, 103, 119-129. |
[29] | Haegens, S., Barczak, A., Musacchia, G., Lipton, M. L., Mehta, A. D., Lakatos, P., & Schroeder, C. E . (2015). Laminar profile and physiology of the α rhythm in primary visual, auditory, and somatosensory regions of neocortex. Journal of Neuroscience, 35(42), 14341-14352. |
[30] | Haegens, S., Nácher, V., Luna, R., Romo, R., & Jensen, O . (2011). α-Oscillations in the monkey sensorimotor network influence discrimination performance by rhythmical inhibition of neuronal spiking. Proceedings of the National Academy of Sciences, 108(48), 19377-19382. |
[31] |
Hamm, J. P., Dyckman, K. A., McDowell, J. E., & Clementz, B. A . (2012). Pre-cue fronto-occipital alpha phase and distributed cortical oscillations predict failures of cognitive control. Journal of Neuroscience, 32(20), 7034-7041.
doi: 10.1523/JNEUROSCI.5198-11.2012 URL |
[32] |
Hanslmayr, S., Aslan, A., Staudigl, T., Klimesch, W., Herrmann, C. S., & Bäuml, K. H . (2007). Prestimulus oscillations predict visual perception performance between and within subjects. Neuroimage, 37(4), 1465-1473.
doi: 10.1016/j.neuroimage.2007.07.011 URL |
[33] |
Hanslmayr, S., Gross, J., Klimesch, W., & Shapiro, K. L . (2011). The role of alpha oscillations in temporal attention. Brain Research Reviews, 67(1-2), 331-343.
doi: 10.1016/j.brainresrev.2011.04.002 URL |
[34] | Hanslmayr, S., Klimesch, W., Sauseng, P., Gruber, W., Doppelmayr, M., Freunberger, R., & Pecherstorfer, T . (2005). Visual discrimination performance is related to decreased alpha amplitude but increased phase locking. Neuroscience Letters, 375(1), 64-68. |
[35] | Hanslmayr, S., Volberg, G., Wimber, M., Dalal, S. S., & Greenlee, M. W . (2013). Prestimulus oscillatory phase at 7 Hz gates cortical information flow and visual perception. Current Biology, 23(22), 2273-2278. |
[36] | Harris, A. M., Dux, P. E., & Mattingley, J. B . (2018). Detecting unattended stimuli depends on the phase of prestimulus neural oscillations. Journal of Neuroscience, 38(12), 3092-3101. |
[37] | Herrmann, C. S . (2001). Human EEG responses to 1-100 Hz flicker: resonance phenomena in visual cortex and their potential correlation to cognitive phenomena. Experimental Brain Research, 137(3-4), 346-353. |
[38] | Hülsdünker, T., Strüder, H. K., & Mierau, A . (2018). The pre-stimulus oscillatory alpha phase affects neural correlates of early visual perception. Neuroscience Letters, 685, 90-95. |
[39] | Iemi, L., & Busch, N. A . (2018). Moment-to-Moment fluctuations in neuronal excitability bias subjective perception rather than strategic decision-making. eNeuro, 5( 3). |
[40] | Iemi, L., Chaumon, M., Crouzet, S. M., & Busch, N. A . (2017). Spontaneous neural oscillations bias perception by modulating baseline excitability. Journal of Neuroscience, 37(4), 807-819. |
[41] | Jansen, B. H., & Brandt, M. E . (1991). The effect of the phase of prestimulus alpha activity on the averaged visual evoked response. Electroencephalography and Clinical Neurophysiology/ Evoked Potentials Section, 80(4), 241-250. |
[42] |
Jensen, O., Bonnefond, M., & VanRullen, R . (2012). An oscillatory mechanism for prioritizing salient unattended stimuli. Trends in Cognitive Sciences, 16(4), 200-206.
doi: 10.1016/j.tics.2012.03.002 URL |
[43] | Jensen, O., Gelfand, J., Kounios, J., & Lisman, J. E . (2002). Oscillations in the alpha band (9-12 Hz) increase with memory load during retention in a short-term memory task. Cerebral Cortex, 12(8), 877-882. |
[44] | Jensen, O., Gips, B., Bergmann, T. O., & Bonnefond, M . (2014). Temporal coding organized by coupled alpha and gamma oscillations prioritize visual processing. Trends in Neurosciences, 37(7), 357-369. |
[45] | Kelly, S. P., Lalor, E. C., Reilly, R. B., & Foxe, J. J . (2006). Increases in alpha oscillatory power reflect an active retinotopic mechanism for distracter suppression during sustained visuospatial attention. Journal of Neurophysiology, 95(6), 3844-3851. |
[46] | Klimesch, W . (2012). Alpha-band oscillations, attention, and controlled access to stored information. Trends in Cognitive Sciences, 16(12), 606-617. |
[47] |
Klimesch, W., Sauseng, P., & Hanslmayr, S . (2007). EEG alpha oscillations: The inhibition-timing hypothesis. Brain Research Reviews, 53(1), 63-88.
doi: 10.1016/j.brainresrev.2006.06.003 URL |
[48] | Koivisto, M., Grassini, S., Salminen-Vaparanta, N., & Revonsuo, A . (2017). Different electrophysiological correlates of visual awareness for detection and identification. Journal of Cognitive Neuroscience, 29(9), 1621-1631. |
[49] | Leenders, M. P., Lozano-Soldevilla, D., Roberts, M. J., Jensen, O., & de Weerd, P . (2016). Diminished alpha lateralization during working memory but not during attentional cueing in older adults. Cerebral Cortex, 28(1), 21-32. |
[50] |
Limbach, K., & Corballis, P. M . (2016). Prestimulus alpha power influences response criterion in a detection task. Psychophysiology, 53(8), 1154-1164.
doi: 10.1111/psyp.2016.53.issue-8 URL |
[51] | Macmillan, N. A., & Creelman, C. D . (2005) . Detection theory: A user’s guide (2nd ed) New York, NY: Psychology Press. |
[52] | Makeig, S., & Jung, T. P . (1996). Tonic, phasic, and transient EEG correlates of auditory awareness in drowsiness. Cognitive Brain Research, 4(1), 15-25. |
[53] |
Mathewson, K. E., Fabiani, M., Gratton, G., Beck, D. M., & Lleras, A . (2010). Rescuing stimuli from invisibility: Inducing a momentary release from visual masking with pre-target entrainment. Cognition, 115(1), 186-191.
doi: 10.1016/j.cognition.2009.11.010 URL |
[54] | Mathewson, K. E., Gratton, G., Fabiani, M., Beck, D. M., & Ro, T . (2009). To see or not to see: Prestimulus α phase predicts visual awareness. Journal of Neuroscience, 29(9), 2725-2732. |
[55] | Mathewson, K. E., Prudhomme, C., Fabiani, M., Beck, D. M., Lleras, A., & Gratton, G . (2012). Making waves in the stream of consciousness: Entraining oscillations in EEG alpha and fluctuations in visual awareness with rhythmic visual stimulation. Journal of Cognitive Neuroscience, 24(12), 2321-2333. |
[56] | Michalareas, G., Vezoli, J., van Pelt, S., Schoffelen, J.-M., Kennedy, H., & Fries, P . (2016). Alpha-beta and gamma rhythms subserve feedback and feedforward influences among human visual cortical areas. Neuron, 89(2), 384-397. |
[57] | Pfurtscheller, G., Stancák, A., & Neuper, C . (1996). Event- related synchronization (ERS) in the alpha band — An electrophysiological correlate of cortical idling: A review. International Journal of Psychophysiology, 24(1-2), 39-46. |
[58] | Risner, M. L., Aura, C. J., Black, J. E., & Gawne, T. J . (2009). The visual evoked potential is independent of surface alpha rhythm phase. Neuroimage, 45(2), 463-469. |
[59] |
Roberts, D. M., Fedota, J. R., Buzzell, G. A., Parasuraman, R., & McDonald, C. G . (2014). Prestimulus oscillations in the alpha band of the EEG are modulated by the difficulty of feature discrimination and predict activation of a sensory discrimination process. Journal of Cognitive Neuroscience, 26(8), 1615-1628.
doi: 10.1162/jocn_a_00569 URL |
[60] |
Romei, V., Gross, J., & Thut, G . (2010). On the role of prestimulus alpha rhythms over occipito-parietal areas in visual input regulation: Correlation or causation?. Journal of Neuroscience, 30(25), 8692-8697.
doi: 10.1523/JNEUROSCI.0160-10.2010 URL |
[61] | Ruhnau, P., Hauswald, A., & Weisz, N . (2014). Investigating ongoing brain oscillations and their influence on conscious perception-network states and the window to consciousness. Frontiers in Psychology, 5, 1230. |
[62] | Rutiku, R., Aru, J., & Bachmann, T . (2016). General markers of conscious visual perception and their timing. Frontiers in Human Neuroscience, 10, 23. |
[63] | Samaha, J., Iemi, L., & Postle, B. R . (2017). Prestimulus alpha-band power biases visual discrimination confidence, but not accuracy. Consciousness and Cognition, 54, 47-55. |
[64] |
Samaha, J., & Postle, B. R . (2015). The speed of alpha-band oscillations predicts the temporal resolution of visual perception. Current Biology, 25(22), 2985-2990.
doi: 10.1016/j.cub.2015.10.007 URL |
[65] |
Sauseng, P., Klimesch, W., Doppelmayr, M., Pecherstorfer, T., Freunberger, R., & Hanslmayr, S . (2005). EEG alpha synchronization and functional coupling during top‐down processing in a working memory task. Human Brain Mapping, 26(2), 148-155.
doi: 10.1002/(ISSN)1097-0193 URL |
[66] | Steriade, M., McCormick, D. A., & Sejnowski, T. J . (1993). Thalamocortical oscillations in the sleeping and aroused brain. Science, 262(5134), 679-685. |
[67] | Thut, G., Nietzel, A., Brandt, S. A., & Pascual-Leone, A . (2006). α-Band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection. Journal of Neuroscience, 26(37), 9494-9502. |
[68] | Thut, G., Schyns, P. G., & Gross, J . (2011). Entrainment of perceptually relevant brain oscillations by non-invasive rhythmic stimulation of the human brain. Frontiers in Psychology, 2, 170. |
[69] | Tran, T. T., Hoffner, N. C., LaHue, S. C., Tseng, L., & Voytek, B . (2016). Alpha phase dynamics predict age-related visual working memory decline. Neuroimage, 143, 196-203. |
[70] | van Dijk, H., Schoffelen, J.-M., Oostenveld, R., & Jensen, O . (2008). Prestimulus oscillatory activity in the alpha band predicts visual discrimination ability. Journal of Neuroscience, 28(8), 1816-1823. |
[71] |
van Kerkoerle, T., Self, M. W., Dagnino, B., Gariel-Mathis, M.-A., Poort, J., van der Togt, C., & Roelfsema, P. R . (2014). Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex. Proceedings of the National Academy of Sciences, 111(40), 14332-14341.
doi: 10.1073/pnas.1402773111 URL |
[72] |
VanRullen, R . (2016). Perceptual cycles. Trends in Cognitive Sciences, 20(10), 723-735.
doi: 10.1016/j.tics.2016.07.006 URL |
[73] | Varela, F., Lachaux, J.-P., Rodriguez, E., & Martinerie, J . (2001). The brainweb: phase synchronization and large-scale integration. Nature Reviews Neuroscience, 2(4), 229-239. |
[74] | Vosskuhl, J., Strüber, D., & Herrmann, C. S . (2018). Non-invasive brain stimulation: a paradigm shift in understanding brain oscillations. Frontiers in Human Neuroscience, 12. |
[75] | Wang, C.-H., Tseng, Y.-T., Liu, D., & Tsai, C.-L . (2017). Neural oscillation reveals deficits in visuospatial working memory in children with developmental coordination disorder. Child Development, 88(5), 1716-1726. |
[76] | Wang, X.-J . (2010). Neurophysiological and computational principles of cortical rhythms in cognition. Physiological Reviews, 90(3), 1195-1268. |
[77] |
Ward, L. M . (2003). Synchronous neural oscillations and cognitive processes. Trends in Cognitive Sciences, 7(12), 553-559.
doi: 10.1016/j.tics.2003.10.012 URL |
[78] | Watson, B. O., Ding, M. X., & Buzsáki, G . (2018). Temporal coupling of field potentials and action potentials in the neocortex. European Journal of Neuroscience, 48(7), 2482-2497. |
[79] | Wilenius, M. E., & Revonsuo, A. T . (2007). Timing of the earliest ERP correlate of visual awareness. Psychophysiology, 44(5), 703-710. |
[80] |
Witt, J. K., Taylor, J. E. T., Sugovic, M., & Wixted, J. T . (2015). Signal detection measures cannot distinguish perceptual biases from response biases. Perception, 44(3), 289-300.
doi: 10.1068/p7908 URL |
[81] | Worden, M. S., Foxe, J. J., Wang, N., & Simpson, G. V . (2000). Anticipatory biasing of visuospatial attention indexed by retinotopically specific α-band electroencephalography increases over occipital cortex. Journal of Neuroscience, 20( 6), RC63. |
[1] | ZHANG Siyuan, LI Xuebing. The application of different frequencies of transcranial alternating current stimulation in mental disorders [J]. Advances in Psychological Science, 2022, 30(9): 2053-2066. |
[2] | CHEN Liangjie, LIU Lei, GE Zhongshu, YANG Xiaodong, LI Liang. The role of rhythm in auditory speech understanding [J]. Advances in Psychological Science, 2022, 30(8): 1818-1831. |
[3] | YE Chaoqun, LIN Yuhong, LIU Chunlei. Neural oscillation mechanism of creativity [J]. Advances in Psychological Science, 2021, 29(4): 697-706. |
[4] | FANG Lan, ZHENG Yuanyi, JIN Han, LI Xiaoqing, YANG Yufang, WANG Ruiming. Prosodic boundaries in speech: A window to spoken language comprehension [J]. Advances in Psychological Science, 2021, 29(3): 425-437. |
[5] | ZHANG Xiaodan, ZHANG Lijin, DING Yulong, QU Zhe. Behavioral oscillations in attentional processing [J]. Advances in Psychological Science, 2021, 29(3): 460-471. |
[6] | Li Shen, Ruichen Hu, Xiangyong Yuan, Ying Wang, Yi Jiang. Cortical Tracking of Biological Motion Information [J]. Advances in Psychological Science, 2019, 27(suppl.): 80-80. |
[7] | LI Ping, ZHANG Mingming, LI Shuaixia, ZHANG Huoyin, LUO Wenbo. The integration of facial expression and vocal emotion and its brain mechanism [J]. Advances in Psychological Science, 2019, 27(7): 1205-1214. |
[8] | WANG Ping; PAN Zhihui; ZHANG Lijie; CHEN Xuhai. The Integration of Dynamic Facial and Vocal Emotion and Its Neurophysiological Mechanism [J]. Advances in Psychological Science, 2015, 23(7): 1109-1117. |
[9] |
Ren Yanju; Xuan Yuming;Fu Xiaolan.
Information Integration between Visual Short-Term Memory and Visual Perception [J]. , 2007, 15(2): 301-307. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||