[1] |
卜彩丽, 李飒, 王静, 张思, 董乐. (2022). 为深度学习而思:反思日志促进大学生元认知发展的实证研究. 现代教育技术, 32(9), 73-81.
|
[2] |
曹梅, 马悦. (2020). 翻转课堂课前深层次学习的问题生成策略研究. 电化教育研究, 41(11), 101-107.
|
[3] |
郝祥军, 王帆, 汪云华. (2019). 问题支架促进在线知识交互的途径假设与验证. 中国远程教育, 3, 34-42+92-93.
|
[4] |
姜强, 潘星竹, 赵蔚, 刘红霞. (2018). 网络学习空间中教师激励风格对学习投入的影响研究——SDT中内部动机的中介效应. 中国电化教育, 380, 7-16.
|
[5] |
李克东, 赵建华. (2004). 混合学习的原理与应用模式. 电化教育研究, 135, 1-6.
|
[6] |
李卢一, 许蓉, 郑燕林. (2013). ARCS模型视角下网络学习反馈设计. 现代远距离教育, 147, 66-71.
|
[7] |
刘玲, 汪琼. (2021). 混合教学模式下学生学习投入的特点及影响因素研究. 现代教育技术, 31(11), 80-86.
|
[8] |
卢国庆, 刘清堂, 郑清, 谢魁. (2021). 智能教室中环境感知及自我效能感对个体认知投入的影响研究. 远程教育杂志, 39(3), 84-93.
|
[9] |
马志强, 岳芸竹. (2020). 面向即时数据采集与分析的学习投入纵向研究——基于经验取样法与交叉滞后分析的综合应用. 电化教育研究, 41(4), 71-77.
|
[10] |
皮忠玲, 章仪, 杨九民. (2019). 教师手势对视频学习的影响及其认知神经机制. 中国电化教育, 387, 103-110+129.
|
[11] |
钱研, 陈晓慧. (2015). 南加州大学翻转课堂设计原则及其启示. 中国电化教育, 341, 99-103.
|
[12] |
沈霞娟, 张宝辉, 冯锐. (2022). 混合学习环境下的深度学习活动研究: 设计、实施与评价的三重奏. 电化教育研究, 43(1), 106-112.
|
[13] |
师亚飞, 童名文, 王建虎, 孙佳, 戴红斌, 魏艳涛. (2021). 混合同步学习: 演进, 价值与未来议题. 电化教育研究, 42(12), 100-107.
|
[14] |
田浩, 武法提. (2022). 混合场景下协作认知投入的多模态表征与分析路径研究. 远程教育杂志, 40(4), 35-44.
|
[15] |
田阳, 陈鹏, 黄荣怀, 曾海军. (2019). 面向混合学习的多模态交互分析机制及优化策略. 电化教育研究, 40(9), 67-74.
|
[16] |
田媛, 亓栀, 黄湘琳, 向虹钰, 汪颖. (2021). 社会线索促进在线学习的认知神经机制. 电化教育研究, 42(2), 63-69.
|
[17] |
田媛, 席玉婷. (2020). 高校混合课堂教学模式的应用研究. 中国大学教学, 8, 78-86.
|
[18] |
王雪, 高泽红, 徐文文, 张蕾. (2021a). 反馈的情绪设计对视频学习的影响机制研究. 电化教育研究, 42(3), 69-74.
|
[19] |
王雪, 张蕾, 杨文亚, 卢鑫, 徐文文, 高泽红. (2021b). 在线学习资源如何影响学业情绪和学习效果——基于控制—价值理论的元分析. 现代远程教育研究, 33(5), 82-93+ 102.
|
[20] |
王志军, 杨阳. (2019). 认知网络分析法及其应用案例分析. 电化教育研究, 40(6), 27-34.
|
[21] |
温慧群, 穆肃. (2023). 殊途如何同归?——不同复杂度混合教学实践效果的分析. 中国远程教育, 43(2), 64-72.
|
[22] |
伍绍杨, 彭正梅. (2021). 迈向更有效的反馈: 哈蒂“可见的学习”的模式. 开放教育研究, 27(4), 27-40.
|
[23] |
吴忭, 王戈, 盛海曦. (2018). 认知网络分析法: STEM教育中的学习评价新思路. 远程教育杂志, 36(6), 3-10.
|
[24] |
杨九民, 张锐, 蒋玲, 黄磊. (2011). 基于博客提升师范生反思能力的策略及其研究. 中国电化教育, 298, 62-66.
|
[25] |
杨九民, 章仪, 徐珂, 皮忠玲. (2021). 学习策略对视频学习的影响: 想象、绘图和自我解释策略. 电化教育研究, 42(10), 40-47.
|
[26] |
张利钊, 杜旭, 李浩, 谢艺乾, 唐野野. (2022). 基于多模态数据的学习投入评估方法分析. 电化教育研究, 43(10), 72-78.
|
[27] |
张思, 何晶铭, 上超望, 夏丹, 胡泉. (2020). 面向在线学习协同知识建构的认知投入分析模型及应用. 远程教育杂志, 38(4), 95-104.
|
[28] |
赵国庆, 杨宣洋, 熊雅雯. (2019). 论思维可视化工具教学应用的原则和着力点. 电化教育研究, 40(9), 59-66+82.
|
[29] |
周媛, 韩彦凤. (2018). 混合学习活动中学习者学习投入的研究. 电化教育研究, 39(11), 99-105.
|
[30] |
Anthonysamy, L., Koo, A. C., & Hew, S. H. (2020). Self- regulated learning strategies and non-academic outcomes in higher education blended learning environments: A one decade review. Education and Information Technologies, 25, 3677-3704. https://doi.org/10.1007/s10639-020-10134-2
|
[31] |
Appleton, J. J., Christenson, S. L., Kim, D., & Reschly, A. L. (2006). Measuring cognitive and psychological engagement: Validation of the student engagement instrument. Journal of School Psychology, 44(5), 427-445. https://doi.org/10.1016/j.jsp.2006.04.002
|
[32] |
Baceviciute, S., Lucas, G., Terkildsen, T., & Makransky, G. (2022). Investigating the redundancy principle in immersive virtual reality environments: An eye-tracking and EEG study. Journal of Computer Assisted Learning, 38(1), 120-136. https://doi.org/10.1111/jcal.12595
|
[33] |
Bredow, C. A., Roehling, P. V., Knorp, A. J., & Sweet, A. M. (2021). To flip or not to flip? A meta-analysis of the efficacy of flipped learning in higher education. Review of Educational Research, 91(6), 878-918. https://doi.org/10.3102/00346543211019122
|
[34] |
Chi, M. T. H., & Wylie, R. (2014). The ICAP framework: Linking cognitive engagement to active learning outcomes. Educational Psychologist, 49(4), 219-243. https://doi.org/10.1080/00461520.2014.965823
|
[35] |
Dubovi, I. (2022). Cognitive and emotional engagement while learning with VR: The perspective of multimodal methodology. Computers & Education, 183, Article 104495. https://doi.org/10.1016/j.compedu.2022.104495
|
[36] |
Fiorella, L., & Mayer, R. E. (2015). Learning as a generative activity: Eight learning strategies that promote understanding. Cambridge University Press. https://doi.org/10.1017/CBO9781107707085
|
[37] |
Fyfe, E. R., Rittle-Johnson, B., & DeCaro, M. S. (2012). The effects of feedback during exploratory mathematics problem solving: Prior knowledge matters. Journal of Educational Psychology, 104(4), 1094-1108. https://doi.org/10.1037/a0028389
|
[38] |
Garrison, D. R., & Kanuka, H. (2004). Blended learning: Uncovering its transformative potential in higher education. The Internet and Higher Education, 7(2), 95-105. https://doi.org/10.1016/j.iheduc.2004.02.001
|
[39] |
Gašević, D., Adesope, O., Joksimović, S., & Kovanović, V. (2015). Externally-facilitated regulation scaffolding and role assignment to develop cognitive presence in asynchronous online discussions. The Internet and Higher Education, 24, 53-65. https://doi.org/10.1016/j.iheduc.2014.09.006
|
[40] |
Ge, X., & Er, N. (2005). An online support system to scaffold real-world problem solving. Interactive Learning Environments, 13(3), 139-157. https://doi.org/10.1080/10494820500382893
|
[41] |
Greene, B. A. (2015). Measuring cognitive engagement with self-report scales: Reflections from over 20 years of research. Educational Psychologist, 50(1), 14-30. https://doi.org/10.1080/00461520.2014.989230
|
[42] |
Hattie, J., & Timperley, H. (2007). The power of feedback. Review of Educational Research, 77(1), 81-112. https://doi.org/10.3102/003465430298487
|
[43] |
Jusoff, K., & Khodabandelou, R. (2009). Preliminary study on the role of social presence in blended learning environment in higher education. International Education Studies, 2(4), 79-83. https://doi.org/10.5539/ies.v2n4p79
|
[44] |
Krause, K. L., & Coates, H. (2008). Students’ engagement in first-year university. Assessment & Evaluation in Higher Education, 33(5), 493-505. https://doi.org/10.1080/02602930701698892
|
[45] |
Lee, C. (2020). A study of adolescent English learners’ cognitive engagement in writing while using an automated content feedback system. Computer Assisted Language Learning, 33(1-2), 26-57. https://doi.org/10.1080/09588221.2018.1544152
|
[46] |
Lee, V. R., Fischback, L., & Cain, R. (2019). A wearables- based approach to detect and identify momentary engagement in afterschool Makerspace programs. Contemporary Educational Psychology, 59, Article 101789. https://doi.org/10.1016/j.cedpsych.2019.101789
|
[47] |
Li, S., Lajoie, S. P., Zheng, J., Wu, H., & Cheng, H. (2021). Automated detection of cognitive engagement to inform the art of staying engaged in problem-solving. Computers & Education, 163, Article 104114. https://doi.org/10.1016/j.compedu.2020.104114
|
[48] |
Liao, C. H., & Wu, J. Y. (2022). Deploying multimodal learning analytics models to explore the impact of digital distraction and peer learning on student performance. Computers & Education, 190, Article 104599. https://doi.org/10.1016/j.compedu.2022.104599
|
[49] |
Lightner, C. A., & Lightner-Laws, C. A. (2016). A blended model: Simultaneously teaching a quantitative course traditionally, online, and remotely. Interactive Learning Environments, 24(1), 224-238. https://doi.org/10.1080/10494820.2013.841262
|
[50] |
Liu, S., Liu, S., Liu, Z., Peng, X., & Yang, Z. (2022). Automated detection of emotional and cognitive engagement in MOOC discussions to predict learning achievement. Computers & Education, 181, Article 104461. https://doi.org/10.1016/j.compedu.2022.104461
|
[51] |
Miller, B. W. (2015). Using reading times and eye-movements to measure cognitive engagement. Educational Psychologist, 50(1), 31-42. https://doi.org/10.1080/00461520.2015.1004068
|
[52] |
Müller, C., & Mildenberger, T. (2021). Facilitating flexible learning by replacing classroom time with an online learning environment: A systematic review of blended learning in higher education. Educational Research Review, 34, Article 100394. https://doi.org/10.1016/j.edurev.2021.100394
|
[53] |
Porter, W. W., Graham, C. R., Spring, K. A., & Welch, K. R. (2014). Blended learning in higher education: Institutional adoption and implementation. Computers & Education, 75, 185-195. https://doi.org/10.1016/j.compedu.2014.02.011
|
[54] |
Rotgans, J. I., & Schmidt, H. G. (2011). Cognitive engagement in the problem-based learning classroom. Advances in Health Sciences Education, 16(4), 465-479. https://doi.org/10.1007/s10459-011-9272-9
|
[55] |
Sharma, K., & Giannakos, M. (2020). Multimodal data capabilities for learning: What can multimodal data tell us about learning? British Journal of Educational Technology, 51(5), 1450-1484. https://doi.org/10.1111/bjet.12993
|
[56] |
Shute, V. J. (2008). Focus on formative feedback. Review of Educational Research, 78(1), 153-189. https://doi.org/10.3102/0034654307313795
|
[57] |
Sinatra, G. M., Heddy, B. C., & Lombardi, D. (2015). The challenges of defining and measuring student engagement in science. Educational Psychologist, 50(1), 1-13. https://doi.org/10.1080/00461520.2014.1002924
|
[58] |
Walker, C. O., Greene, B. A., & Mansell, R. A. (2006). Identification with academics, intrinsic/extrinsic motivation, and self-efficacy as predictors of cognitive engagement. Learning and Individual Differences, 16(1), 1-12. https://doi.org/10.1016/j.lindif.2005.06.004
|
[59] |
Wang, S. L., & Wu, P. Y. (2008). The role of feedback and self-efficacy on web-based learning: The social cognitive perspective. Computers & Education, 51(4), 1589-1598. https://doi.org/10.1016/j.compedu.2008.03.004
|
[60] |
Xie, K., Vongkulluksn, V. W., Lu, L., & Cheng, S. L. (2020). A person-centered approach to examining high-school students’ motivation, engagement and academic performance. Contemporary Educational Psychology, 62, Article 101877. https://doi.org/10.1016/j.cedpsych.2020.101877
|
[61] |
Xu, B., Chen, N. S., & Chen, G. (2020). Effects of teacher role on student engagement in WeChat-Based online discussion learning. Computers & Education, 157, Article 103956. https://doi.org/10.1016/j.compedu.2020.103956
|
[62] |
Xu, X., Shi, Z., Bos, N. A., & Wu, H. (2023). Student engagement and learning outcomes: An empirical study applying a four-dimensional framework. Medical Education Online, 28(1), Article 2268347. https://doi.org/10.1080/10872981.2023.2268347
|
[63] |
Yu, F. Y., & Kuo, C. W. (2024). A systematic review of published student question-generation systems: Supporting functionalities and design features. Journal of Research on Technology in Education, 56(2), 172-195. https://doi.org/10.1080/15391523.2022.2119448
|