Advances in Psychological Science ›› 2022, Vol. 30 ›› Issue (9): 1993-2003.doi: 10.3724/SP.J.1042.2022.01993
• Regular Articles • Previous Articles Next Articles
ZHAO Bingjie, ZHANG Qihan, CHEN Yixin, ZHANG Peng, BAI Xuejun()
Received:
2021-04-10
Online:
2022-09-15
Published:
2022-07-21
Contact:
BAI Xuejun
E-mail:bxuejun@126.com
CLC Number:
ZHAO Bingjie, ZHANG Qihan, CHEN Yixin, ZHANG Peng, BAI Xuejun. Processing characteristics and mechanisms of perception and memory of mind sports experts in domain-specific tasks[J]. Advances in Psychological Science, 2022, 30(9): 1993-2003.
[1] | 公彦霏. (2015). 关于组块机制及其与国际象棋技能之间关系的拓展研究 (博士学位论文). 华东师范大学, 上海. |
[2] | 刘宁. (2019). 围棋专家的认知优势表现及其脑基础 (博士学位论文). 华东师范大学, 上海. |
[3] | 王福兴, 侯秀娟, 段朝辉, 刘华山, 李卉. (2016). 中国象棋经验棋手与新手的知觉差异: 来自眼动的证据. 心理学报, 48(5), 457-471. |
[4] | 张钦, 孟迎芳, 聂爱情, 赵鑫, 孙猛, 刘鑫宇. (2021). 记忆发展神经科学: 研究现状与未来展望. 中国科学: 生命科学, 51(6), 647-662. |
[5] |
Aciego, R., Garcia, L., & Betancort, M. (2012). The benefits of chess for the intellectual and social-emotional enrichment in schoolchildren. The Spanish Journal of Psychology, 15(2), 551-559.
doi: 10.5209/rev_SJOP.2012.v15.n2.38866 URL |
[6] | Bart, W. M. (2014). On the effect of chess training on scholastic achievement. Frontiers in Psychology, 5, 762. |
[7] |
Bartlett, J. C., Boggan, A. L., & Krawczyk, D. C. (2013). Expertise and processing distorted structure in chess. Frontiers in Human Neuroscience, 7, 825.
doi: 10.3389/fnhum.2013.00825 pmid: 24348371 |
[8] | Berlucchi, G., & Vallar, G. (2018). The history of the neurophysiology and neurology of the parietal lobe. Handbook of Clinical Neurology, 151, 3-30. |
[9] |
Bilalić, M. (2016). Revisiting the role of the fusiform face area in expertise. Journal of Cognitive Neuroscience, 28(9), 1345-1357.
doi: 10.1162/jocn_a_00974 pmid: 27082047 |
[10] | Bilalić, M., Graf, M., Vaci, N., & Danek, A. H. (2019). When the solution is on the doorstep: Better solving performance, but diminished Aha! Experience for chess experts on the mutilated checkerboard problem. Cognitive Science, 43(8), e12771. |
[11] |
Bilalić, M., Grottenthaler, T., Nägele, T., & Lindig, T. (2016). The faces in radiological images: Fusiform face area supports radiological expertise. Cerebral Cortex, 26(3), 1004-1014.
doi: 10.1093/cercor/bhu272 URL |
[12] |
Bilalić, M., Kiesel, A., Pohl, C., Erb, M., & Grodd, W. (2011). It takes two-skilled recognition of objects engages lateral areas in both hemispheres. PLOS One, 6(1), e16202.
doi: 10.1371/journal.pone.0016202 URL |
[13] |
Bilalić, M., Langner, R., Erb, M., & Grodd, W. (2010). Mechanisms and neural basis of object and pattern recognition: A study with chess experts. Journal of Experimental Psychology: General, 139(4), 728-742.
doi: 10.1037/a0020756 URL |
[14] |
Bilalić, M., Langner, R., Ulrich, R., & Grodd, W. (2011). Many faces of expertise: Fusiform face area in chess experts and novices. Journal of Neuroscience, 31(28), 10206-10214.
doi: 10.1523/JNEUROSCI.5727-10.2011 pmid: 21752997 |
[15] |
Bilalić, M., Turella, L., Campitelli, G., Erb, M., & Grodd, W. (2012). Expertise modulates the neural basis of context dependent recognition of objects and their relations. Human Brain Mapping, 33(11), 2728-2740.
doi: 10.1002/hbm.21396 pmid: 21998070 |
[16] |
Binder, J. R., Desai, R. H., Graves, W. W., & Conant, L. L. (2009). Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex, 19(12), 2767-2796.
doi: 10.1093/cercor/bhp055 URL |
[17] |
Bloechle, J., Huber, S., Klein, E., Bahnmueller, J., Moeller, K., & Rennig, J. (2018). Neuro-cognitive mechanisms of global Gestalt perception in visual quantification. NeuroImage, 181, 359-369.
doi: 10.1016/j.neuroimage.2018.07.026 URL |
[18] |
Boggan, A. L., Bartlett, J. C., & Krawczyk, D. C. (2012). Chess masters show a hallmark of face processing with chess. Journal of Experimental Psychology: General, 141(1), 37-42.
doi: 10.1037/a0024236 URL |
[19] |
Bor, D., & Owen, A. M. (2007). A common prefrontal-parietal network for mnemonic and mathematical recoding strategies within working memory. Cerebral Cortex, 17(4), 778-786.
doi: 10.1093/cercor/bhk035 URL |
[20] |
Bowman, C. R., & Zeithamova, D. (2018). Abstract memory representations in the ventromedial prefrontal cortex and hippocampus support concept generalization. Journal of Neuroscience, 38(10), 2605-2614.
doi: 10.1523/JNEUROSCI.2811-17.2018 URL |
[21] |
Brams, S., Ziv, G., Levin, O., Spitz, J., Wagemans, J., Williams, A. M., & Helsen, W. F. (2019). The relationship between gaze behavior, expertise, and performance: A systematic review. Psychological Bulletin, 145(10), 980-1027.
doi: 10.1037/bul0000207 URL |
[22] |
Bucur, M., & Papagno, C. (2021). An ALE meta-analytical review of the neural correlates of abstract and concrete words. Scientific Reports, 11(1), 1-24.
doi: 10.1038/s41598-020-79139-8 URL |
[23] |
Burgoyne, A. P., Sala, G., Gobet, F., Macnamara, B. N., Campitelli, G., & Hambrick, D. Z. (2016). The relationship between cognitive ability and chess skill: A comprehensive meta- analysis. Intelligence, 59, 72-83.
doi: 10.1016/j.intell.2016.08.002 URL |
[24] |
Cabeza, R., & Nyberg, L. (2000). Imaging cognition II: An empirical review of 275 PET and fMRI studies. Journal of Cognitive Neuroscience, 12(1), 1-47.
doi: 10.1162/08989290051137585 pmid: 10769304 |
[25] |
Campitelli, G., Gobet, F., Head, K., Buckley, M., & Parker, A. (2007). Brain localization of memory chunks in chessplayers. International Journal of Neuroscience, 117(12), 1641-1659.
pmid: 17987468 |
[26] |
Campitelli, G., Gobet, F., & Parker, A. (2005). Structure and stimulus familiarity: A study of memory in chess-players with functional magnetic resonance imaging. The Spanish Journal of Psychology, 8(2), 238-245.
doi: 10.1017/S1138741600005126 URL |
[27] | Chase, W. G., & Ericsson, K. A. (1982). Skill and working memory. In G. H. Bower (Ed.), The psychology of learning and motivation (Vol. 16, pp. 1-58). New York, NY: Academic Press. |
[28] |
Chase, W. G., & Simon, H. A. (1973). Perception in chess. Cognitive Psychology, 4(1), 55-81.
doi: 10.1016/0010-0285(73)90004-2 URL |
[29] |
Chassy, P., & Gobet, F. (2011). Measuring chess experts' single-use sequence knowledge: An archival study of departure from ‘Theoretical' openings. PLOS One, 6(11), e26692.
doi: 10.1371/journal.pone.0026692 URL |
[30] |
Cheng, S.-T., Chow, P. K., Song, Y.-Q., Yu, E. C. S., & Lam, J. H. M. (2014). Can leisure activities slow dementia progression in nursing home residents? A cluster-randomized controlled trial. International Psychogeriatrics, 26(4), 637-643.
doi: 10.1017/S1041610213002524 URL |
[31] |
Chu-Man, L., Chang, M.-Y., & Chu, M.-C. (2015). Effects of mahjong on the cognitive function of middle-aged and older people. International Journal of Geriatric Psychiatry, 30(9), 995-997.
doi: 10.1002/gps.4307 pmid: 26220879 |
[32] |
Cooke, N. J., Atlas, R. S., Lane, D. M., & Berger, R. C. (1993). Role of high-level knowledge in memory for chess positions. The American Journal of Psychology, 106(3), 321-351.
doi: 10.2307/1423181 URL |
[33] |
Eichenbaum, H. (2004). Hippocampus: Cognitive processes and neural representations that underlie declarative memory. Neuron, 44(1), 109-120.
pmid: 15450164 |
[34] |
Engle, R. W., & Bukstel, L. (1978). Memory processes among bridge players of differing expertise. The American Journal of Psychology, 91(4), 673-689.
doi: 10.2307/1421515 URL |
[35] | Ericsson, K. A. (2007). Deliberate practice and the modifiability of body and mind: Toward a science of the structure and acquisition of expert and elite performance. International Journal of Sport Psychology, 38(1), 4-34. |
[36] |
Fattahi, F., Geshani, A., Jafari, Z., Jalaie, S., & Mahini, M. S. (2015). Auditory memory function in expert chess players. Medical Journal of the Islamic Republic of Iran, 29, 275.
pmid: 26793666 |
[37] |
Ferrari, V., Didierjean, A., & Marméche, E. (2008). Effect of expertise acquisition on strategic perception: The example of chess. Quarterly Journal of Experimental Psychology, 61(8), 1265-1280.
doi: 10.1080/17470210701503344 URL |
[38] |
Frank, M. C., & Gibson, E. (2011). Overcoming memory limitations in rule learning. Language Learning and Development, 7(2), 130-148.
doi: 10.1080/15475441.2010.512522 URL |
[39] |
Frey, P. W., & Adesman, P. (1976). Recall memory for visually presented chess positions. Memory & Cognition, 4(5), 541-547.
doi: 10.3758/BF03213216 URL |
[40] |
Gauthier, I., Skudlarski, P., Gore, J. C., & Anderson, A. W. (2000). Expertise for cars and birds recruits brain areas involved in face recognition. Nature Neuroscience, 3(2), 191-197.
pmid: 10649576 |
[41] |
Gentile, A., Boca, S., & Giammusso, I. (2018). ‘You play like a Woman!' Effects of gender stereotype threat on Women's performance in physical and sport activities: A meta-analysis. Psychology of Sport and Exercise, 39, 95-103.
doi: 10.1016/j.psychsport.2018.07.013 URL |
[42] |
Gobet, F. (1998). Expert memory: A comparison of four theories. Cognition, 66(2), 115-152.
pmid: 9677761 |
[43] |
Gobet, F., & Clarkson, G. (2004). Chunks in expert memory: Evidence for the magical number four... or is it two? Memory, 12(6), 732-747.
doi: 10.1080/09658210344000530 URL |
[44] |
Gobet, F., & Simon, H. A. (1996a). Recall of random and distorted chess positions: Implications for the theory of expertise. Memory & Cognition, 24(4), 493-503.
doi: 10.3758/BF03200937 URL |
[45] |
Gobet, F., & Simon, H. A. (1996b). Recall of rapidly presented random chess positions is a function of skill. Psychonomic Bulletin & Review, 3(2), 159-163.
doi: 10.3758/BF03212414 URL |
[46] |
Gobet, F., & Simon, H. A. (1996c). Templates in chess memory: A mechanism for recalling several boards. Cognitive Psychology, 31(1), 1-40.
doi: 10.1006/cogp.1996.0011 URL |
[47] |
Gobet, F., & Simon, H. A. (1998). Expert chess memory: Revisiting the chunking hypothesis. Memory, 6(3), 225-255.
pmid: 9709441 |
[48] |
Gong, Y., Ericsson, K. A., & Moxley, J. H. (2015). Recall of briefly presented chess positions and its relation to chess skill. PLOS One, 10(3), e0118756.
doi: 10.1371/journal.pone.0118756 URL |
[49] |
Hambrick, D. Z., Oswald, F. L., Altmann, E. M., Meinz, E. J., Gobet, F., & Campitelli, G. (2014). Deliberate practice: Is that all it takes to become an expert? Intelligence, 45, 34-45.
doi: 10.1016/j.intell.2013.04.001 URL |
[50] | Holding, D. H. (1985). The Psychology of Chess Skill. Hillsdale, NJ: Erlbaum. |
[51] |
Huberle, E., & Karnath, H.-O. (2012). The role of temporo- parietal junction (TPJ) in global Gestalt perception. Brain Structure and Function, 217(3), 735-746.
doi: 10.1007/s00429-011-0369-y URL |
[52] | Iizuka, A., Suzuki, H., Ogawa, S., Kobayashi-Cuya, K. E., Kobayashi, M., Takebayashi, T., & Fujiwara, Y. (2018). Pilot randomized controlled trial of the GO game intervention on cognitive function. American Journal of Alzheimer's Disease & Other Dementias, 33(3), 192-198. |
[53] | Joseph, E., Easvaradoss, V., Kennedy, A., & Kezia, E. J. (2016). Chess training improves cognition in children. GSTF Journal of Psychology, 2(2), 1-6. |
[54] |
Jung, W. H., Lee, T. Y., Yoon, Y. B., Choi, C. H., & Kwon, J. S. (2018). Beyond domain-specific expertise: Neural signatures of face and spatial working memory in Baduk (Go game) experts. Frontiers in Human Neuroscience, 12, 319.
doi: 10.3389/fnhum.2018.00319 URL |
[55] |
Kanwisher, N., & Yovel, G. (2006). The fusiform face area: A cortical region specialized for the perception of faces. Philosophical Transactions of the Royal Society B: Biological Sciences, 361(1476), 2109-2128.
doi: 10.1098/rstb.2006.1934 URL |
[56] |
Kazemi, F., Yektayar, M., & Abad, A. M. B. (2012). Investigation the impact of chess play on developing meta-cognitive ability and math problem-solving power of students at different levels of education. Procedia-Social and Behavioral Sciences, 32, 372-379.
doi: 10.1016/j.sbspro.2012.01.056 URL |
[57] |
Kiesel, A., Kunde, W., Pohl, C., Berner, M. P., & Hoffmann, J. (2009). Playing chess unconsciously. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35(1), 292-298.
doi: 10.1037/a0014499 URL |
[58] |
Kobiela, F. (2018). Should chess and other mind sports be regarded as sports. Journal of the Philosophy of Sport, 45(3), 279-295.
doi: 10.1080/00948705.2018.1520125 URL |
[59] |
Koen, J. D., Borders, A. A., Petzold, M. T., & Yonelinas, A. P. (2017). Visual short-term memory for high resolution associations is impaired in patients with medial temporal lobe damage. Hippocampus, 27(2), 184-193.
doi: 10.1002/hipo.22682 URL |
[60] |
Krawczyk, D. C., Boggan, A. L., McClelland, M. M., & Bartlett, J. C. (2011). The neural organization of perception in chess experts. Neuroscience Letters, 499(2), 64-69.
doi: 10.1016/j.neulet.2011.05.033 pmid: 21635936 |
[61] |
Kundel, H. L., Nodine, C. F., Conant, E. F., & Weinstein, S. P. (2007). Holistic component of image perception in mammogram interpretation: Gaze-tracking study. Radiology, 242(2), 396-402.
doi: 10.1148/radiol.2422051997 URL |
[62] |
Lane, D. M., & Chang, Y. A. (2018). Chess knowledge predicts chess memory even after controlling for chess experience: Evidence for the role of high-level processes. Memory & Cognition, 46(3), 337-348.
doi: 10.3758/s13421-017-0768-2 URL |
[63] |
Linhares, A., & Brum, P. (2007). Understanding our understanding of strategic scenarios: What role do chunks play? Cognitive Science, 31(6), 989-1007.
doi: 10.1080/03640210701703725 URL |
[64] |
Linhares, A., & Chada, D. M. (2013). What is the nature of the mind's pattern-recognition process? New Ideas in Psychology, 31(2), 108-121.
doi: 10.1016/j.newideapsych.2012.08.001 URL |
[65] |
Loiselle, M., Rouleau, I., Nguyen, D. K., Dubeau, F., Macoir, J., Whatmough, C.,... Joubert, S. (2012). Comprehension of concrete and abstract words in patients with selective anterior temporal lobe resection and in patients with selective amygdalo-hippocampectomy. Neuropsychologia, 50(5), 630-639.
doi: 10.1016/j.neuropsychologia.2011.12.023 pmid: 22245005 |
[66] | Mackintosh, N. (2011). IQ and human intelligence (2nd ed.). Oxford: Oxford University Press. |
[67] |
McGregor, S. J., & Howes, A. (2002). The role of attack and defense semantics in skilled players' memory for chess positions. Memory & Cognition, 30(5), 707-717.
doi: 10.3758/BF03196427 URL |
[68] |
Mosing, M. A., Madison, G., Pedersen, N. L., & Ullén, F. (2016). Investigating cognitive transfer within the framework of music practice: Genetic pleiotropy rather than causality. Developmental Science, 19(3), 504-512.
doi: 10.1111/desc.12306 URL |
[69] | Nakatani, H., & Yamaguchi, Y. (2014). Quick concurrent responses to global and local cognitive information underlie intuitive understanding in board-game experts. Scientific Reports, 4(1), 1-10. |
[70] |
Polderman, T. J., Benyamin, B., de Leeuw, C. A., Sullivan, P. F., van Bochoven, A., Visscher, P. M., & Posthuma, D. (2015). Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nature Genetics, 47(7), 702-709.
doi: 10.1038/ng.3285 pmid: 25985137 |
[71] |
Postal, V. (2012). Inhibition of irrelevant information is not necessary to performance of expert chess players. Perceptual and Motor Skills, 115(1), 60-68.
doi: 10.2466/23.04.22.PMS.115.4.60-68 URL |
[72] |
Ptak, R. (2012). The frontoparietal attention network of the human brain: Action, saliency, and a priority map of the environment. The Neuroscientist, 18(5), 502-515.
doi: 10.1177/1073858411409051 URL |
[73] |
Reber, T. P., Bausch, M., Mackay, S., Boström, J., Elger, C. E., & Mormann, F. (2019). Representation of abstract semantic knowledge in populations of human single neurons in the medial temporal lobe. PLOS Biology, 17(6), e3000290.
doi: 10.1371/journal.pbio.3000290 URL |
[74] | Reingold, E. M., & Charness, N. (2005). Perception in chess:Evidence from eye movements. In G. Underwood (Ed.), Cognitive processes in eye guidance (pp. 325-354). Oxford: Oxford University Press. |
[75] |
Reingold, E. M., Charness, N., Pomplun, M., & Stampe, D. M. (2001). Visual span in expert chess players: Evidence from eye movements. Psychological Science, 12(1), 48-55.
pmid: 11294228 |
[76] |
Reingold, E. M., Charness, N., Schultetus, R. S., & Stampe, D. M. (2001). Perceptual automaticity in expert chess players: Parallel encoding of chess relations. Psychonomic Bulletin & Review, 8(3), 504-510.
doi: 10.3758/BF03196185 URL |
[77] | Rennig, J., Bilalić, M., Huberle, E., Karnath, H. O., & Himmelbach, M. (2013). The temporo-parietal junction contributes to global gestalt perception-evidence from studies in chess experts. Frontiers in Human Neuroscience, 7, 513. |
[78] |
Rennig, J., Himmelbach, M., Huberle, E., & Karnath, H.-O. (2015). Involvement of the TPJ area in processing of novel global forms. Journal of Cognitive Neuroscience, 27(8), 1587-1600.
doi: 10.1162/jocn_a_00809 URL |
[79] |
Risi, S., & Preuss, M. (2020). From chess and atari to starcraft and beyond: How game AI is driving the world of AI. KI-Künstliche Intelligenz, 34(1), 7-17.
doi: 10.1007/s13218-020-00647-w URL |
[80] |
Robbins, T. W., Anderson, E. J., Barker, D. R., Bradley, A. C., & Hudson, S. R. (1996). Working memory in chess. Memory & Cognition, 24(1), 83-93.
doi: 10.3758/BF03197274 URL |
[81] |
Ross, D. A., Tamber-Rosenau, B. J., Palmeri, T. J., Zhang, J., Xu, Y., & Gauthier, I. (2018). High-resolution functional magnetic resonance imaging reveals configural processing of cars in right anterior fusiform face area of car experts. Journal of Cognitive Neuroscience, 30(7), 973-984.
doi: 10.1162/jocn_a_01256 URL |
[82] |
Saariluoma, P. (1985). Chess players' intake of task-relevant cues. Memory & Cognition, 13(5), 385-391.
doi: 10.3758/BF03198451 URL |
[83] |
Sala, G., Burgoyne, A. P., Macnamara, B. N., Hambrick, D. Z., Campitelli, G., & Gobet, F. (2017). Checking the "Academic Selection" argument. Chess players outperform non-chess players in cognitive skills related to intelligence: A meta-analysis. Intelligence, 61, 130-139.
doi: 10.1016/j.intell.2017.01.013 URL |
[84] |
Sala, G., & Gobet, F. (2017a). Does far transfer exist? Negative evidence from chess, music, and working memory training. Current Directions in Psychological Science, 26(6), 515-520.
doi: 10.1177/0963721417712760 URL |
[85] |
Sala, G., & Gobet, F. (2017b). Experts' memory superiority for domain-specific random material generalizes across fields of expertise: A meta-analysis. Memory & Cognition, 45(2), 183-193.
doi: 10.3758/s13421-016-0663-2 URL |
[86] |
Sauce, B., & Matzel, L. D. (2018). The paradox of intelligence: Heritability and malleability coexist in hidden gene-environment interplay. Psychological Bulletin, 144(1), 26-47.
doi: 10.1037/bul0000131 URL |
[87] |
Savage, J. E., Jansen, P. R., Stringer, S., Watanabe, K., Bryois, J., de Leeuw, C. A.,... Posthuma, D. (2018). Genome-wide association meta-analysis in 269, 867 individuals identifies new genetic and functional links to intelligence. Nature Genetics, 50(7), 912-919.
doi: 10.1038/s41588-018-0152-6 URL |
[88] |
Schonberg, C., Marcus, G. F., & Johnson, S. P. (2018). The roles of item repetition and position in infants' abstract rule learning. Infant Behavior and Development, 53, 64-80.
doi: 10.1016/j.infbeh.2018.08.003 URL |
[89] |
Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K., Sifre, L., Schmitt, S.,... Silver, D. (2020). Mastering atari, go, chess and shogi by planning with a learned model. Nature, 588(7839), 604-609.
doi: 10.1038/s41586-020-03051-4 URL |
[90] |
Schultetus, R. S., & Charness, N. (1999). Recall or evaluation of chess positions revisited: The relationship between memory and evaluation in chess skill. The American Journal of Psychology, 112(4), 555-569.
doi: 10.2307/1423650 URL |
[91] | Scoville, W. B., & Milner, B. (1957). Loss of recent memory after bilateral hippocampal lesions. Journal of Neurology, Neurosurgery, and Psychiatry, 20(1), 11-21. |
[92] |
Sestieri, C., Shulman, G. L., & Corbetta, M. (2017). The contribution of the human posterior parietal cortex to episodic memory. Nature Reviews Neuroscience, 18(3), 183-192.
doi: 10.1038/nrn.2017.6 pmid: 28209980 |
[93] |
Sheridan, H., & Reingold, E. M. (2017). The holistic processing account of visual expertise in medical image perception: A review. Frontiers in Psychology, 8, 1620.
doi: 10.3389/fpsyg.2017.01620 pmid: 29033865 |
[94] |
Smith, E. T., Bartlett, J. C., Krawczyk, D. C., & Basak, C. (2021). Are the advantages of chess expertise on visuo-spatial working-memory capacity domain specific or domain general? Memory & Cognition, 49, 1600-1616.
doi: 10.3758/s13421-021-01184-z URL |
[95] | Straube, B., He, Y., Steines, M., Gebhardt, H., Kircher, T., Sammer, G., & Nagels, A. (2013). Supramodal neural processing of abstract information conveyed by speech and gesture. Frontiers in Behavioral Neuroscience, 7, 120. |
[96] | Subia, G. S., Amaranto, J. L., Amaranto, J. C., Bustamante, J. Y., & Damaso, I. C. (2019). Chess and mathematics performance of college players: An exploratory analysis. Open Access Library Journal, 6(2), 1-7. |
[97] |
Ullén, F., Hambrick, D. Z., & Mosing, M. A. (2016). Rethinking expertise: A multifactorial gene-environment interaction model of expert performance. Psychological Bulletin, 142(4), 427-446.
doi: 10.1037/bul0000033 URL |
[98] |
Unterrainer, J. M., Kaller, C. P., Halsband, U., & Rahm, B. (2006). Planning abilities and chess: A comparison of chess and non-chess players on the Tower of London task. British Journal of Psychology, 97(3), 299-311.
doi: 10.1348/000712605X71407 URL |
[99] |
Vaci, N., Edelsbrunner, P., Stern, E., Neubauer, A., Bilalić, M., & Grabner, R. H. (2019). The joint influence of intelligence and practice on skill development throughout the life span. Proceedings of the National Academy of Sciences, 116(37), 18363-18369.
doi: 10.1073/pnas.1819086116 URL |
[100] |
Vaz, A. P., Inati, S. K., Brunel, N., & Zaghloul, K. A. (2019). Coupled ripple oscillations between the medial temporal lobe and neocortex retrieve human memory. Science, 363(6430), 975-978.
doi: 10.1126/science.aau8956 URL |
[101] |
Wan, X., Nakatani, H., Ueno, K., Asamizuya, T., Cheng, K., & Tanaka, K. (2011). The neural basis of intuitive best next-move generation in board game experts. Science, 331(6015), 341-346.
doi: 10.1126/science.1194732 URL |
[102] |
Wang, J., Conder, J. A., Blitzer, D. N., & Shinkareva, S. V. (2010). Neural representation of abstract and concrete concepts: A meta-analysis of neuroimaging studies. Human Brain Mapping, 31(10), 1459-1468.
doi: 10.1002/hbm.20950 URL |
[103] |
Whitaker, M. M., Pointon, G. D., Tarampi, M. R., & Rand, K. M. (2020). Expertise effects on the perceptual and cognitive tasks of indoor rock climbing. Memory & Cognition, 48(3), 494-510.
doi: 10.3758/s13421-019-00985-7 URL |
[104] | Wright, M. J., Gobet, F., Chassy, P., & Ramchandani, P. N. (2013). ERP to chess stimuli reveal expert-novice differences in the amplitudes of N2 and P3 components. Psychophysiology, 50(10), 1023-1033. |
[1] | CHENG Kai-Wen, DENG Yan-Hui, YAN Hong-Mei. Second language learning and brain plasticity [J]. Advances in Psychological Science, 2019, 27(2): 209-220. |
[2] | ZHANG Changxin. Brain plasticity under early auditory deprivation: Evidence from congenital hearing-impaired people [J]. Advances in Psychological Science, 2019, 27(2): 278-288. |
[3] | HUO Lijuan, ZHENG Zhiwei, LI Jin, LI Juan. The plasticity of aging brain: Evidence from cognitive training [J]. Advances in Psychological Science, 2018, 26(5): 846-858. |
[4] | DING Guo-Sheng;LI Yan-Yan. The Role of Early Sign-language Experience in Shaping the Structure and Function of the Deaf Brain [J]. , 2012, 20(3): 328-337. |
[5] | WANG Xiao-Ling;LI Song-Wei;QIAN Ming-Yi. Emotional Memory Advantage of Individuals with Posttraumatic Stress Disorder [J]. , 2012, 20(2): 248-255. |
[6] | TAO Wei-Dong;SUN Hong-Jin;ZHANG Xu-Dong;ZHENG Jian-Hong. The Neural-mechanisms of the Formation of Inversion Effect in Non-face Object Recognition [J]. , 2011, 19(8): 1104-1114. |
[7] |
LI Yan-Wei;LI Yan-Fang.
The Relationship Between Cognitive and Brain Development in Children and Adolescents [J]. , 2010, 18(11): 1700-1706. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||