Advances in Psychological Science ›› 2023, Vol. 31 ›› Issue (8): 1460-1476.doi: 10.3724/SP.J.1042.2023.01460
• Regular Articles • Previous Articles Next Articles
HUANG Mei, YANG Ge-Qing, WANG Ying(), JIANG Yi
Received:
2022-10-13
Online:
2023-08-15
Published:
2023-05-12
CLC Number:
HUANG Mei, YANG Ge-Qing, WANG Ying, JIANG Yi. Animacy perception from motion cues: Cognitive and neural mechanisms[J]. Advances in Psychological Science, 2023, 31(8): 1460-1476.
线索类型 | 实验刺激 | 代表性研究 | 研究方法 | 主要结果 | 关键运动特征 |
---|---|---|---|---|---|
模式生物运动线索 | 真实生物运动 | Chang和 Troje ( | 评价光点行走运动的生命性。 | 整体构型打乱而局部运动信息保留的正立光点生物运动相比倒立刺激具有更高的生命性。 | 行走包含的局部运动特征; 符合重力作用的正立运动。 |
Thurman和Lu ( | 评价光点行走运动的生命性。 | 外部平移方向和内部局部运动方向一致比不一致条件生命性高, 正立比倒立条件生命性高。 | 符合重力作用的正立运动; 内外部运动方向一致。 | ||
Larsch和 Baier ( | 用黑点描绘一群斑马鱼的运动, 并实时投影至培养皿下方的屏幕, 观察黑点的运动是否能够吸引培养皿中的斑马鱼结群游动。 | 当黑点运动方式和斑马鱼自身一致时, 斑马鱼会发生结群游动, 提示其将黑点视为同类。 | 斑马鱼自然游动的动力学特征, 如有间断的运动, 每次摆尾的间隔在0.7~0.9 s左右(swim bout interval), 不规则的运动路径(natural path), 摆尾和滑行交替进行的游动等。 | ||
模拟生物运动 | Michotte ( | 评价运动的几何图形的生命性。 | 当方块以有节律地伸长和收缩的方式进行平移, 观察者会感知到生命性。 | 类似于毛毛虫运动的节律性变形和平移。 | |
模式生物运动线索 | 模拟生物运动 | Kawabe ( | 评价光点跳跃运动及从光点跳跃运动抽象出的跳跃矩形的生命性和跳跃印象。 | 模拟跳跃矩形和光点跳跃者引起的生命性知觉差异不显著; 跳跃矩形只含有变形或平移的单一成分时生命性降低, 二者的时间关系对跳跃印象重要, 对生命性知觉影响适中。 | 跳跃运动包含的变形和平移的适当组合。 |
Parovel等 ( | 利用评分的方法选出以何种方式运动的几何图形的生命性更高。 | 以毛毛虫方式运动的方块的生命性高于以线性方式运动的方块。 | 类似于毛毛虫运动的节律性变形和平移。 | ||
Tremoulet和Feldman ( | 比较一个圆形颗粒在某处运动路径上同时改变速度和方向, 一个矩形颗粒在某处路径变速变向的同时短边朝向(主轴方向)和运动方向一致条件和不一致条件下的生命性。 | 速度变化越大, 生命性评分越高; 角度变化越大, 生命性评分越高; 主轴方向和运动方向一致比不一致条件下生命性更高。 | 突然加速、改变方向、自主调整主轴方向和运动方向一致等。 | ||
Szego和 Rutherford ( | 利用二项迫选的方式比较顺应重力下降的点和抵抗重力上升的点哪种生命性更高。 | 在正常垂直放置的屏幕上, 更多的被试认为向上升起的点比下降的点的生命性更高。 | 具有抵抗重力作用的运动模式。 | ||
表现意图的运动线索 | 目标导向运动 | Tremoulet和Feldman ( | 让观察者对不同情景的动画做生命性评分。 | 当一个运动的物体看到静止的圆点后改变方向并朝向圆点前进的情景下, 观察者的生命性评分相比于其他条件会更高。 | 自主性和合理地达成目标。 |
Csibra ( | 利用习惯-去习惯范式研究婴儿对于目标导向运动的注视偏好。 | 尽管盒子是无生命的, 但是当它发出合理的目标导向运动时, 婴儿把目标性赋予执行目标导向行动的盒子。 | 达成目标的合理性和有效性。 | ||
双主体互动运动 | Scholl和 Tremoulet ( | 综述了何种条件下观察者会将两个运动的小球知觉为有物理上的因果关系、何种条件下会知觉为有生命性。 | 球A即将碰撞球B前, 球B就已开始向远离球A的方向运动, 这一动画可被知觉为两个有生命性的小球在追逐和逃离。 | 两互动主体的运动在时空上存在间隔。 | |
多主体互动运动 | Gao等 ( | 利用飞镖或者有眼睛的圆盘等有朝向的形状逼近另一个圆盘, 观察者感知到“一群狼在捕食一只羊”, 从而建立了追逐探测范式。通过操纵朝向, 让被试判断追逐是否存在或者让被试操作代表羊的圆盘来躲避“狼群”。 | 当“狼群”的朝向始终指向“羊”相比于朝向偏离“羊”90度的条件, 追逐检测率更高; 当一群飞镖始终朝向被试操作的圆盘时, 被试躲避真正的狼的表现显著下降。 | “捕食者”对“被捕食者”的朝向。 | |
Meyerhoff等( | 利用追踪探测范式研究观察者如何在一群分心物中发现追逐。 | 减小追逐距离会降低探测到追逐的时间。 | “捕食者”与“被捕食者”的空间邻近性。 |
线索类型 | 实验刺激 | 代表性研究 | 研究方法 | 主要结果 | 关键运动特征 |
---|---|---|---|---|---|
模式生物运动线索 | 真实生物运动 | Chang和 Troje ( | 评价光点行走运动的生命性。 | 整体构型打乱而局部运动信息保留的正立光点生物运动相比倒立刺激具有更高的生命性。 | 行走包含的局部运动特征; 符合重力作用的正立运动。 |
Thurman和Lu ( | 评价光点行走运动的生命性。 | 外部平移方向和内部局部运动方向一致比不一致条件生命性高, 正立比倒立条件生命性高。 | 符合重力作用的正立运动; 内外部运动方向一致。 | ||
Larsch和 Baier ( | 用黑点描绘一群斑马鱼的运动, 并实时投影至培养皿下方的屏幕, 观察黑点的运动是否能够吸引培养皿中的斑马鱼结群游动。 | 当黑点运动方式和斑马鱼自身一致时, 斑马鱼会发生结群游动, 提示其将黑点视为同类。 | 斑马鱼自然游动的动力学特征, 如有间断的运动, 每次摆尾的间隔在0.7~0.9 s左右(swim bout interval), 不规则的运动路径(natural path), 摆尾和滑行交替进行的游动等。 | ||
模拟生物运动 | Michotte ( | 评价运动的几何图形的生命性。 | 当方块以有节律地伸长和收缩的方式进行平移, 观察者会感知到生命性。 | 类似于毛毛虫运动的节律性变形和平移。 | |
模式生物运动线索 | 模拟生物运动 | Kawabe ( | 评价光点跳跃运动及从光点跳跃运动抽象出的跳跃矩形的生命性和跳跃印象。 | 模拟跳跃矩形和光点跳跃者引起的生命性知觉差异不显著; 跳跃矩形只含有变形或平移的单一成分时生命性降低, 二者的时间关系对跳跃印象重要, 对生命性知觉影响适中。 | 跳跃运动包含的变形和平移的适当组合。 |
Parovel等 ( | 利用评分的方法选出以何种方式运动的几何图形的生命性更高。 | 以毛毛虫方式运动的方块的生命性高于以线性方式运动的方块。 | 类似于毛毛虫运动的节律性变形和平移。 | ||
Tremoulet和Feldman ( | 比较一个圆形颗粒在某处运动路径上同时改变速度和方向, 一个矩形颗粒在某处路径变速变向的同时短边朝向(主轴方向)和运动方向一致条件和不一致条件下的生命性。 | 速度变化越大, 生命性评分越高; 角度变化越大, 生命性评分越高; 主轴方向和运动方向一致比不一致条件下生命性更高。 | 突然加速、改变方向、自主调整主轴方向和运动方向一致等。 | ||
Szego和 Rutherford ( | 利用二项迫选的方式比较顺应重力下降的点和抵抗重力上升的点哪种生命性更高。 | 在正常垂直放置的屏幕上, 更多的被试认为向上升起的点比下降的点的生命性更高。 | 具有抵抗重力作用的运动模式。 | ||
表现意图的运动线索 | 目标导向运动 | Tremoulet和Feldman ( | 让观察者对不同情景的动画做生命性评分。 | 当一个运动的物体看到静止的圆点后改变方向并朝向圆点前进的情景下, 观察者的生命性评分相比于其他条件会更高。 | 自主性和合理地达成目标。 |
Csibra ( | 利用习惯-去习惯范式研究婴儿对于目标导向运动的注视偏好。 | 尽管盒子是无生命的, 但是当它发出合理的目标导向运动时, 婴儿把目标性赋予执行目标导向行动的盒子。 | 达成目标的合理性和有效性。 | ||
双主体互动运动 | Scholl和 Tremoulet ( | 综述了何种条件下观察者会将两个运动的小球知觉为有物理上的因果关系、何种条件下会知觉为有生命性。 | 球A即将碰撞球B前, 球B就已开始向远离球A的方向运动, 这一动画可被知觉为两个有生命性的小球在追逐和逃离。 | 两互动主体的运动在时空上存在间隔。 | |
多主体互动运动 | Gao等 ( | 利用飞镖或者有眼睛的圆盘等有朝向的形状逼近另一个圆盘, 观察者感知到“一群狼在捕食一只羊”, 从而建立了追逐探测范式。通过操纵朝向, 让被试判断追逐是否存在或者让被试操作代表羊的圆盘来躲避“狼群”。 | 当“狼群”的朝向始终指向“羊”相比于朝向偏离“羊”90度的条件, 追逐检测率更高; 当一群飞镖始终朝向被试操作的圆盘时, 被试躲避真正的狼的表现显著下降。 | “捕食者”对“被捕食者”的朝向。 | |
Meyerhoff等( | 利用追踪探测范式研究观察者如何在一群分心物中发现追逐。 | 减小追逐距离会降低探测到追逐的时间。 | “捕食者”与“被捕食者”的空间邻近性。 |
[1] |
刘佳, 胡金生, 江宏君, 刘莹. (2021). 孤独症谱系障碍者基于运动线索的生命知觉. 心理科学, 44(4), 1012-1017. https://doi.org/10.16719/j.cnki.1671-6981.20210434
doi: https://doi.org/10.16719/j.cnki.1671-6981.20210434 |
[2] |
Allison, T., Puce, A., & McCarthy, G. (2000). Social perception from visual cues: Role of the STS region. Trends in Cognitive Sciences, 4(7), 267-278. https://doi.org/10.1016/S1364-6613(00)01501-1
doi: 10.1016/s1364-6613(00)01501-1 pmid: 10859571 |
[3] |
Beauchamp, M. S., Lee, K. E., Haxby, J. V., & Martin, A. (2003). fMRI responses to video and point-light displays of moving humans and manipulable objects. Journal of Cognitive Neuroscience, 15(7), 991-1001. https://doi.org/10.1162/089892903770007380
doi: https://doi.org/10.1162/089892903770007380 pmid: 14614810 |
[4] |
Biro, S., Csibra, G., & Gergely, G. (2007). The role of behavioral cues in understanding goal-directed actions in infancy. Progress in Brain Research, 164, 303-322. https://doi.org/10.1016/S0079-6123(07)64017-5
doi: https://doi.org/10.1016/S0079-6123(07)64017-5 pmid: 17920439 |
[5] |
Blakemore, S. J., Boyer, P., Pachot-Clouard, M., Meltzoff, A., Segebarth, C., & Decety, J. (2003). The detection of contingency and animacy from simple animations in the human brain. Cerebral Cortex, 13(8), 837-844. https://doi.org/10.1093/cercor/13.8.837
doi: https://doi.org/10.1093/cercor/13.8.837 pmid: 12853370 |
[6] |
Calvillo, D. P., & Hawkins, W. C. (2016). Animate objects are detected more frequently than inanimate objects in inattentional blindness tasks independently of threat. The Journal of General Psychology, 143(2), 101-115. https://doi.org/10.1080/00221309.2016.1163249
doi: https://doi.org/10.1080/00221309.2016.1163249 URL |
[7] |
Calvillo, D. P., & Jackson, R. E. (2014). Animacy, perceptual load, and inattentional blindness. Psychonomic Bulletin and Review, 21(3), 670-675. https://doi.org/10.3758/s13423-013-0543-8
doi: https://doi.org/10.3758/s13423-013-0543-8 URL |
[8] |
Castelli, F., Happé, F., Frith, U., & Frith, C. (2000). Movement and mind: A functional imaging study of perception and interpretation of complex intentional movement patterns. NeuroImage, 12(3), 314-325. https://doi.org/10.1006/nimg.2000.0612
doi: 10.1006/nimg.2000.0612 pmid: 10944414 |
[9] |
Castro-González, Á., Admoni, H., & Scassellati, B. (2016). Effects of form and motion on judgments of social robots’ animacy, likability, trustworthiness and unpleasantness. International Journal of Human Computer Studies, 90, 27-38. https://doi.org/10.1016/j.ijhcs.2016.02.004
doi: https://doi.org/10.1016/j.ijhcs.2016.02.004 URL |
[10] |
Chang, D. H. F., Ban, H., Ikegaya, Y., Fujita, I., & Troje, N. F. (2018). Cortical and subcortical responses to biological motion. NeuroImage, 174, 87-96. https://doi.org/10.1016/j.neuroimage.2018.03.013
doi: S1053-8119(18)30208-8 pmid: 29524623 |
[11] |
Chang, D. H. F., & Troje, N. F. (2008). Perception of animacy and direction from local biological motion signals. Journal of Vision, 8(5), 1-10. https://doi.org/10.1167/8.5.3
doi: https://doi.org/10.1167/8.5.3 |
[12] |
Clarke, T. J., Bradshaw, M. F., Field, D. T., Hampson, S. E., & Rose, D. (2005). The perception of emotion from body movement in point-light displays of interpersonal dialogue. Perception, 34(10), 1171-1180. https://doi.org/10.1068/p5203
doi: https://doi.org/10.1068/p5203 pmid: 16309112 |
[13] |
Congiu, S., Schlottmann, A., & Ray, E. (2010). Unimpaired perception of social and physical causality, but impaired perception of animacy in high functioning children with autism. Journal of Autism and Developmental Disorders, 40(1), 39-53. https://doi.org/10.1007/s10803-009-0824-2
doi: 10.1007/s10803-009-0824-2 pmid: 19636691 |
[14] |
Csibra, G. (2003). Teleological and referential understanding of action in infancy. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 358(1431), 447-458. https://doi.org/10.1098/rstb.2002.1235
doi: https://doi.org/10.1098/rstb.2002.1235 |
[15] |
Csibra, G. (2008). Goal attribution to inanimate agents by 6.5-month-old infants. Cognition, 107(2), 705-717. https://doi.org/10.1016/J.COGNITION.2007.08.001
doi: https://doi.org/10.1016/J.COGNITION.2007.08.001 pmid: 17869235 |
[16] |
Csibra, G., & Gergely, G. (1998). The teleological origins of mentalistic action explanations: A developmental hypothesis. Developmental Science, 1(2), 255-259. https://doi.org/10.1111/1467-7687.00039
doi: https://doi.org/10.1111/1467-7687.00039 URL |
[17] |
Csibra, G., Gergely, G., Bíró, S., Koós, O., & Brockbank, M. (1999). Goal attribution without agency cues: The perception of “pure reason” in infancy. Cognition, 72(3), 237-267. https://doi.org/10.1016/S0010-0277(99)00039-6
doi: https://doi.org/10.1016/S0010-0277(99)00039-6 pmid: 10519924 |
[18] |
de la Rosa, S., Ekramnia, M., & Bülthoff, H. H. (2016). Action recognition and movement direction discrimination tasks are associated with different adaptation patterns. Frontiers in Human Neuroscience, 10(2016), 56-56. https://doi.org/10.3389/fnhum.2016.00056
doi: https://doi.org/10.3389/fnhum.2016.00056 |
[19] |
Di Giorgio, E., Lunghi, M., Simion, F., & Vallortigara, G. (2017). Visual cues of motion that trigger animacy perception at birth: The case of self-propulsion. Developmental Science, 20(4), 1-12. https://doi.org/10.1111/desc.12394
doi: https://doi.org/10.1111/desc.12394 |
[20] |
Di Giorgio, E., Lunghi, M., Vallortigara, G., & Simion, F. (2021). Newborns’ sensitivity to speed changes as a building block for animacy perception. Scientific Reports, 11(1), 542. https://doi.org/10.1038/s41598-020-79451-3
doi: 10.1038/s41598-020-79451-3 pmid: 33436701 |
[21] |
Dittrich, W. H., & Lea, S. E. (1994). Visual perception of intentional motion. Perception, 23(3), 253-268. https://doi.org/10.1068/p230253
doi: https://doi.org/10.1068/p230253 pmid: 7971105 |
[22] |
Duarte, J. V., Abreu, R., & Castelo-Branco, M. (2022). A two-stage framework for neural processing of biological motion. NeuroImage, 259(5), 119403. https://doi.org/10.1016/j.neuroimage.2022.119403
doi: https://doi.org/10.1016/j.neuroimage.2022.119403 URL |
[23] |
Frankenhuis, W. E., House, B., Clark Barrett, H., & Johnson, S. P. (2013). Infants’ perception of chasing. Cognition, 126(2), 224-233. https://doi.org/10.1016/J.COGNITION.2012.10.001
doi: 10.1016/j.cognition.2012.10.001 pmid: 23121710 |
[24] |
Frith, C. D., & Frith, U. (1999). Interacting minds—A biological basis. Science, 286(5445), 1692-1695. https://doi.org/10.1126/science.286.5445.1692
doi: 10.1126/science.286.5445.1692 pmid: 10576727 |
[25] |
Gao, T., McCarthy, G., & Scholl, B. J. (2010). The wolfpack effect: Perception of animacy irresistibly influences interactive behavior. Psychological Science, 21(12), 1845-1853. https://doi.org/10.1177/0956797610388814
doi: https://doi.org/10.1177/0956797610388814 URL |
[26] |
Gergely, G., Nádasdy, Z., Csibra, G., & Bíró, S. (1995). Taking the intentional stance at 12 months of age. Cognition, 56(2), 165-193. https://doi.org/10.1016/0010-0277(95)00661-H
doi: https://doi.org/10.1016/0010-0277(95)00661-H pmid: 7554793 |
[27] |
Grill-Spector, K., & Weiner, K. S. (2014). The functional architecture of the ventral temporal cortex and its role in categorization. Nature Reviews Neuroscience, 15(8), 536-548. https://doi.org/10.1038/nrn3747
doi: 10.1038/nrn3747 pmid: 24962370 |
[28] |
Hagen, T., Espeseth, T., & Laeng, B. (2018). Chasing animals with split attention: Are animals prioritized in visual tracking? i-Perception, 9(5), https://doi.org/10.1177/2041669518795932
doi: https://doi.org/10.1177/2041669518795932 |
[29] |
Hamilton, A. F., & Grafton, S. T. (2006). Goal representation in human anterior intraparietal sulcus. Journal of Neuroscience, 26(4), 1133-1137. https://doi.org/10.1523/JNEUROSCI.4551-05.2006
doi: 10.1523/JNEUROSCI.4551-05.2006 pmid: 16436599 |
[30] |
Heider, F., & Simmel, M. (1944). An Experimental Study of Apparent Behavior. The American Journal of Psychology, 57(2), 243-259. https://doi.org/10.2307/1416950
doi: https://doi.org/10.2307/1416950 URL |
[31] |
Hirai, M., & Senju, A. (2020). The two-process theory of biological motion processing. Neuroscience and Biobehavioral Reviews, 111, 114-124. https://doi.org/10.1016/j.neubiorev.2020.01.010
doi: S0149-7634(18)30728-0 pmid: 31945392 |
[32] |
Hofrichter, R., Mueller, M. E., & Rutherford, M. D. (2021). Children’s Perception of Animacy: Social Attributions to Moving Figures. Perception, 50(5), 387-398. https://doi.org/10.1177/03010066211010142
doi: 10.1177/03010066211010142 pmid: 33951950 |
[33] |
Johansson, G. (1973). Visual perception of biological motion and a model for its analysis. Perception & Psychophysics, 14(2), 201-211. https://doi.org/10.3758/BF03212378
doi: https://doi.org/10.3758/BF03212378 URL |
[34] |
Johnson, M. H. (2006). Biological Motion: A Perceptual Life Detector? Current Biology, 16(10), 376-377. https://doi.org/10.1016/J.CUB.2006.04.008
doi: https://doi.org/10.1016/J.CUB.2006.04.008 pmid: 16713949 |
[35] |
Kaduk, K., Elsner, B., & Reid, V. M. (2013). Discrimination of animate and inanimate motion in 9-month-old infants: An ERP study. Developmental Cognitive Neuroscience, 6, 14-22. https://doi.org/10.1016/j.dcn.2013.05.003
doi: 10.1016/j.dcn.2013.05.003 pmid: 23811318 |
[36] |
Kawabe, T. (2017). Perceiving animacy from deformation and translation. I-Perception, 8(3), 1-14. https://doi.org/10.1177/2041669517707767
doi: https://doi.org/10.1177/2041669517707767 |
[37] |
Kriegeskorte, N., Mur, M., Ruff, D. A., Kiani, R., Bodurka, J., Esteky, H., Tanaka, K., & Bandettini, P. A. (2008). Matching categorical object representations in inferior temporal cortex of man and monkey. Neuron, 60(6), 1126-1141. https://doi.org/10.1016/j.neuron.2008.10.043
doi: 10.1016/j.neuron.2008.10.043 pmid: 19109916 |
[38] |
Landsiedel, J., Daughters, K., Downing, P. E., & Koldewyn, K. (2022). The role of motion in the neural representation of social interactions in the posterior temporal cortex. NeuroImage, 262(4), 119533. https://doi.org/10.1016/j.neuroimage.2022.119533
doi: https://doi.org/10.1016/j.neuroimage.2022.119533 URL |
[39] |
Larsch, J., & Baier, H. (2018). Biological motion as an innate perceptual mechanism driving social affiliation. Current Biology, 28(22), 3523-3532. https://doi.org/10.1016/j.cub.2018.09.014
doi: S0960-9822(18)31209-0 pmid: 30393036 |
[40] |
Looser, C. E., & Wheatley, T. (2010). The tipping point of animacy: How, when, and where we perceive life in a face. Psychological Science, 21(12), 1854-1862. https://doi.org/10.1177/0956797610388044
doi: https://doi.org/10.1177/0956797610388044 URL |
[41] |
Lorenzi, E., Mayer, U., Rosa-Salva, O., & Vallortigara, G. (2017). Dynamic features of animate motion activate septal and preoptic areas in visually naïve chicks (Gallus gallus). Neuroscience, 354, 54-68. https://doi.org/10.1016/J.NEUROSCIENCE.2017.04.022
doi: S0306-4522(17)30280-4 pmid: 28450266 |
[42] |
Ma, X., Yuan, X., Liu, J., Shen, L., Yu, Y., Zhou, W., Liu, Z., & Jiang, Y. (2022). Gravity-dependent animacy perception in zebrafish. Research, 1-12. https://doi.org/10.34133/2022/9829016
doi: https://doi.org/10.34133/2022/9829016 |
[43] |
Meyerhoff, H. S., Schwan, S., & Huff, M. (2014). Perceptual animacy: Visual search for chasing objects among distractors. Journal of Experimental Psychology: Human Perception and Performance, 40(2), 702-717. https://doi.org/10.1037/a0034846
doi: https://doi.org/10.1037/a0034846 URL |
[44] | Michotte, A. (1963). The perception of causality (T. R. Miles, & E. Miles, Trans.). New York: Basic Books. (Original work published 1946) |
[45] |
Mochon, S., & McMahon, T. A. (1980). Ballistic walking. Journal of Biomechanics, 13(1), 49-57. https://doi.org/10.1016/0021-9290(80)90007-X
doi: 10.1016/0021-9290(80)90007-x pmid: 7354094 |
[46] |
New, J., Cosmides, L., & Tooby, J. (2007). Category- specific attention for animals reflects ancestral priorities, not expertise. Proceedings of the National Academy of Sciences of the United States of America, 104(42), 16598-16603. https://doi.org/10.1073/pnas.0703913104
doi: https://doi.org/10.1073/pnas.0703913104 |
[47] |
Parovel, G., Guidi, S., & Kreß, K. (2018). Different contexts change the impression of animacy. Attention, Perception, and Psychophysics, 80(2), 553-563. https://doi.org/10.3758/s13414-017-1439-x
doi: https://doi.org/10.3758/s13414-017-1439-x |
[48] |
Pelphrey, K. A., Mitchell, T. V., McKeown, M. J., Goldstein, J., Allison, T., & McCarthy, G. (2003). Brain activity evoked by the perception of human walking: Controlling for meaningful coherent motion. Journal of Neuroscience, 23(17), 6819-6825. https://doi.org/10.1523/jneurosci.23-17-06819.2003
doi: https://doi.org/10.1523/jneurosci.23-17-06819.2003 pmid: 12890776 |
[49] |
Pelphrey, K. A., Morris, J. P., & McCarthy, G. (2004). Grasping the intentions of others: The perceived intentionality of an action influences activity in the superior temporal sulcus during social perception. Journal of Cognitive Neuroscience, 16(10), 1706-1716. https://doi.org/10.1162/0898929042947900
doi: 10.1162/0898929042947900 pmid: 15701223 |
[50] |
Pinsk, M. A., Arcaro, M., Weiner, K. S., Kalkus, J. F., Inati, S. J., Gross, C. G., & Kastner, S. (2009). Neural representations of faces and body parts in macaque and human cortex: A comparative fMRI study. Journal of Neurophysiology, 101(5), 2581-2600. https://doi.org/10.1152/jn.91198.2008
doi: 10.1152/jn.91198.2008 pmid: 19225169 |
[51] |
Pollick, F. E., Kay, J. W., Heim, K., & Stringer, R. (2005). Gender recognition from point-light walkers. Journal of Experimental Psychology. Human Perception and Performance, 31(6), 1247-1265. https://doi.org/10.1037/0096-1523.31.6.1247
doi: https://doi.org/10.1037/0096-1523.31.6.1247 URL |
[52] |
Premack, D. (1990). The infant’s theory of self-propelled objects. Cognition, 36(1), 1-16. https://doi.org/10.1016/0010-0277(90)90051-K
doi: https://doi.org/10.1016/0010-0277(90)90051-K pmid: 2383967 |
[53] |
Proklova, D., & Goodale, M. A. (2022). The role of animal faces in the animate-inanimate distinction in the ventral temporal cortex. Neuropsychologia, 169, 108192. https://doi.org/10.1016/j.neuropsychologia.2022.108192
doi: https://doi.org/10.1016/j.neuropsychologia.2022.108192 URL |
[54] |
Ramsey, R., & Hamilton, A. F. (2010). Triangles have goals too: Understanding action representation in left aIPS. Neuropsychologia, 48(9), 2773-2776. https://doi.org/10.1016/j.neuropsychologia.2010.04.028
doi: 10.1016/j.neuropsychologia.2010.04.028 pmid: 20434468 |
[55] |
Ritchie, J. B., Zeman, A. A., Bosmans, J., Sun, S., Verhaegen, K., & Op de Beeck, H. P. (2021). Untangling the animacy organization of occipitotemporal cortex. Journal of Neuroscience, 41(33), 7103-7119. https://doi.org/10.1523/JNEUROSCI.2628-20.2021
doi: 10.1523/JNEUROSCI.2628-20.2021 pmid: 34230104 |
[56] |
Rosa-Salva, O., Hernik, M., Broseghini, A., & Vallortigara, G. (2018). Visually-naïve chicks prefer agents that move as if constrained by a bilateral body-plan. Cognition, 173, 106-114. https://doi.org/10.1016/J.COGNITION.2018.01.004
doi: S0010-0277(18)30012-X pmid: 29367016 |
[57] |
Rosa-Salva, O., Mayer, U., & Vallortigara, G. (2015). Roots of a social brain: Developmental models of emerging animacy-detection mechanisms. Neuroscience and Biobehavioral Reviews, 50, 150-168. https://doi.org/10.1016/j.neubiorev.2014.12.015
doi: 10.1016/j.neubiorev.2014.12.015 pmid: 25544151 |
[58] |
Rutherford, M. D., Pennington, B. F., & Rogers, S. J. (2006). The perception of animacy in young children with autism. Journal of Autism and Developmental Disorders, 36(8), 983-992. https://doi.org/10.1007/s10803-006-0136-8
doi: https://doi.org/10.1007/s10803-006-0136-8 pmid: 16897392 |
[59] |
Santos, N. S., David, N., Bente, G., & Vogeley, K. (2008). Parametric induction of animacy experience. Consciousness and Cognition, 17(2), 425-437. https://doi.org/10.1016/j.concog.2008.03.012
doi: 10.1016/j.concog.2008.03.012 pmid: 18440830 |
[60] |
Santos, N. S., Kuzmanovic, B., David, N., Rotarska-Jagiela, A., Eickhoff, S. B., Shah, J. N., … Vogeley, K. (2010). Animated brain: A functional neuroimaging study on animacy experience. NeuroImage, 53(1), 291-302. https://doi.org/10.1016/j.neuroimage.2010.05.080
doi: 10.1016/j.neuroimage.2010.05.080 pmid: 20570742 |
[61] |
Saygin, A. P., Wilson, S. M., Hagler, D. J., Bates, E., & Sereno, M. I. (2004). Point-light biological motion perception activates human premotor cortex. Journal of Neuroscience, 24(27), 6181-6188. https://doi.org/10.1523/JNEUROSCI.0504-04.2004
doi: 10.1523/JNEUROSCI.0504-04.2004 pmid: 15240810 |
[62] |
Scholl, B. J., & Tremoulet, P. D. (2000). Perceptual causality and animacy. Trends in Cognitive Sciences, 4(8), 299-309. https://doi.org/10.1016/S1364-6613(00)01506-0
doi: https://doi.org/10.1016/S1364-6613(00)01506-0 pmid: 10904254 |
[63] |
Schultz, J., & Bülthoff, H. H. (2019). Perceiving animacy purely from visual motion cues involves intraparietal sulcus. NeuroImage, 197, 120-132. https://doi.org/https://doi.org/10.1016/j.neuroimage.2019.04.058
doi: S1053-8119(19)30344-1 pmid: 31028922 |
[64] |
Schultz, J., Friston, K. J., O’Doherty, J., Wolpert, D. M., & Frith, C. D. (2005). Activation in posterior superior temporal sulcus parallels parameter inducing the percept of animacy. Neuron, 45(4), 625-635. https://doi.org/10.1016/j.neuron.2004.12.052
doi: https://doi.org/10.1016/j.neuron.2004.12.052 pmid: 15721247 |
[65] |
Schultz, J., Imamizu, H., Kawato, M., & Frith, C. D. (2004). Activation of the human superior temporal gyrus during observation of goal attribution by intentional objects. Journal of Cognitive Neuroscience, 16(10), 1695-1705. https://doi.org/10.1162/0898929042947874
doi: https://doi.org/10.1162/0898929042947874 pmid: 15701222 |
[66] |
Schultz, R. T., Grelotti, D. J., Klin, A., Kleinman, J., Van der Gaag, C., Marois, R., & Skudlarski, P. (2003). The role of the fusiform face area in social cognition: Implications for the pathobiology of autism. Philosophical Transactions of the Royal Society B: Biological Sciences, 358(1430), 415-427. https://doi.org/10.1098/rstb.2002.1208
doi: https://doi.org/10.1098/rstb.2002.1208 URL |
[67] |
Sha, L., Haxby, J. V., Abdi, H., Guntupalli, J. S., Oosterhof, N. N., Halchenko, Y. O., & Connolly, A. C. (2015). The animacy continuum in the human ventral vision pathway. Journal of Cognitive Neuroscience, 27(4), 665-678. https://doi.org/10.1162/jocn_a_00733
doi: 10.1162/jocn_a_00733 pmid: 25269114 |
[68] |
Shultz, S., Lee, S. M., Pelphrey, K., & Mccarthy, G. (2011). The posterior superior temporal sulcus is sensitive to the outcome of human and non-human goal-directed actions. Social Cognitive and Affective Neuroscience, 6(5), 602-611. https://doi.org/10.1093/scan/nsq087
doi: 10.1093/scan/nsq087 pmid: 21097958 |
[69] |
Shultz, S., & McCarthy, G. (2012). Goal-directed actions activate the face-sensitive posterior superior temporal sulcus and fusiform gyrus in the absence of human-like perceptual cues. Cerebral Cortex, 22(5), 1098-1106. https://doi.org/10.1093/cercor/bhr180
doi: https://doi.org/10.1093/cercor/bhr180 URL |
[70] |
Shultz, S., & McCarthy, G. (2014). Perceived animacy influences the processing of human-like surface features in the fusiform gyrus. Neuropsychologia, 60(1), 115-120. https://doi.org/10.1016/j.neuropsychologia.2014.05.019
doi: https://doi.org/10.1016/j.neuropsychologia.2014.05.019 URL |
[71] |
Shultz, S., van den Honert, R. N., Engell, A. D., & McCarthy, G. (2015). Stimulus-induced reversal of information flow through a cortical network for animacy perception. Social Cognitive and Affective Neuroscience, 10(1), 129-135. https://doi.org/10.1093/scan/nsu028
doi: 10.1093/scan/nsu028 pmid: 24625785 |
[72] |
Simion, F., Regolin, L., & Bulf, H. (2008). A predisposition for biological motion in the newborn baby. Proceedings of the National Academy of Sciences of the United States of America, 105(2), 809-813. https://doi.org/10.1073/pnas.0707021105
doi: 10.1073/pnas.0707021105 pmid: 18174333 |
[73] |
Sokolov, A. A., Zeidman, P., Erb, M., Ryvlin, P., Friston, K. J., & Pavlova, M. A. (2018). Structural and effective brain connectivity underlying biological motion detection. Proceedings of the National Academy of Sciences of the United States of America, 115(51), E12034-E12042. https://doi.org/10.1073/pnas.1812859115
doi: https://doi.org/10.1073/pnas.1812859115 |
[74] | Stewart, J. A. (1982). Perception of animacy (Unpublished doctoral dissertation). University of Pennsylvania, Philadelphia. |
[75] |
Szego, P. A., & Rutherford, M. D. (2008). Dissociating the perception of speed and the perception of animacy: A functional approach. Evolution and Human Behavior, 29(5), 335-342. https://doi.org/10.1016/j.evolhumbehav.2008.04.002
doi: https://doi.org/10.1016/j.evolhumbehav.2008.04.002 URL |
[76] |
Takahashi, K., & Watanabe, K. (2015). Synchronous motion modulates animacy perception. Journal of Vision, 15(8), 1-17. https://doi.org/10.1167/15.8.17
doi: https://doi.org/10.1167/15.8.17 |
[77] |
Thorat, S., Proklova, D., & Peelen, M. V. (2019). The nature of the animacy organization in human ventral temporal cortex. ELife, 8, 1-18. https://doi.org/10.7554/eLife.47142
doi: https://doi.org/10.7554/eLife.47142 |
[78] |
Thurman, S. M., & Lu, H. (2013). Physical and biological constraints govern perceived animacy of scrambled human forms. Psychological Science, 24(7), 1133-1141. https://doi.org/10.1177/0956797612467212
doi: 10.1177/0956797612467212 pmid: 23670885 |
[79] |
Tremoulet, P. D., & Feldman, J. (2000). Perception of animacy from the motion of a single object. Perception, 29(8), 943-951. https://doi.org/10.1068/p3101
doi: https://doi.org/10.1068/p3101 pmid: 11145086 |
[80] |
Tremoulet, P. D., & Feldman, J. (2006). The influence of spatial context and the role of intentionality in the interpretation of animacy from motion. Perception and Psychophysics, 68(6), 1047-1058. https://doi.org/10.3758/BF03193364
doi: https://doi.org/10.3758/BF03193364 pmid: 17153197 |
[81] | Troje, N. F., & Chang, D. H. F. (2013). Shape-independent processing of biological motion. In K. L. Johnson & M. Shiffrar (Eds.), People watching: Social, perceptual, and neurophysiological studies of body perception (pp. 82- 100). New York: Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195393705.003.0006 |
[82] |
Troje, N. F., & Westhoff, C. (2006). The inversion effect in biological motion perception: Evidence for a “life detector”? Current Biology, 16(8), 821-824. https://doi.org/10.1016/j.cub.2006.03.022
doi: https://doi.org/10.1016/j.cub.2006.03.022 URL |
[83] |
Vallortigara, G., & Regolin, L. (2006). Gravity bias in the interpretation of biological motion by inexperienced chicks. Current Biology, 16(8), 279-280. https://doi.org/10.1016/j.cub.2006.03.052
doi: https://doi.org/10.1016/j.cub.2006.03.052 pmid: 16631570 |
[84] |
Vanmarcke, S., van de Cruys, S., Moors, P., & Wagemans, J. (2017). Intact animacy perception during chase detection in ASD. Scientific Reports, 7(1), 1-10. https://doi.org/10.1038/s41598-017-12204-x
doi: https://doi.org/10.1038/s41598-017-12204-x |
[85] |
Walbrin, J., Downing, P., & Koldewyn, K. (2018). Neural responses to visually observed social interactions. Neuropsychologia, 112(2), 31-39. https://doi.org/10.1016/j.neuropsychologia.2018.02.023
doi: https://doi.org/10.1016/j.neuropsychologia.2018.02.023 URL |
[86] |
Wang, L., & Jiang, Y. (2012). Life motion signals lengthen perceived temporal duration. Proceedings of the National Academy of Sciences of the United States of America, 109(11), 1-5. https://doi.org/10.1073/pnas.1115515109
doi: https://doi.org/10.1073/pnas.1115515109 |
[87] |
Wang, Y., & Jiang, Y. (2014). Integration of 3D structure from disparity into biological motion perception independent of depth awareness. PLoS ONE, 9(2), e89238. https://doi.org/10.1371/journal.pone.0089238
doi: https://doi.org/10.1371/journal.pone.0089238 URL |
[88] |
Wang, Y., Wang, L., Xu, Q., Liu, D., Chen, L., Troje, N. F., He, S., & Jiang, Y. (2018). Heritable aspects of biological motion perception and its covariation with autistic traits. Proceedings of the National Academy of Sciences of the United States of America, 115(8), 1937-1942. https://doi.org/10.1073/pnas.1714655115
doi: 10.1073/pnas.1714655115 pmid: 29358377 |
[89] |
Wang, Y., Wang, L., Xu, Q., Liu, D., & Jiang, Y. (2014). Domain-Specific Genetic Influence on Visual-Ambiguity Resolution. Psychological Science, 25(8), 1600-1607. https://doi.org/10.1177/0956797614535811
doi: 10.1177/0956797614535811 pmid: 24914030 |
[90] |
Wang, Y., Zhang, X., Wang, C., Huang, W., Xu, Q., Liu, D., … Jiang, Y. (2022). Modulation of biological motion perception in humans by gravity. Nature Communications, 13(1), 1-10. https://doi.org/10.1038/s41467-022-30347-y
doi: https://doi.org/10.1038/s41467-022-30347-y |
[91] |
Waytz, A., Gray, K., Epley, N., & Wegner, D. M. (2010). Causes and consequences of mind perception. Trends in Cognitive Sciences, 14(8), 383-388. https://doi.org/10.1016/j.tics.2010.05.006
doi: 10.1016/j.tics.2010.05.006 pmid: 20579932 |
[92] |
Wheatley, T., Milleville, S. C., & Martin, A. (2007). Understanding animate agents: Distinct roles for the social network and mirror system: Research report. Psychological Science, 18(6), 469-474. https://doi.org/10.1111/j.1467-9280.2007.01923.x
doi: https://doi.org/10.1111/j.1467-9280.2007.01923.x |
[93] |
Yang, X., Cai, P., & Jiang, Y. (2014). Effects of walker gender and observer gender on biological motion walking direction discrimination. PsyCh Journal, 3(3), 169-176. https://doi.org/10.1002/pchj.53
doi: 10.1002/pchj.53 pmid: 26271936 |
[94] |
Zhang, X., Xu, Q., Jiang, Y., & Wang, Y. (2017). The interaction of perceptual biases in bistable perception. Scientific Reports, 7, 1-8. https://doi.org/10.1038/srep42018
doi: https://doi.org/10.1038/srep42018 |
[1] | PENG Yujia, WANG Yuxi, LU Di. The mechanism of emotion processing and intention inference in social anxiety disorder based on biological motion [J]. Advances in Psychological Science, 2023, 31(6): 905-914. |
[2] | PAN Jing, ZHANG Huiyuan, CHEN Donghao, XU Hongge. Visual search in real world: The role of dynamic and static optical information [J]. Advances in Psychological Science, 2020, 28(8): 1219-1231. |
[3] | Li Shen, Ruichen Hu, Xiangyong Yuan, Ying Wang, Yi Jiang. Cortical Tracking of Biological Motion Information [J]. Advances in Psychological Science, 2019, 27(suppl.): 80-80. |
[4] | JIANG Yi;WANG Li. Biological Motion Perception: The Roles of Global Configuration and Local Motion [J]. , 2011, 19(3): 301-311. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||